1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2:Particle properties of waves"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1,Page no:61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Ft= 660 #frequency of tuning fork, Hz\n",
"Fo= 5.00*(10**14) #frquency of atomic oscillator, Hz\n",
"Ef= 0.04 #vibrational energy of tuning fork, J\n",
"h= 6.63*(10**(-34)) #Planck's constant, J.s\n",
"\n",
"#Calculation\n",
"E1= h*Ft #Total energy of tuning fork, J\n",
"E2= h*Fo #Total energy of atomic oscillator, J\n",
"E2= E2/(1.60*(10**(-19))) #converting to eV\n",
"\n",
"#Result\n",
"print\"(a).Energy of tuning fork is:%.3g\"%E1,\"J\"\n",
"print\"(b).Energy of atomic oscillator is:\",round(E2,2),\"eV(approx)\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).Energy of tuning fork is:4.38e-31 J\n",
"(b).Energy of atomic oscillator is: 2.07 eV(approx)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2,Page no:66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"l= 350 #Wavelength of UV light, nm\n",
"i= 1.00 #intensity of UV light, W/m**2\n",
"\n",
"#Part (a)\n",
"l= l*10**(-9) #converting to m\n",
"Ep= (1.24*(10**(-6)))/l #energy of photon, using Eqn (2.11) on Page 66, e.V\n",
"t= 2.2 #work function of Potassium surface, eV\n",
" \n",
"#Calculation\n",
"KEmax= Ep-t #Max KE of the phototelectrons, eV\n",
"\n",
"#Part (b) \n",
"A= 1.00 #Surface area, cm**2\n",
"A= A* 10**(-4) #converting to m**2\n",
"E= 5.68*(10**(-19)) #Photon energy, J\n",
"Np= i*A/E #number of incident photon, per second\n",
"Ne= (0.0050)*Np #number of photoeectrons emitted, per second\n",
"\n",
"#Result\n",
"print\"(a).Maximum KE of photoelectrin is: \",round(KEmax,1),\"eV\"\n",
"print\"(b).Rate of emission of photoelectrons is:%.2g\"%Ne,\"photoelectrons/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).Maximum KE of photoelectrin is: 1.3 eV\n",
"(b).Rate of emission of photoelectrons is:8.8e+11 photoelectrons/s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.3,Page no:72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"AP= 50000 #Accelerating potential of the x-ray machine, V\n",
"l= (1.24*(10**(-6)))/AP*(10**(9)) #Minimum wavelength, nm\n",
"\n",
"#Calculation\n",
"Fmax= 3*(10**8)/(l*(10**(-9))) #Maximum frequency, Hz\n",
"\n",
"#Result\n",
"print\"Minimum wavelength possible is: \",l,\"nm\"\n",
"print\"Maximum frequency possible is: %.3g\"%Fmax,\"Hz\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum wavelength possible is: 0.0248 nm\n",
"Maximum frequency possible is: 1.21e+19 Hz\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4,Page no:78"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"#part (a)\n",
"l= 10.0 #wavelength of x-ray, pm\n",
"r= 45.0 #angle of scattered articles, degree\n",
"lc= 2.426*(10**(-12)) #Compton wavelength for electron, m\n",
"\n",
"#Calculation\n",
"import math\n",
"k= math.cos(math.radians(45)) \n",
"lc= lc* 10.0**12 # converting to pm\n",
"print \n",
"l2= l+ lc*(1.0-k) #using Eqn 2.23\n",
"#Part (b)\n",
"lmax= l+(lc*2) #for (1-k)=2\n",
"#Part (c)\n",
"h= 6.63*(10**(-34)) #Planck's constant, J.s\n",
"c= 3*10**8 #velocity of light, m/s\n",
"c=c*10**12 #converting to pm/s\n",
"KEmax= (h*c)*((1/l)-(1/lmax)) #J\n",
"\n",
"#Result\n",
"print\"(a):The wavelength of scattered x-ray is: \",round(l2,1),\"pm\"\n",
"print\"(b):Maximum wavelength is: \",round(lmax,1),\"pm\"\n",
"print\"(c):The maximum KE of recoil electrons is:%.3g\"%KEmax,\"J\"\n",
"print\"which is equal to \",round(KEmax/1.6021773e-16,1),\"keV(approx)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(a):The wavelength of scattered x-ray is: 10.7 pm\n",
"(b):Maximum wavelength is: 14.9 pm\n",
"(c):The maximum KE of recoil electrons is:6.5e-15 J\n",
"which is equal to 40.6 keV(approx)\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6,Page no:82"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"c=3.0*10**8 #velocity of light, m/s\n",
"v= 0.5*c #velocity of electron and positron, m/s\n",
"y= 1.0/math.sqrt(1.0-(v/c**2)) #gamma, for relativistic momentum\n",
"m=0.511/c**2 #MeV/c**2\n",
"\n",
"#Calculation\n",
"p1_p2=((2*m*c*c**2)*(v/c**2))/(math.sqrt(1-(v/c)**2))\n",
"p1_plus_p2=(2.0*m*(c**2))/math.sqrt(1.0-(v/c)**2.0)\n",
"p1=(p1_p2+p1_plus_p2)/2.0\n",
"p2=p1_plus_p2-p1\n",
"E1=p1 #MeV\n",
"E2=p2 #MeV\n",
"\n",
"#Result\n",
"print\"The Energy of first photon is,E1=\",round(E1,3),\"MeV\"\n",
"print\"The Energyof second photon is:,E2=\",round(E2,3),\"MeV\"\n",
"\n",
"print\"NOTE:There is a mistake in the formula given in the book for p1_p2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Energy of first photon is,E1= 0.885 MeV\n",
"The Energyof second photon is:,E2= 0.295 MeV\n",
"NOTE:There is a mistake in the formula given in the book for p1_p2\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7,Page no:85"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"M= 4.9 #Linear attenuation coefficient for gamma ray in water, m**(-1)\n",
"I= 2.0 #Original intensity of gamma ray, MeV\n",
"\n",
"#Calculation\n",
"#Part (a)\n",
"x= 10.0 #distance travelled under water, cm\n",
"x= x/100.0 #converting to m\n",
"Irel= math.exp(-(M*x)) #Relative intensity\n",
"#Part(b)\n",
"Ip= I/100 #Present intensity, 1 percent of Original, MeV\n",
"x2= math.log(I/Ip)/M #distance travelled, m\n",
"\n",
"#Result\n",
"print\"(a)Relative intensity of the beam is: \",round(Irel,2)\n",
"print\"(b)The distance travelled by the beam is:\",round(x2,2),\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Relative intensity of the beam is: 0.61\n",
"(b)The distance travelled by the beam is: 0.94 m\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8,Page no:86"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"H= 22.5 #Height of fall, m\n",
"F= 7.3*(10**14) #Original frequency, Hz\n",
"c= 3*(10**8) #velocity of light, m/s\n",
"g= 9.8 #Acceleration due to gravity, m/s**2\n",
"\n",
"#Calculation\n",
"Frel= g*H*F/(c**2) #Change in frequency, Hz\n",
"\n",
"#Result\n",
"print\"The change in frquency of a photon fallin through 22.5 m is: \",round(Frel,1), \"Hz\"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The change in frquency of a photon fallin through 22.5 m is: 1.8 Hz\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|