1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4:Atomic Structure"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4.1,Page no:125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"E= -13.6; #Energy required to separate electron and proton, eV\n",
"e= 1.6*(10**(-19)); #charge of an electron, C\n",
"E= E*e; #converting to J\n",
"Po= 8.85*(10**(-12)); #Permittivity of free space, F/m\n",
"\n",
"#Calculation\n",
"import math\n",
"r= e**2/(8*(math.pi)*Po*E); #radius, m\n",
"r= -r;\n",
"m= 9.1*(10**(-31)); #mass of electron, kg\n",
"v=e/math.sqrt(4*(math.pi)*Po*m*r); #velocity, m/s\n",
"\n",
"#Result\n",
"print\"The orbital radius of the electron is:%.2g\"%r,\"m\"\n",
"print\"The velocity of electron is:%.2g\"%v,\"m/s\"\n",
" \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The orbital radius of the electron is:5.3e-11 m\n",
"The velocity of electron is:2.2e+06 m/s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4.2,Page no:135"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"n1=1.0; #initial state\n",
"n2=3.0; #final state\n",
"E= -13.6; #energy in ground state, eV\n",
"\n",
"#Calculation\n",
"dE= E*((1/n2**2)-(1/n1**2)); #Change in energy, eV\n",
"\n",
"#Result\n",
"print\"The energy change of Hydrogen atom is: \",round(dE,1),\"eV\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy change of Hydrogen atom is: 12.1 eV\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4.3,Page no:135"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"#Part(a)\n",
"Rn= 10.0**(-5); #radius of Rydberg atom, m\n",
"Ao= 5.29*(10**(-11)); #Bohr radius, m\n",
"\n",
"#Calculation\n",
"n= math.sqrt(Rn/Ao); #Quantum number\n",
"E1= -13.6; #Ground state energy level, eV\n",
"En= E1/n**2.0; #Nth state energy level, eV\n",
"\n",
"#Result\n",
"print\"(a).The quantum number of the Rydberg atom is: \",round(n)\n",
"print\"(b).The energy ofthe rydberg atom is:%.3g\"%En,\"eV\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).The quantum number of the Rydberg atom is: 435.0\n",
"(b).The energy ofthe rydberg atom is:-7.19e-05 eV\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4.4,Page no:138"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"n1= 3.0; #initial state\n",
"n2= 2.0; #final state\n",
"R= 1.097*(10**7); #Rydberg's constant, m**(-1)\n",
"\n",
"#Calculation\n",
"k= (1/n2**2)-(1/n1**2);\n",
"l= 1/(k*R); #longest wavelength, m\n",
"l= l*(10**9); #converting to nm\n",
"\n",
"#Result\n",
"print\"The longest in Balmer series of Hydrogen, in nm, is: \",round(l),\"nm\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The longest in Balmer series of Hydrogen, in nm, is: 656.0 nm\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4.5,Page no:139"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"n1=1.0; #initial state\n",
"n2=2.0; #final state\n",
"E1= 2.18*(10**(-18)); #Rydberg's constant, J\n",
"h= 6.63*(10**(-34)); #Planck's constant, J.s\n",
"\n",
"#Calculation\n",
"f1= (E1/h)*(2.0/n1**3); #Frequency for first orbit, rev/s\n",
"f2= (E1/h)*(2.0/n2**3); #Frequency for second orbit, rev/s\n",
"print\"Ans (A):Frequency of revolution for orbit n=1 is,f1: %.3g\"%f1,\"rev/s\"\n",
"print\"Frequency of revolution for orbit n=2 is,f2:%.2e\"%f2,\"rev/s\"\n",
"print\"which is equivalent to 0.823*10**15 rev/s 'without' any scientific notation\\n\"\n",
"#Part (b)\n",
"n1=2.0; #initial orbit\n",
"n2=1.0; #final orbit\n",
"f= (E1/(h))*((1.0/(n2**2))-(1.0/n1**3)); #frequency, Hz\n",
"print\"Ans(B):Frequency of emitted photon is: %.3g\"%f,\"Hz\\n\"\n",
"#Part (c)\n",
"n= 2.0; #orbit\n",
"f= f2; #from part (a)\n",
"dt= 10.0**(-8); # time duration, s\n",
"N= f*dt; #Number of revolutions\n",
"#Result\n",
"print\"Ans(C):Number of revolutions the electron makes is:%.3g\"%N\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ans (A):Frequency of revolution for orbit n=1 is,f1: 6.58e+15 rev/s\n",
"Frequency of revolution for orbit n=2 is,f2:8.22e+14 rev/s\n",
"which is equivalent to 0.823*10**15 rev/s 'without' any scientific notation\n",
"\n",
"Ans(B):Frequency of emitted photon is: 2.88e+15 Hz\n",
"\n",
"Ans(C):Number of revolutions the electron makes is:8.22e+06\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4.7,Page no:142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"#Part (a) \n",
"Me= 9.1*(10**(-31)); #mass of electron, kg\n",
"m= 207*Me; #mass of muon, kg\n",
"\n",
"#Calculation\n",
"Mp= 1836*Me; #mass of proton, kg\n",
"Mreduced= (m*Mp)/(m+Mp); #reduced mass, kg\n",
"Ao= 5.29*(10**(-11)); #Bohr's orbit for n=1, m\n",
"r1= Ao; #expected orbit for atom, m\n",
"r2= (Me/Mreduced)*r1; #reduced radius of orbit, m\n",
"#Part (b)\n",
"E=-13.6; # energy for elctron in n=1, eV\n",
"Ereduced= (Mreduced/Me)*E; #energy for eectron in mounic atom, eV\n",
"Ereduced= Ereduced/(10**3);#converting to keV\n",
"\n",
"#Result\n",
"print\"(A)Radius of the mounic atom formed, in m, is:%.3g\"%r2,\"m\"\n",
"print\"(B)Ionisation energy for the muonic atom is: \",round(Ereduced,2),\"keV\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(A)Radius of the mounic atom formed, in m, is:2.84e-13 m\n",
"(B)Ionisation energy for the muonic atom is: -2.53 keV\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4.8,Page no:156"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"I= 7.7; #Intensity of beam, MeV\n",
"Dgold= 1.93*(10**4); #density of gold foil used, kg/m**3\n",
"u= 1.66*(10**(-27)); #atomic mass unit, kg\n",
"Mgold= 197*u; #atomic mass of gold, per atom\n",
"\n",
"#Calculation\n",
"n= Dgold/Mgold; #number of atoms per unit volume, atoms/m**3\n",
"Zgold= 79; #atomic number of gold\n",
"e= 1.6*(10**(-19)); #electronis charge, C\n",
"KE= (I*e)/(10**(-6)); #converting to J\n",
"angle= 45; #degree\n",
"p=1/math.tan(math.radians(angle/2));\n",
"Po= 8.85*(10**(-12)); #Permittivity of free space, F/m\n",
"t= 3*(10**(-7)); #thickness of foil, m\n",
"f= (math.pi)*n*t*(((Zgold*(e**2))/(4*(math.pi)*Po*KE))**2)*(p**2) #using Rutherford scattering formula\n",
"\n",
"#Result\n",
"print\"f=%.g\"%f\n",
"print\"Fraction of the beam scattered through 45 degree or more is: \",round(f*100,3),\"%\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"f=7e-05\n",
"Fraction of the beam scattered through 45 degree or more is: 0.007 %\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|