1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5:Quantum Mechanics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4,Page no:180"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"L= 1.0; #assuming Length L of box to be 1, this would not affect the probability\n",
"x1=0.45; #lower bound\n",
"x2=0.55; #upper bound\n",
"\n",
"from scipy.integrate import quad\n",
"import math\n",
"\n",
"#Calculation \n",
"def f(x):\n",
" y=(math.sin(n*(math.pi)*x))**2\n",
" return(y)\n",
"n=1.0;\n",
"I1=quad(f,x1,x2) #for ground state\n",
"P1=(2/L*I1[0])\n",
"n=2.0;\n",
"I2=quad(f,x1,x2) #for ground state\n",
"P2=(2/L*I2[0])\n",
"\n",
"\n",
"\n",
"#Result\n",
"print\"The probability n ground state is: \",round(P1,3),\"=\",round(P1,3)*100,\"percent\"\n",
"print\"The probability in first excited state is: \",round(P2,4),\"=\",round(P2,4)*100,\"percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The probability n ground state is: 0.198 = 19.8 percent\n",
"The probability in first excited state is: 0.0065 = 0.65 percent\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6,Page no:186"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"#Part (a)\n",
"E1= 1.0 #energy of first electron, eV\n",
"E2= 2.0 #energy of second electron, eV\n",
"Eb= 10.0 #height of barrier, eV\n",
"Wb= 0.50 #width of barrier, nm\n",
"Wb= Wb* 10**(-9) #converting to m\n",
"hbar= 1.054*10**(-34) #reduced Planck's conctaant, J.s\n",
"Me= 9.1*10**(-31) #mass of electron, kg\n",
"e= 1.6*10**(-19) #charge of an electron, J/eV\n",
"import math\n",
"#Calculation\n",
"\n",
"k2= (math.sqrt(2*(Me)*(Eb-E1)*(e)))/(hbar) #for 1.0 eV e-, m**(-1)\n",
"k1= (math.sqrt(2*Me*(Eb-E2)*e))/hbar #for first electron, m**(-1)\n",
"T1= math.exp((-2)*k2*Wb) #transmission probability for first electron\n",
"T2= math.exp((-2)*k1*Wb) #for second electron\n",
"print\"(A.)\\nTransmission probability for electrons with energy 1.0 eV is:%.2g\"%T1\n",
"print\"Transmission probability for electrons with energy 2.0 eV is: %.2g\"%T2\n",
"\n",
"#Part (b)\n",
"Wb= Wb*2; #Barrier width doubled\n",
"T11= math.exp((-2)*k2*Wb) # changed transmission probability for first electron\n",
"T22= math.exp((-2)*k1*Wb) #for second electron\n",
"\n",
"#Result\n",
"print\"\\n\\n(B.):After the barrier width is doubled:\\n\"\n",
"print\"Transmission probability for electrons with energy 1.0 eV is:%.2g\"%T11\n",
"print\"Transmission probability for electrons with energy 2.0 eV is: %.2g\"%T22\n",
"print\"\\n\\nNOTE:Calculation mistake in book in the calculation of k2,\\nit is wrongly written as 1.6e+10,\\nTHAT's Why a change in final answer\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(A.)\n",
"Transmission probability for electrons with energy 1.0 eV is:2.1e-07\n",
"Transmission probability for electrons with energy 2.0 eV is: 5.1e-07\n",
"\n",
"\n",
"(B.):After the barrier width is doubled:\n",
"\n",
"Transmission probability for electrons with energy 1.0 eV is:4.6e-14\n",
"Transmission probability for electrons with energy 2.0 eV is: 2.6e-13\n",
"\n",
"\n",
"NOTE:Calculation mistake in book in the calculation of k2,\n",
"it is wrongly written as 1.6e+10,\n",
"THAT's Why a change in final answer\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|