1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12:Nuclear Transformations"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.2,Page no:425"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Thalf= 3.82 #half-life in days, d\n",
"Lambda= 0.693/Thalf #decay constant\n",
"p= 0.6 # 60.0 percent of sample\n",
"\n",
"#Calculation\n",
"import numpy\n",
"import math\n",
"No= numpy.poly([1]) #Number of undecayed nuclei, at time t=0\n",
"N= (1.0-p)*No #Number of undecayed nuclei, at time t\n",
"t= (1.0/Lambda)*(np.log((N/No))) #decay time in days, d\n",
"t= t*(-1.0) \n",
"\n",
"#Result\n",
"print\"The decay time for Radon is: \",round(t[0],2),\"d\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The decay time for Radon is: 5.05 d\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.3,Page no:427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Thalf= 3.82 #half-life in days, d\n",
"Lambda= 0.693/(Thalf*86400.0) #decay constant, s**(-1)\n",
"Wradon= 1.00 #weight of sample, mg\n",
"MRadon= 222.0 #atomic mass of sample, u\n",
"\n",
"#Calculation\n",
"N= Wradon*(10**(-6))/(MRadon*(1.66*(10**(-27)))) #number of atoms\n",
"R= Lambda*N #decays/sec\n",
"R_tbq=round(R/10**12,2) #in TBq\n",
"R_Ci=R_tbq*27.15 #Ci Calories\n",
"\n",
"\n",
"#Result\n",
"print\"The activity of the sample is: %.2g\"%R,\"decays/sec=\",R_tbq,\"TBq=\",round(R_Ci),\"Ci\"\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The activity of the sample is: 5.7e+12 decays/sec= 5.7 TBq= 155.0 Ci\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.4,Page no:427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ro= 155 #initial activity, Ci\n",
"Lambda= 2.11*(10**(-6)) #decay constant, s**(-1)\n",
"t= 7 #days\n",
"\n",
"#Calculation\n",
"import math\n",
"t= t*86400 #converting to s\n",
"R= Ro*((math.exp(-(Lambda*t)))) #final activity, Ci\n",
"\n",
"#Result\n",
"print\"The activity after one week is: \",round(R),\"Ci\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The activity after one week is: 43.0 Ci\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.5,Page no:428"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"R= 13.0 #present activity,\n",
"Ro= 16.0 #activity of live wood\n",
"Thalf= 5760.0 #half life of radiocarbon, y\n",
"\n",
"#Calculation\n",
"Lambda= 0.693/(Thalf) #decay constant, y**(-1)\n",
"t= (1.0/Lambda)*(math.log(Ro/R)) #age of sample, y\n",
"\n",
"#Result\n",
"print\"The age of the wooden sample is: %.2g\"%t,\"y\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The age of the wooden sample is: 1.7e+03 y\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.6,Page no:432"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Thalf1= 2.5*(10**5) #half-life of U-234, y\n",
"AtomicRatio= 1.8*(10**4) #atomic ratio of u-238 and U-234 in the sample\n",
"\n",
"#Calculation\n",
"Thalf2= AtomicRatio*Thalf1 #using Eqn12.9\n",
"\n",
"#Result\n",
"print\"The half-life of Uranium-238 is: %.2g\"%Thalf2,\"years\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The half-life of Uranium-238 is: 4.5e+09 years\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.7,Page no:433"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Npolonium= 84 #atomic number of polonium\n",
"Nalpha= 2 #atomic number of alpha particle\n",
"Z= Npolonium-Nalpha #atomic number of daughter nuclide\n",
"Mpolonium= 209.9829 #mass number of polonium, u\n",
"Malpha= 4.0026 #mass number of alpha particle, u\n",
"\n",
"#Calculation\n",
"A= Mpolonium-Malpha #mass number of daughter nuclide\n",
"# The daughter nuclide has atomic number: \n",
"# 82. \n",
"\n",
"# and mass number: \n",
"# 205.9803. \n",
" \n",
"Ealpha= 5.3 #energy of alpha particle, MeV\n",
"Q= Mpolonium*Ealpha/A #disintegration energy, MeV\n",
"Mq= Q/931 #mass equivalent for Q, u\n",
"Mnuclide= Mpolonium-Malpha-Mq #u\n",
"\n",
"#Result\n",
"print\"(a)The daughter nuclide has atomic number: \",Z\n",
"print\"and mass number: \",round(A)\n",
"print\"(b).The atomic mass of the daughter nuclide is: \",round(Mnuclide,4)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The daughter nuclide has atomic number: 82\n",
"and mass number: 206.0\n",
"(b).The atomic mass of the daughter nuclide is: 205.9745\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.8,Page no:444"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"CrossSection= 2*(10**4) # capture cross section of Cadmium-113\n",
"CrossSection= CrossSection*(10**(-28)) # converting to m**2\n",
"Mcadmium= 112.0 #mean atomic mass of cadmium, u\n",
"density= 8.64*(10**3) #density of cadmium sheet used, kg/m**3\n",
"\n",
"#Calculation\n",
"#Part (a)\n",
"import math\n",
"t= 0.1 #hickness of sheet used, mm\n",
"t= t*10**(-3) #converting to m\n",
"p= 12.0 #percent of Cadmium-113 in natural cadmium\n",
"u= 1.66*(10**(-27)) #atomic mass unit, kg\n",
"n= (p/100.0)*density/(Mcadmium*u) #number of atoms, atoms/m**3\n",
"Fabsorbed= 1.0- (math.exp((-n)*(CrossSection)*(t))) #absorbed fraction\n",
"#Part (b)\n",
"t2= (-(math.log(0.01)))/(n*CrossSection) #required thickness, m\n",
"t2= t2*10**(3.0) #converting to mm\n",
"\n",
"\n",
"#Result\n",
"print\"(a).The fraction of incident beam absorbed is: \",round(Fabsorbed,2)\n",
"print\"(b).The thickness required to absorb 99 percent of incident thermal neutrons is: \",round(t2,2),\"mm\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).The fraction of incident beam absorbed is: 0.67\n",
"(b).The thickness required to absorb 99 percent of incident thermal neutrons is: 0.41 mm\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.9,Page no:445"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"CrossSection= 2.0*(10**4) # capture cross section of Cadmium-113, b\n",
"CrossSection= CrossSection*(10**(-28)) # converting to m**2\n",
"\n",
"#Calculation\n",
"n= (12.0/100.0)*(8.64*10**3)/(112.0*(1.66*10**(-27))) #number of atoms, atoms/m**3\n",
"Lambda= 1.0/(n*CrossSection) #mean free path, m\n",
"Lambda= Lambda*10**3 #converting to, mm\n",
"\n",
"#Result\n",
"print\"The mean free path is: \",round(Lambda,4),\"mm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mean free path is: 0.0897 mm\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.10,Page no:446"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Thalf= 2.69 #half life of gold,d\n",
"Lambda= 0.693/(Thalf*86400.0) #decay constant, s**(-1)\n",
"R= 200.0 #required activity, mCi\n",
"R= R*10**(-6) #converting to Ci\n",
"\n",
"#Calculation\n",
"dN= R/(Lambda/(3.70*10**(10))) #atoms\n",
"Wgold= 10.0 #mass of foil, mg\n",
"u= 1.66*(10**(-27)) #atomic mass unit, kg\n",
"Mgold= 197.0 # u\n",
"n2= Wgold*10.0**(-6)/(Mgold*u) #total no. of atoms\n",
"phi= 2.0*10**(16) #flux, neutrons/m**2\n",
"CrossSection= 99.0*10**(-28) #m**2\n",
"dT= dN/(phi*n2*CrossSection) #s\n",
"dT_m=divmod(dT,60)\n",
"#Result\n",
"print\"The irradiation period required is: \",round(dT,1),\"s=\",round(dT_m[0],1),\"min\",round(dT_m[1],1),\"seconds(Approx)\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The irradiation period required is: 409.9 s= 6.0 min 49.9 seconds(Approx)\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12.11,Page no:450"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"m1= 14.00307 #u\n",
"m2= 4.00260 #u\n",
"m3= 1.00783 #u\n",
"m4= 16.99913 #u\n",
"\n",
"#Calculation\n",
"k= m1+m2-m3-m4 # difference in total mass of reactants and products, u\n",
"Q= k*931.5 #energy exchanged, MeV\n",
"KEcm= -Q #minimum KE needed in centre of mass system, MeV\n",
"KElab= KEcm*(m2+m1)/m1 #minimum KE in laboratory system\n",
"\n",
"#Result\n",
"print\"The minimum KE required by the alpha particle is: \",round(KElab,3),\"MeV(APPROX)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum KE required by the alpha particle is: 1.545 MeV(APPROX)\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|