summaryrefslogtreecommitdiff
path: root/Diffusion:_Mass_Transfer_In_Fluid_Systems_by_E._L._Cussler/ch14.ipynb
blob: 5816aa5ccb50dfba62879db77029ab033d56cff1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
{
 "metadata": {
  "name": "",
  "signature": "sha256:528842b9a81e863e3c4d30ecc59935b8c5cd0e7d99bff9f9c1d1ac8c6c54daa9"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14 : Extraction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3.1 pg : 412"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "Rat1 = (6.5/3)*(1-0.47)\t# as Rat = x0/y0\n",
      "m = 0.14 \n",
      "H = (6.5*10**3)/3600 \t# Extract flow in g/sec\n",
      "L = (3*10**3)/3600. \t# Solvent flow in g/sec\n",
      "d= 10.              \t# cm\n",
      "A = 0.25*math.pi*d**2 \t# cm**2\n",
      "l = 65 \t# cm\n",
      "\t\n",
      "#Calculations and Results\n",
      "Kya = ((H/(l*A))*(1/(1-((m*H)/L)))*(math.log((1-0.14*Rat1)/(0.47))))*10**3\t# kg/m**3-sec\n",
      "print \"The value of Kya is %.1f  kg/m**3-sec\"%(Kya)\n",
      "Rat2 = (6.5/3)*(1-0.1)\t#For case B\n",
      "l2 = l*(math.log(1/((1-0.14*Rat2)/(0.1))))/(math.log(1/((1-0.14*Rat1)/(0.47))))/100\t# m\n",
      "print \"The length for 90 percent recovery is %.1f m\"%(l2)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of Kya is 0.3  kg/m**3-sec\n",
        "The length for 90 percent recovery is 2.2 m\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.4.1 pg : 415"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "#initialization of variables\n",
      "m = 0.018 \n",
      "H = 450.     \t# litres/hr\n",
      "L = 37.      \t# litres/hr\n",
      "Ynplus1byY1 = 100. \n",
      "\t\n",
      "#Calculations\n",
      "E =m*H/L\n",
      "nplus1 = math.log((Ynplus1byY1*((1/E)-1))+1)/math.log(1/E)\n",
      "n = nplus1 -1\n",
      "print \"The number of ideal stages are %.1f\"%(n)\n",
      "N = 0.60        \t#Murphree efficienct\n",
      "E1 = (m*H/L) + (1/N) - 1\n",
      "nplus1 = math.log((Ynplus1byY1*((1/E1)-1))+1)/math.log(1/E1)\n",
      "n=nplus1-1\n",
      "print \"The number of stages required if Murphree efficiency is 60 percent is %.f\"%(n)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number of ideal stages are 2.9\n",
        "The number of stages required if Murphree efficiency is 60 percent is 21\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.5.1 pg : 419"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "F = 5.       \t#kg feed\n",
      "S = 2.       \t# kg solvent\n",
      "E = F-S     \t# kg extract\n",
      "W = 1.  \t    # kg waste\n",
      "EG = 80. \t    # ppm\n",
      "y0 = (100-99)/100.   \t# mole fraction of gold left\n",
      "y1 = y0*EG*W/S \t        # concentration in raffinate\n",
      "\t\n",
      "#Calculations\n",
      "xN = (EG*W - y1*S)/E \t# solvent concentration\n",
      "xNminus1 = ((xN*(E+S)) - EG*W)/F\t#feed stage balance\n",
      "N = 1 + ((math.log((xN-xNminus1)/(y1))/math.log(F/S)))\t#numner of stages including feed stage\n",
      "\t\n",
      "#Results\n",
      "print \"The number of stages including feed stage is %d\"%(N)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number of stages including feed stage is 5\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}