1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11:Nuclear Structure"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11.1,Page no:393"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"u= 1.66*(10**(-27)) #atomic mass unit, kg\n",
"Mc= 12*u # atomic mass of Carbon-12, kg\n",
"R= 2.7 #radius of nucleus, fm\n",
"\n",
"#Calculation\n",
"import math\n",
"R=R*(10**(-15)) #converting to m\n",
"density= Mc/((4.0/3.0)*(math.pi)*(R**3)) # kg/m**3\n",
"\n",
"#Calculation\n",
"print\"Density of Carbon 12 nucleus is:%.2g\"%density,\"kg/m**3\"\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Density of Carbon 12 nucleus is:2.4e+17 kg/m**3\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11.2,Page no:393"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"r= 2.4 #distance between centre of the protons, fm\n",
"r= r*(10**(-15)) #converting to m\n",
"e= 1.6*(10**(-19)) #charge of an electron, C\n",
"Po= 8.85*(10**(-12)) #Permittivity of free space, F/m\n",
"\n",
"#Calculation\n",
"K=1/(4*(math.pi)*Po) #constant, N.m**2/C**2\n",
"F= K*(e**2)/(r**2) #N\n",
"\n",
"#Result\n",
"print\"The repulsive force is: \",round(F),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The repulsive force is: 40.0 N\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11.3,Page no:395"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"B= 1.0 #strength of magnetic field, T\n",
"Mneutron= 3.152*(10**(-8)) #Magnetic moment for neutron, eV/T\n",
"\n",
"#Calculation\n",
"#Part (a)\n",
"Mproton= 2.793*Mneutron #Magnetic moment for proton, eV/T\n",
"dE= 2*Mproton*B #eV\n",
"#Part (b)\n",
"h= 4.13*(10**(-15)) #Planck's constant, eV.s\n",
"Flarmor= dE/h #Hz\n",
"Flarmor= Flarmor/(10**6) #converting to MHz\n",
"\n",
"#Result\n",
"print\"(a).The energy difference is:%.4g\"%dE,\"eV\"\n",
"print\"(b).The Larmor frequency for a proton in the field is:\",round(Flarmor,1),\"MHz(APPROX)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).The energy difference is:1.761e-07 eV\n",
"(b).The Larmor frequency for a proton in the field is: 42.6 MHz(APPROX)\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11.4,Page no:401"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Ebinding= 160.647 #binding nergy, MeV\n",
"Mh= 1.007825 #Mass of H1 atom, u\n",
"Mn= 1.008665 #Mass of neutron, u\n",
"Z=10 #number of protons\n",
"N=10 #number of neutrons\n",
"\n",
"#Calculation\n",
"Mneon= ((Z*Mh)+(N*Mn))-(Ebinding/931.49) #using Eqn 11.7\n",
"\n",
"#Result\n",
"print\"The atomic mass of Neon 10 isotope is: \",round(Mneon,3),\"u\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The atomic mass of Neon 10 isotope is: 19.992 u\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11.5,Page no:402"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"\n",
"#Part(a)\n",
"Ca_42=41.958622 #[u] Mass of 42Ca20 \n",
"\n",
"#from table\n",
"M_neutron=1.008665 #[u] Mass of a free neutron\n",
"Ca_41=40.962278 #[u] Mass of 41Ca20 after removal of 1 neutron\n",
"#Part(b):\n",
"#from table\n",
"M_proton=1.007276466812 #[u] Mass of a free proton\n",
"K_19=40.96237 #[u] Mass of Potasium Isotope 41K19\n",
"\n",
"\n",
"#Calculation\n",
"#Part (a):\n",
"n_total=Ca_41+M_neutron\n",
"p_total=K_19+M_proton\n",
"neutron_BE=931.49*(n_total-Ca_42)#Binding energy in MeV\n",
"proton_BE=931.49*(p_total-Ca_42)\n",
"print \"(a).Binding energy of missing neutron is: \",round(neutron_BE,2),\"MeV\"\n",
"print\"(b).Binding energy for missing proton=\",round(proton_BE,2),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).Binding energy of missing neutron is: 11.48 MeV\n",
"(b).Binding energy for missing proton= 10.27 MeV\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11.6,Page no:407"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Z= 30.0 #proton number\n",
"N=34.0 #Neutron number\n",
"\n",
"#Calculation\n",
"#Using Eqn 11.7\n",
"Mh= 1.007825 #Mass of H1 atom, u\n",
"Mn= 1.008665 #Mass of neutron, u\n",
"Mzinc= 63.929 #atomic mass of zinc, u\n",
"Ebinding= ((Z*Mh)+(N*Mn)-Mzinc)*931.49 #MeV\n",
"#Using semiempirical formula, Eqn 11.18, Page 407\n",
"a1= 14.1 #Mev\n",
"a2= 13.0 #MeV\n",
"a3= 0.595 #Mev\n",
"a4= 19.0 #MeV\n",
"a5= 33.5 #MeV\n",
"A= Z+N \n",
"E2= ((a1*A)-(a2*(A**(2.0/3.0)))-(a3*Z*(Z-1)/(A**(1.0/3.0)))-(a4*((A-2*Z)**2)/A)+(a5/(A**(3.0/4.0)))) #MeV\n",
"\n",
"#Result\n",
"print\"Binding energy of Zinc 64 isotope is: \",round(Ebinding,1),\"MeV\"\n",
"print\"The binding energy using semi-empirical formula, in MeV, is: \",round(E2,1),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Binding energy of Zinc 64 isotope is: 559.2 MeV\n",
"The binding energy using semi-empirical formula, in MeV, is: 561.7 MeV\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11.7,Page no:408"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"A=25\n",
"\n",
"#Calculation\n",
"#Derivation part\n",
"#dEb/dZ=-a3*(2*z-1)/A^(1/3)+4*a4*(A-2*Z)/A\n",
"#Z=a3*A**-1/3+4*a4/(2*a3*A^-1/3+8*a4*A**-1)\n",
"Z=(0.595*A**(-1.0/3.0)+76)/(1.19*A**(-1.0/3.0)+(152*A**-1))\n",
"print \"For A=25,Z=\",round(Z,1),\"\\nfor which we conclude that Z=\",round(Z),\"should be the atomic no. of most stable isobar of A=25\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For A=25,Z= 11.7 \n",
"for which we conclude that Z= 12.0 should be the atomic no. of most stable isobar of A=25\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|