summaryrefslogtreecommitdiff
path: root/Diffusion:_Mass_Transfer_In_Fluid_Systems_by_E._L._Cussler/ch10.ipynb
blob: ad62a56a61ba88183c3b1800cdebba017f9a9d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
{
 "metadata": {
  "name": "",
  "signature": "sha256:a951bca59afca6e246f5da2ffc1465ed3d7457760d6d4747a778b92b4eb41d0e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10 : Absorption"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2.1 pg : 313"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "c = 0.92\n",
      "F = 93 \t# ft**-1\n",
      "nu = 2 \t# cs\n",
      "dl = 63 \t# lb/ft**3\n",
      "dg = 2.8 \t# lb/ft**3\n",
      "G = 23 \t#lb/sex\n",
      "\t\n",
      "#Calculations\n",
      "G11 = c*((dl-dg)**0.5)/(((F)**0.5)*(nu**0.05))\t#  lb/ft**2-sec\n",
      "A  = G/G11\t# ft**2\n",
      "d = math.sqrt(4*A/math.pi)\t#ft\n",
      "\t\n",
      "#Results\n",
      "print \"The diameter of the tower is %.1f ft\"%(d)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The diameter of the tower is 6.4 ft\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3.1 pg : 318"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "G = 2.3 \t    # Gas flow in gmol/sec\n",
      "L = 4.8 \t    # Liquid flow in gmol/sec\n",
      "y0 = 0.0126 \t# entering gas Mole fraction of CO2\n",
      "yl = 0.0004 \t# Exiting gas mole fraction of CO2 \n",
      "xl = 0.      \t# Exiting liquid mole fraction of CO2\n",
      "d = 40.      \t# Diameter of the tower in cm\n",
      "x0star = 0.0080\t# if the amine left in equilibrium with the entering gas would contain 0.80 percent C02\n",
      "Kya = 5.*10**-5 \t# Overall M.T.C and the product times the area per volume in gmol/cm**3-sec\n",
      "\t\n",
      "#Calculations\n",
      "A =math.pi*(d**2)/4\n",
      "x0 = ((G*(y0-yl))/(L)) + xl \t# Entering liquid mole fraction of CO2\n",
      "m = y0/x0star \t# Equilibirum consmath.tant\n",
      "c1 = G/(A*Kya)\n",
      "c2 = 1/(1-(m*G/L))\n",
      "c3 = math.log((y0-m*x0)/(yl-m*xl))\n",
      "l = (G/(A*Kya))*(1/(1-((m*G)/L)))*(math.log((y0-m*x0)/(yl-m*xl)))/100 \t#length of the tower in metres\n",
      "\t\n",
      "#Results\n",
      "print \"The length of the tower is %.1f m\"%(l)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The length of the tower is 3.2 m\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3.2 pg : 319"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "\t\n",
      "#initialization of variables\n",
      "l = 200. \t# Length of the tower in cm\n",
      "d = 60. \t# diameter of the tower\n",
      "Lf = 300. \t# Liquid flow in cc/sec\n",
      "Kx = 2.2*10**-3 \t# dominant transfer co efficient in liquid in cm/sec\n",
      "\t\n",
      "#Calculations\n",
      "A = math.pi*60*60/4 \t# Area of the cross section in sq cm\n",
      "L = Lf/A \t# Liquid flux in cm**2/sec\n",
      "ratio = 1/(math.exp((l*Kx)/L))\n",
      "percentage = (1-ratio)*100 \t# Percentage removal of Oxygen\n",
      "\t\n",
      "#Results\n",
      "print \"the percentage of oxygen we can remove is %.1f\"%(percentage)\n",
      "\n",
      "# Rounding of error in textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the percentage of oxygen we can remove is 98.4\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4.1 pg : 324"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "y1in = 0.37 \t# mole fraction of Ammonia in gas mixture entering\n",
      "y2in =0.16  \t# mole fraction of nitrogen in gas mixture entering\n",
      "y3in = 0.47 \t# mole fraction of hydrogen in gas mixture entering\n",
      "x1out = 0.23 \t# mole fraction of Ammonia in liquid coming out\n",
      "y1out = 0.01 \t# mole fraction of ammonia in gas coming out\n",
      "G0 = 1.20 \t    # Gas glow entering in m**3/sec\n",
      "Mu = 1.787*0.01*0.3048/2.23 \t# liquid viscousity in american units\n",
      "dl = 62.4   \t# Density of  liquid in lb/ft**3\n",
      "KG = 0.032  \t# Overall m.t.c in gas phase in  gas side m/sec\n",
      "a = 105     \t# surface area in m**2/m**3\n",
      "gc = 32.2   \t# acceleration due to gravity in ft/sec**2\n",
      "dg = 0.0326 \t# Density of gas in lb/ft**3\n",
      "#Molecular weights of Ammonia , N2 , H2\n",
      "M1 = 17.\n",
      "M2 = 28.\n",
      "M3 = 2.\n",
      "Nu = 1. \t# Viscousity \n",
      "\t\n",
      "#Calculations\n",
      "AG0 = (y2in+y3in)*G0/22.4 \t# Total flow of non absorbed gases in kgmol/sec\n",
      "ANH3 = y1in*G0/22.4- (y1out*AG0)/(1-y1out) \t# Ammonia absorbed kgmol/sec\n",
      "AL0 = ((1-x1out)/x1out)*ANH3 \t# the desired water flow in kgmol/sec\n",
      "avg1 = 11.7 \t# Average mol wt of gas\n",
      "avg2 = 17.8 \t# avg mol wt of liquid\n",
      "TFG = avg1*AG0/(y2in+y3in)\t#Total flow of gas in kg/sec\n",
      "TFL = avg2*AL0/(1-x1out)\t#total flow of liquid in kg/sec\n",
      "F = 45 \t# Packing factor\n",
      "GFF =  1.3*((dl-dg)**0.5)/((F**0.5)*(Nu**0.05))\t# Flux we require in lb/ft**2-sec\n",
      "GFF1 = GFF*0.45/(0.3**2) \t# in kg/m**2-sec (answer wrong in textbook)\n",
      "Area = TFG/GFF1 \t# Area of the cross section of tower\n",
      "dia = (math.sqrt(4*Area/math.pi)) \t# diameter in metres\n",
      "HTU = (22.4*AG0/math.pi*dia**2)/(KG*a*4)\n",
      "NTU = 5555\n",
      "l = HTU*NTU \t# Length of the tower\n",
      "\t\n",
      "#Results\n",
      "print \"The flow of pure water into the top of the tower %.4f kgmol/sec\"%(AL0)\n",
      "print \" The diameter of the tower is %.1f m\"%(dia)\n",
      "print \" The length of the tower is %.f m\"%(l)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flow of pure water into the top of the tower 0.0652 kgmol/sec\n",
        " The diameter of the tower is 0.3 m\n",
        " The length of the tower is 10 m\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}