1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8:Molecules"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exampnle no:8.1,Page no:283"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"r= 0.113 #bond length, nm\n",
"Mc= 1.99*(10**(-26)) #mass of C12, kg\n",
"Mo= 2.66*(10**(-26)) #mass of O16, kg\n",
"\n",
"#Calculation\n",
"#Part (a)\n",
"import math\n",
"Mco= (Mc*Mo)/(Mc+Mo) #mass of CO, kg\n",
"I= Mco*((r*(10.0**(-9.0)))**2.0) #moment of inertia, kg.m**2\n",
"J=1.0 #lowest rotational state\n",
"h= 6.63*(10**(-34)) #Planck's constant, J.s\n",
"hbar= h/(2.0*(math.pi)) #reduced Planck's constant, J.s\n",
"E1= (J*(J+1)*(hbar**2))/(2.0*I) #energy corresponding to state J=1, J\n",
"e= 1.6*(10**(-19)) #charge of an electron, C\n",
"E1= E1/e #converting to eV\n",
"#Part(b)\n",
"w= math.sqrt((2.0*7.61*10**-23)/(1.46*10**-46)) #angular velocity, rad/s\n",
"\n",
"#Result\n",
"print\"(a).The energy of CO molecule is:%.2e\"%E1,\"eV(approx)\"\n",
"print\"(b).The angular velocity is:%.3g\"%w,\"rad/sec\\n\"\n",
"\n",
"print\"NOTE:(Calculation mistake):Incorrect answer in book for (b) part\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).The energy of CO molecule is:4.79e-04 eV(approx)\n",
"(b).The angular velocity is:1.02e+12 rad/sec\n",
"\n",
"NOTE:(Calculation mistake):Incorrect answer in book for (b) part\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exampnle no:8.2,Page no:285"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ji=0 #initial state\n",
"Jf=1 #final state\n",
"f= 1.15*(10**11) #frequency for the absorption, Hz\n",
"h= 6.63*(10**(-34)) #Planck's constant, J.s\n",
"\n",
"#Calculation\n",
"hbar= h/(2*(math.pi)) #reduced Planck's constant, J.s\n",
"Ico= hbar*Jf/(2*(math.pi)*f) #moment of inertia, kg.m**2\n",
"Mco= 1.14*(10**(-26)) #Mass of CO, refer Exa 8.1\n",
"r= math.sqrt(Ico/Mco) #bond length, m\n",
"r= r*(10**9) #converting to nm\n",
"\n",
"#Result\n",
"print\"The bond length of CO molecule is: \",round(r,3),\"nm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The bond length of CO molecule is: 0.113 nm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exampnle no:8.3,Page no:288"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"f= 6.42*(10**13) #frequency of absorbed radiation, Hz\n",
"Mco= 1.14*(10**(-26)) #mass of CO, kg\n",
"h= 6.63*(10**(-34)) #Planck's constant, J.s\n",
"\n",
"#Calculation\n",
"#Part (a)\n",
"k= 4*((math.pi)**2)*(f**2)*Mco #using Eqn 8.15, Page 287\n",
"#Part (b)\n",
"dE= h*f #separation, J\n",
"etoJ=dE*6.24*10**18 \n",
"\n",
"#Result\n",
"print\"(a).The force constant for the bond in CO molecule is: %.3g\"%k,\"N/m\"\n",
"print\"\\nNOTE:Slight error in calculation of book,'k' is written as 1.86*10**3\\n\\n\"\n",
"print\"(b).The separation in its vibrational eergy levels is:%.3g\"%dE,\"J=\",round(etoJ,3),\"eV\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).The force constant for the bond in CO molecule is: 1.85e+03 N/m\n",
"\n",
"NOTE:Slight error in calculation of book,'k' is written as 1.86*10**3\n",
"\n",
"\n",
"(b).The separation in its vibrational eergy levels is:4.26e-20 J= 0.266 eV\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|