summaryrefslogtreecommitdiff
path: root/Diffusion:_Mass_Transfer_In_Fluid_Systems_by_E._L._Cussler/ch15.ipynb
blob: 6b46e6bc607229105007aec4509e77d96f2c7f9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
 "metadata": {
  "name": "",
  "signature": "sha256:e7844fd29e61e44a32fcf2d944211052a5451b3c15cdfd580105fb20e51952a3"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 15 : Adsorption"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.3.2 pg : 438"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "tE = 33. \t# Time taken for ferric ion to exhaust the bed in min\n",
      "tB = 23. \t# Time taken for nickel to break through ferric in min\n",
      "l = 120. \t#bed length in cm\n",
      "\t\n",
      "#Calculations\n",
      "Theta = round(2*tB/(tB+tE),1)\n",
      "lunused = (1-Theta)*120 \t# cm\n",
      "\t\n",
      "#Results\n",
      "print \"the length of the bed unused is %.1f cm\"%(lunused)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the length of the bed unused is 24.0 cm\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.3.3 pg : 438"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "tB = 10. \t# min\n",
      "tE = 14. \t# min\n",
      "l = 0.12 \t#m\n",
      "l2 = 10. \t# m\n",
      "c = 10000.\n",
      "A = 1/10000. \t# m**2\n",
      "\t\n",
      "#Calculations\n",
      "theta = 2*tB/(tB+tE)\n",
      "l1 = l*(1-theta)\t# m , length of bed unused in first case\n",
      "V1 = c*A*l \t# m**3\n",
      "l3 = l2-l1 \t# length of bed unused in second case\n",
      "d = math.sqrt(V1*4/(l3*math.pi))\t# m\n",
      "V2 = c*(l-l1)*A*l2/l3 \t# volume needed for second case\n",
      "\t\n",
      "#Results\n",
      "print \"The volume of adsorbent needed if the bed is kept 12 cm deep is %.2f m**3\"%(V1)\n",
      "print \"The volume of adsorbent needed if the bed length is 10 m long is %.4f m**3\"%(V2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The volume of adsorbent needed if the bed is kept 12 cm deep is 0.12 m**3\n",
        "The volume of adsorbent needed if the bed length is 10 m long is 0.1002 m**3\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.4.1 pg : 441"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#intialization of variables\n",
      "tB1 = 38. \t# days , breakthrough time\n",
      "tE1 = 46. \t# days, exhaustion time\n",
      "c = 2.  \t# number of times flow doubled\n",
      "\t\n",
      "#Calculations\n",
      "theta1 = 2*tB1/(tB1+tE1)\t# in the first case\n",
      "ratio1 = 1-theta1 \t# ratio of unused bed length to total bed length\n",
      "ratio2 = ratio1*c\n",
      "tB2 = ((1/c)*(tB1 + 0.5*(tE1-tB1)))*ratio2\t#breakthrough time for second case\n",
      "tE2 = (c-ratio2)*tB2/ratio2\t#exhaustion time for second case\n",
      "\t\n",
      "#Results\n",
      "print \"The breakthrough time for this case is %.1f days\"%(tB2)\n",
      "\n",
      "# answer slightly wrong in textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The breakthrough time for this case is 4.0 days\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15.4.2 pg : 442"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "slope = 0.93/3600 \t# sec**-1\n",
      "q0 = 300.        \t# 300 times y0 \n",
      "E = 0.4 \t        # void fraction\n",
      "d = 310.*10**-4 \t#cm\n",
      "v = 1/60.        \t#cm/sec\n",
      "Nu = 0.01       \t#cm**2/sec\n",
      "D = 5.*10**-6 \t        #cm**2/sec\n",
      "\t\n",
      "#Calculations\n",
      "ka1 = slope*q0*(1-E)\t#sec**-1\n",
      "k = (D/d)*1.17*((d*v/Nu)**0.58)*((Nu/D)**0.33)\t# cm/sec\n",
      "a = (6/d)*(1-E)\t#cm**2/cm**3\n",
      "ka2 = k*a\t#sec**-1\n",
      "\t\n",
      "#Results\n",
      "print \"The rate constant is %.3f sec**-1\"%(ka1)\n",
      "print \"The rate constant of literature is %.3f sec**-1\"%(ka2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The rate constant is 0.046 sec**-1\n",
        "The rate constant of literature is 0.048 sec**-1\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}