summaryrefslogtreecommitdiff
path: root/Chemical_Reaction_Engineering_by_O._Levenspiel/ch5.ipynb
blob: 2801cf573bfcd1c440288c4fc0cc11a312535900 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5 : Ideal Reactors for a Single Reaction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.1 page no : 96"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "#Concentrations in mol/litre\n",
      "CAo = 0.1                 # liquid\n",
      "CBo = 0.01                # liquid\n",
      "Cco = 0.                  # liquid\n",
      "CAf = 0.02                # outlet stream\n",
      "CBf = 0.03                # outlet stream\n",
      "Ccf = 0.04;               # outlet stream\n",
      "#Volume in litre\n",
      "V = 1.;\n",
      "#Volumetric flow rate(l/min)\n",
      "v = 1.;\n",
      "CA = CAf;CB = CBf;Cc = Ccf;\n",
      "\n",
      "# Calculations\n",
      "#Rate of reaction(mol/litre.min)\n",
      "rA = (CAo-CA)/(V/v);\n",
      "rB = (CBo-CB)/(V/v);\n",
      "rc = (Cco-Cc)/(V/v);\n",
      "\n",
      "# Results\n",
      "print \"rate of reaction of A is %.2f mol/litre.min\"%(rA)\n",
      "print \"rate of reaction of B is %.2f mol/litre.min\"%(rB)\n",
      "print \"rate of reaction of C is %.2f mol/litre.min\"%(rc)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "rate of reaction of A is 0.08 mol/litre.min\n",
        "rate of reaction of B is -0.02 mol/litre.min\n",
        "rate of reaction of C is -0.04 mol/litre.min\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2 page no : 97"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%matplotlib inline\n",
      "\n",
      "import math \n",
      "from numpy import *\n",
      "from matplotlib.pyplot import *\n",
      "from scipy import stats\n",
      "\n",
      "# Variables\n",
      "vo = array([10,3,1.2,0.5])         #Volumetric flow rates(litre/hr)\n",
      "CA = array([85.7,66.7,50,33.4])    #Concentrations (millimol/litre)\n",
      "CAo = 100.;\n",
      "V = 0.1;                           #Volume(litre)\n",
      "e = (1.-2.)/2;                     #Expansion factor is\n",
      "#Initialization\n",
      "XA = zeros(4);\n",
      "rA = zeros(4);\n",
      "m = zeros(4);\n",
      "n = zeros(4);\n",
      "\n",
      "# Calculations\n",
      "#Relation between concentration and conversion\n",
      "for i in range(4):\n",
      "    XA[i] = (1-CA[i]/CAo)/(1+e*CA[i]/CAo);\n",
      "    rA[i] = vo[i]*CAo*XA[i]/V;\n",
      "    m[i] = math.log10(CA[i]);\n",
      "    n[i] = math.log10(rA[i]);\n",
      "\n",
      "# Results\n",
      "#For nth order plot between n & m should give a straight line\n",
      "plot(m,n)\n",
      "xlabel(\"log CA\")\n",
      "ylabel(\"log (-rA)\")\n",
      "show()\n",
      "coefs = stats.linregress(m,n);\n",
      "print coefs\n",
      "print \"Intercept of the graph is %.2f\"%(coefs[1])\n",
      "print \"Slope of the graph is %.2f\"%(coefs[0])\n",
      "k = 10**coefs[1]\n",
      "n = coefs[0]\n",
      "print \" Taking n = 2, rate of equation is %.2f millimol/litre.hr\"%(k),\n",
      "print \"CA**2 \"\n",
      "print ('The sol slightly differ from that given in book because regress fn is used to calculate the slope')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "WARNING: pylab import has clobbered these variables: ['rc', 'draw_if_interactive', 'e']\n",
        "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEMCAYAAAAxoErWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8z/X///HbZJ+YabII8SnRjx3sgCw1vCVNVqIhiVTS\n2sfnU/r28Skd1+Ern0/6JB3w1ekTH8cmp1KhvWMIi/BxKnKYw7DYmEM7vF+/P17Zp2VvZnu/3q/3\ne7tfL5cul9nr5b27V2/vh+c5wDAMAxERkTLUsDuAiIj4LhUJERFxS0VCRETcUpEQERG3VCRERMQt\nFQkREXHLsiJx5swZ4uLiiImJITw8nFGjRrm9d+3atdSsWZM5c+ZYFUdERCqgplUvXKtWLdLT0wkK\nCqKoqIj4+HgyMjKIj48vdV9xcTFPPvkkPXr0QEs2RER8i6XdTUFBQQAUFBRQXFxM/fr1z7nnrbfe\nom/fvjRo0MDKKCIiUgGWtSQAXC4Xbdu2ZefOnaSkpBAeHl7q+v79+5k3bx5ff/01a9euJSAg4JzX\nKOt7IiJyYZ7onbG0JVGjRg2+//579u3bx7Jly3A6naWujxgxgjFjxhAQEIBhGG7/QGev+cp/L7zw\ngu0ZlKlq5VImZSrrP5fL4PXXDRo2NFi8+OJ+r6dY2pI4KyQkhMTERDIzM3E4HCXf/+677xgwYAAA\nOTk5LFq0iMDAQHr16uWNWCIiPisvDx54ALKyYPVquOYae3JY1pLIyckhNzcXgNOnT7N48WJiY2NL\n3fPTTz+xa9cudu3aRd++fZkwYYIKhIhUexs2QPv20LgxZGTYVyDAwpbEwYMHGTJkCC6XC5fLxeDB\ng+nWrRuTJk0CIDk52aofbbnftoZ8hTKVny/mUqbyqQ6ZPvoIRo6EN9+EgQM9+tIVEmB4svPKAmfH\nK0REqrLTp+Evf4EVKyAtDX43z+eieeqzUyuuRURstmMHdOwIJ0/C2rWVLxCepCIhImKjTz+FG2+E\nYcNg2jQIDrY7UWlemd0kIiKlFRbC00/D7NmwcCF06GB3orKpSIiIeNmBA3D33VC3Lnz3HYSG2p3I\nPXU3iYh40ddfm9NbExLMFoQvFwhQS0JExCtcLhgzBt56C6ZMgVtusTtR+ahIiIhY7OhRGDzYXEWd\nmQlXXWV3ovJTd5OIiIUyM6FdO2jdGtLT/atAgIqEiIglDAMmTICePeH1183/AgPtTnXx1N0kIuJh\n+fnwyCOwaZO5gvq66+xOVHFqSYiIeNDWrRAXZ7YaVq3y7wIBKhIiIh4zYwZ07gxPPAEffgi/Hs7p\n19TdJCJSSb/8YhaGL76AxYshJsbuRJ6jIiEiUgl79kD//tCkiTmTqV49uxN5lrqbREQqaNEic8+l\n/v1hzpyqVyBALQkRkYtWXAypqea4wyefQKdOdieyjoqEiMhFOHzYPDHO5TI357vySrsTWUvdTSIi\n5bRihbl6+oYbzAHqql4gQC0JEZELMgwYN87coO+DDyAx0e5E3mNZS+LMmTPExcURExNDeHg4o0aN\nOueeefPmER0dTWxsLO3atePrr7+2Ko6ISIXk5UHfvuapcatXV68CARBgeOKkbDdOnTpFUFAQRUVF\nxMfHM3bsWOLj40uunzx5kjp16gCwadMm+vTpw44dO0oH9NBh3iIiF2vDBrNAdO8Ob7wBl15qd6Ly\n89Rnp6VjEkG/LjcsKCiguLiY+vXrl7p+tkAA5Ofnc8UVV1gZR0Sk3D76yDzzITUV3n3XvwqEJ1k6\nJuFyuWjbti07d+4kJSWF8PDwc+6ZO3cuo0aN4uDBg3z11Vdlvk5qamrJ1w6HA4fDYVFiEanuTp+G\nv/zFHKT+5hso42PLJzmdTpxOp8df19LuprPy8vJISEhgzJgxbj/gly9fzkMPPcT27dtLB1R3k4h4\nyY4dZvdSWBhMngzBwXYnqji/6G46KyQkhMTERDIzM93e06lTJ4qKivj555+9EUlEpJRPP4Ubb4Rh\nw8xBan8uEJ5kWZHIyckhNzcXgNOnT7N48WJiY2NL3bNz586SSrdu3ToAQn39VHARqVIKC2HkSHj8\ncVi4EIYPh4AAu1P5DsvGJA4ePMiQIUNwuVy4XC4GDx5Mt27dmDRpEgDJycmkpaXx8ccfExgYSHBw\nMDNmzLAqjojIOQ4cgLvvhrp1zdXT+jfqubwyJlEZGpMQESukp8O998Kf/gRPPw01qtj+E5767NSK\naxGpVlwuc+X0W2/BlCnmNFdxT0VCRKqNo0fhvvvg2DFYuxaaNrU7ke+rYg0sEZGyZWaam/O1agVO\npwpEealIiEiVZhgwYQLcdhuMHQuvvw6BgXan8h/qbhKRKis/Hx55BDZtgpUr4brr7E7kf9SSEJEq\naetWiIszWw2rVqlAVJSKhIhUOTNmQOfO8MQT5hGjv+41KhWg7iYRqTJ++cUsDF98YZ4cFxNjdyL/\npyIhIlXCnj3Qvz80aWLOZKpXz+5EVYO6m0TE733xhTn+0K8fzJmjAuFJakmIiN8qLoYXXzTPnZ49\nGzp1sjtR1aMiISJ+6fBhGDjQ3GYjMxMaNbI7UdWk7iYR8TsrVpirp+Pi4KuvVCCspJaEiPgNw4Bx\n48wN+j74ABIT7U5U9alIiIhfyMuDBx+EvXth9Wq45hq7E1UP6m4SEZ+3YQO0bw9XXgkZGSoQ3qQi\nISI+7aOPzDMfUlPh3Xfh0kvtTlS9qLtJRHzS6dPwl7+YLQenEyIi7E5UPVnWkjhz5gxxcXHExMQQ\nHh7OqFGjzrnn3//+N9HR0URFRXHTTTexceNGq+KIiB/ZuRNuvNHcxXXtWhUIO1nWkqhVqxbp6ekE\nBQVRVFREfHw8GRkZxMfHl9xz7bXXsmzZMkJCQvjiiy94+OGH+fbbb62KJCJ+YO5cePhheP55GD4c\nAgLsTlS9WdrdFPTr1osFBQUUFxdTv379Utc7duxY8nVcXBz79u2zMo6I+LDCQnj6aZg1CxYsMNdA\niP0sLRIul4u2bduyc+dOUlJSCA8Pd3vv+++/T8+ePcu8lpqaWvK1w+HA4XB4OKmI2OnAARgwAOrU\ngXXrIDTU7kT+x+l04nQ6Pf66AYZhGB5/1d/Jy8sjISGBMWPGlPkBn56ezvDhw1mxYgWXX3556YAB\nAXghoojYJD0d7r0XUlLgmWeghuZceoSnPju98r8jJCSExMREMjMzz7m2ceNGhg0bxvz5888pECJS\ndblcMHq0uf/Sxx/Dc8+pQPgiy/6X5OTkkJubC8Dp06dZvHgxsbGxpe7Zu3cvd911F1OnTqVly5ZW\nRRERH3P0KPTqBZ99Zs5euuUWuxOJO5aNSRw8eJAhQ4bgcrlwuVwMHjyYbt26MWnSJACSk5N56aWX\nOHbsGCkpKQAEBgayZs0aqyKJiA/IzDTPfbjrLnMPpsBAuxPJ+XhlTKIyNCYhUjUYBkycaE5tnTgR\nkpLsTlS1eeqzUyuuRcRy+fnwyCOwcSOsXAnXXWd3IikvDROJiKW2bTPXPNSsCd9+qwLhb1QkRMQy\nn30GnTvDiBHw4Yfw6/pa8SPqbhIRjzMM+Mc/YPx4mDcPfrO5gvgZFQkR8ahTp+Chh+CHH8zDgZo2\ntTuRVIa6m0TEY/btM7uXAgJg+XIViKpARUJEPGLlSnOAun9/mDoVate2O5F4grqbRKTSPvgAnnrK\nHJxOTLQ7jXiSioSIVFhRETzxBCxaBMuWQevWdicST1OREJEKOXoU7r4bLrnEHKDW/pxVk8YkROSi\nbd4MHTpAdDQsXKgCUZWpJSEiF2X+fBg6FF5/He67z+40YjUVCREpF8Mwz3+YMMFsPeh40epBRUJE\nLujkSXjwQdi9G9asgSZN7E4k3qIxCRE5r717IT4eLr0UvvlGBaK6UZEQEbeWLze7lQYNgn/9C2rV\nsjuReJu6m0SkTJMnwzPPmOdP9+hhdxqxi4qEiJRSWAiPPw5LlkBGBvy//2d3IrGTioSIlMjJMfde\nql3bXCAXEmJ3IrGbZWMSZ86cIS4ujpiYGMLDwxk1atQ592zbto2OHTtSq1YtXn/9dauiiEg5bNpk\nLpDr0MFcC6ECIWBhS6JWrVqkp6cTFBREUVER8fHxZGRkEB8fX3JPaGgob731FnPnzrUqhoiUw6ef\nwsMPw7hxcO+9dqcRX2Lp7KagX88qLCgooLi4mPr165e63qBBA9q3b09gYKCVMUTEDZcLXnoJHn3U\n3KRPBUJ+z9IxCZfLRdu2bdm5cycpKSmEh4dX6HVSU1NLvnY4HDgcDs8EFKnG8vPh/vth/35zgVzj\nxnYnkspwOp04nU6Pv26AYRiGx1/1d/Ly8khISGDMmDFlfsC/+OKLBAcH88QTT5wbMCAAL0QUqVZ2\n74Y774S2bWHiRHOhnFQtnvrs9MpiupCQEBITE8nMzPTGjxOR8/jmG+jYER54wDwsSAVCzseyIpGT\nk0Nubi4Ap0+fZvHixcTGxpZ5r1oKIt4xYYI5xfXjj2HECPMsapHzsay7adOmTQwZMgSXy4XL5WLw\n4MGMHDmSSZMmAZCcnEx2djbXX389x48fp0aNGtStW5ctW7YQHBz834DqbhKptIICeOwxsxUxfz60\nbGl3IrGapz47vTImURkqEiKVc+QI9O1rrnuYOhUuu8zuROINfjUmISL22LABrr/e3MV17lwVCLl4\n2pZDpIr65BNISYG33oIBA+xOI/5KRUKkinG5IDXV3Nr7yy/Naa4iFaUiIVKFnDhhnjt95Ii5QO7K\nK+1OJP7uvGMS69atY+TIkcTFxXHllVfSqFEj4uLiGDlyJOvXr/dWRhEph59+ghtvhNBQWLpUBUI8\nw+3spp49e3L55ZfTq1cvOnToQOPGjTEMg4MHD7JmzRoWLFhAbm4un332mbUBNbtJ5IK+/hoGDoRn\nn4Xhw7X+QbwwBfbQoUNceYF/ihw+fJiGDRtWOsT5qEiIuGcY8M478PLLMH063Hyz3YnEV1g+BdZd\ngVi+fDnDhw8HsLxAiIh7BQXm9t4TJ8KqVSoQYo1yDVyvW7eO6dOnM2vWLJo3b05SUpLVuUTkPA4d\ngqQkuOIKs0DUrWt3Iqmq3BaJ7du3M336dGbOnEmDBg3o168fhmFYshWtiJTfunXQpw8MGWJOda2h\nJbFiIbdjEjVq1OD222/n7bff5o9//CMAzZs3Z9euXd4NqDEJkRIzZ8Kf/wzvvgv9+tmdRnyZ5WMS\nc+bMoXbt2nTu3JlHHnmEpUuX6sNaxCYuFzzzDDz5JCxerAIh3nPBDf7y8/OZN28e06dPJz09nfvu\nu48+ffpw6623eiegWhJSzR0/DoMGQW6uudWG5otIediyC+zRo0f55JNPmDFjBl9//XWlf3h5qEhI\ndbZjh3mCXKdOMH48/OEPdicSf+GVIlFUVERERATbt2+v9A+qKBUJqa6WLIF77zUHp1NS7E4j/sYr\nW4XXrFmT1q1bs2fPnkr/IBEpH8OAN980u5hmzVKBEHtdcJ3E0aNHiYiIoEOHDtSpUwcwK9T8+fMt\nDydS3fzyi1kUMjPN9Q/Nm9udSKq7CxaJl19+ueTrs82XAG0MI+Jx2dlw113QuDGsXAm/OcVXxDYX\nNXC9YMEC7rjjDivznENjElIdZGaaC+Qeegiee04L5KTybDm+9Pnnny/3vWfOnCEuLo6YmBjCw8MZ\nNWpUmfc9+uijXHfddURHR2v7camWpk2D224zxyFeeEEFQnyLZYcO1apVi/T0dIKCgigqKiI+Pp6M\njAzi4+NL7vn888/ZsWMHP/74I6tXryYlJYVvv/3WqkgiPqW4GJ5+GmbPNs9/iIqyO5HIuS6qSEyc\nOPGiXjwoKAiAgoICiouLqV+/fqnr8+fPZ8iQIQDExcWRm5tbri3KRfxdXp55/sOpU+YJcldcYXci\nkbK5LRJOpxOHw1Hqe3FxcaV+nZ6eTteuXd2+uMvlom3btuzcuZOUlBTCw8NLXd+/fz/NmjUr+XXT\npk3Zt2/fOUUiNTW15GuHw3FOLhF/8sMP5gK5m2+GceMgMNDuRFIVOJ1OSzZgdVskFi5cyN/+9jdu\nueUW2rdvX+pkuszMTJYsWULXrl3PWyRq1KjB999/T15eHgkJCWUWnt8PrJQ1c+q3RULEn335JQwe\nDK+8Yp4FIeIpv/8H9IsvvuiR13VbJMaOHcuJEyeYN28eixcvLllQd/XVVxMfH88zzzxDcDnn6IWE\nhJCYmEhmZmapP8RVV11FVlZWya/37dvHVVddVcE/iojvMgx44w147TVISzO32RDxB+cdk6hbty6D\nBg1i0KBBF/3COTk51KxZk3r16nH69GkWL17MCy+8UOqeXr168fbbbzNgwAC+/fZb6tWrp/EIqXLO\nnIHkZNi4Eb79Fq6+2u5EIuVn2eymgwcPMmTIEFwuFy6Xi8GDB9OtWzcmTZoEQHJyMj179uTzzz+n\nZcuW1KlThw8//NCqOCK2OHDAXP9w9dWQkQG/blog4jcuajGdHbSYTvzVmjXmCuqUFHOqqzYqEG/y\n1GenZS0JkepsyhT4n/+B994zZzKJ+KsLFom0tLRzZhyFhITQpk0bGur0E5FSiovN0+M+/RTS0yEy\n0u5EIpVzwSLxwQcfsGrVqpKprk6nk7Zt27Jr1y6ef/557rvvPstDiviDY8fgnnugsNDsagoNtTuR\nSOVdcJeYwsJCtm7dSlpaGmlpaWzZsoWAgABWr17N3//+d29kFPF527ZBXBy0amWuhVCBkKrigkUi\nKyur1LTUhg0bkpWVRWhoKH/QWYoifP45dO4MTz1lbtJXUyN9UoVc8O3ctWtXEhMT6d+/P4ZhkJaW\nhsPh4OTJk9SrV88bGUV8kmGYi+PGjTPHIG66ye5EIp53wSmwLpeLOXPmsGLFCgBuuukmkpKSvHbw\nkKbAii86fdo8+2HbNpg7F36zBZmIT/DaFNgaNWoQHx/PpZdeCpib/OlkOqnO9u0zF8i1bAnLl8Ov\nmx2LVEkXHJOYNWsWcXFxzJ49m9mzZ9OhQwdmz57tjWwiPmfVKnOAOinJPCxIBUKqugt2N0VFRbFk\nyZKSNRFHjhyhW7dubNy40TsB1d0kPuLDD801EB98ALffbncakfPzWneTYRg0aNCg5NehoaH60JZq\npagIRo6EhQvhm28gLMzuRCLec8Ei0aNHDxISEhg4cCCGYTBz5kxuu+02b2QTsd3RozBggPn1mjVw\n+eX25hHxtgt2NxmGwZw5c8jIyCAgIIBOnTrRp08fb+VTd5PYZssWc9+lO+6Af/xD6x/Ev3jqs1O7\nwIqUYcECePBBGDsWfj2GXcSvWD4mERwc7Haqa0BAAMePH6/0DxfxNYYBr74K77xjFoobbrA7kYi9\n3BaJ/Px8b+YQsd2pU2br4aefzPEHnaQrUo51EiLVQVaWee50YKA5g0kFQsSkIiHV3ooV5gK5AQPg\n44+hdm27E4n4Ds3XkGrtvffMo0X/9S/QzG6Rc1nWksjKyqJr165EREQQGRnJ+PHjz7nn2LFj9OnT\nh+joaOLi4ti8ebNVcURKKSyERx81d3FdvlwFQsQdy6bAZmdnk52dTUxMDPn5+bRr1465c+cS9pvl\nqiNHjuSyyy7jueeeY/v27QwfPpwlS5aUDqgpsOJhP/8M/fvDH/4A06eDdryXqshTn52WtSQaNWpE\nTEwMYE6nDQsL48CBA6Xu2bp1a8mxqK1atWL37t0cOXLEqkgibNoEHTpAu3bmNhsqECLn55Uxid27\nd7N+/Xri4uJKfT86Opo5c+YQHx/PmjVr2LNnD/v27Su1VxRAampqydcOhwOHw+GF1FKVFBTA3/9u\nnhw3bhwMGmR3IhHPcjqdOJ1Oj7+u5Suu8/PzcTgcPPvss/Tu3bvUtRMnTvDYY4+xfv162rRpw7Zt\n23jvvfeIior6b0B1N0klrVljHhDUrBlMmAB//KPdiUSs5xfbchQWFnL77bdz2223MWLEiAve37x5\nczZt2kRwcPB/A6pISAWdPAnPPWee+/DPf8I994DOy5LqwufHJAzDYOjQoYSHh7stEHl5eRQUFAAw\nefJkunTpUqpAiFTUkiXQpg0cPgz/+Q8MHKgCIVIRlrUkMjIy6Ny5M1FRUSV7QI0ePZq9e/cCkJyc\nzKpVq7j//vsJCAggMjKS999/n5CQkNIB1ZKQi3DsGDzxBCxdChMnamqrVF9+0d3kCSoSUh6GAWlp\n5tqHpCQYPRrq1rU7lYh9vHYynYivO3AAhg+Hbdvgk0/gxhvtTiRSdWjvJvFbhgGTJ0NMjDn+8P33\nKhAinqaWhPilHTtg2DBzBtPSpWaREBHPU0tC/EpRkXmU6A03QK9esGqVCoSIldSSEL/x/fcwdCjU\nr28ukLv2WrsTiVR9akmIzztzxtzO+9Zb4c9/hq++UoEQ8Ra1JMSnLVtmjj1ERcHGjdCokd2JRKoX\nFQnxScePw5NPwoIF8Pbb8Lttv0TES9TdJD5nwQKIiIDiYnNLDRUIEfuoJSE+4/Bhc8X0d9+ZZ03/\netSIiNhILQmxnWGYRaFNG7j6anPsQQVCxDeoJSG22r0bHnkEDh2CRYugbVu7E4nIb6klIbYoLjZP\niWvfHrp0Mdc9qECI+B61JMTrNm82T4oLDIQVK6BVK7sTiYg7akmI1/zyC6SmgsMBQ4aA06kCIeLr\n1JIQr/j2W3NLjRYtYP16aNrU7kQiUh4qEmKp/Hx45hmYNQvGjYP+/XWMqIg/UXeTWObLLyEyEnJz\nzUVxd9+tAiHib9SSEI/7+Wd4/HFz36VJkyAhwe5EIlJRlrUksrKy6Nq1KxEREURGRjJ+/Phz7snJ\nyaFHjx7ExMQQGRnJRx99ZFUc8QLDgJkzzdZD/fpm60EFQsS/BRieOCm7DNnZ2WRnZxMTE0N+fj7t\n2rVj7ty5hIWFldyTmprKL7/8wquvvkpOTg6tWrXi0KFD1Kz53waOpw7zFmvt2wd/+hPs3AnvvQcd\nO9qdSKR689Rnp2UtiUaNGhETEwNAcHAwYWFhHDhwoNQ9jRs35vjx4wAcP36c0NDQUgVCfJ/LBRMn\nQmysuRhu3ToVCJGqxCufyLt372b9+vXExcWV+v6wYcO4+eabadKkCSdOnGDWrFll/v7U1NSSrx0O\nBw6Hw8K0Ul4//GCe9fDLL+aah4gIuxOJVF9OpxOn0+nx17Wsu+ms/Px8HA4Hzz77LL1/t+fzK6+8\nQk5ODuPGjWPnzp10796dDRs2ULdu3f8GVHeTzykshLFj4fXX4bnnzNPiLrnE7lQi8ls+390EUFhY\nSFJSEoMGDTqnQACsXLmSfv36AdCiRQuaN2/O9u3brYwklfTdd9Chg9lyyMyExx5TgRCpyiwrEoZh\nMHToUMLDwxkxYkSZ97Ru3ZolS5YAcOjQIbZv3861OrzYJ506BX/7G/TsaU5v/eILuOYau1OJiNUs\n627KyMigc+fOREVFEfDrCqrRo0ezd+9eAJKTk8nJyeGBBx5g7969uFwuRo0axcCBA0sHVHeT7dLT\n4eGHoV07c+fWK6+0O5GIXIinPjstH5OoLBUJ++Tmmq2HRYvgnXegVy+7E4lIefnFmIT4r7lzzUVx\nl1xiLopTgRCpnrQoQUrJzoa//AU2bIB//9s8EEhEqi+1JAQwt9T48EOIioKWLc0ioQIhImpJCD/9\nBMnJcPSouXNrbKzdiUTEV6glUY0VF8M//2mue+jeHVavVoEQkdLUkqimNm0yT4qrUwdWrYLrrrM7\nkYj4IrUkqplffjG30rj5ZnPfpaVLVSBExD21JKqRlSvhoYegVStzYLpJE7sTiYivU5GoBk6cgKef\nhrQ0GD8ekpJ0jKiIlI+6m6q4RYvMRXH5+eaiuL59VSBEpPzUkqiicnJgxAizi+m998zZSyIiF0st\niSrGMGDaNLP10LChOYtJBUJEKkotiSokKwseeQT27oX58831DyIilaGWRBXgcpm7tMbGwg03/Pdg\nIBGRylJLws9t22ZOazUMWLYMwsPtTiQiVYlaEn6qsBD+938hPh4GDIDly1UgRMTz1JLwQ5mZ5pYa\nV10F69bBH/9odyIRqarUkvAjp07BX/8KiYkwciR89pkKhIhYS0XCTyxdCm3awIED5qK4QYO0KE5E\nrGdZkcjKyqJr165EREQQGRnJ+PHjz7ln7NixxMbGEhsbS5s2bahZsya5ublWRfJLx46ZXUsPPGBu\nqTFtGjRoYHcqEakuAgxPnJRdhuzsbLKzs4mJiSE/P5927doxd+5cwsLCyrx/4cKFjBs3jiVLlpQO\n6KHDvP1RWho8+ij07g2vvgqXXWZ3IhHxF5767LRs4LpRo0Y0atQIgODgYMLCwjhw4IDbIjFt2jTu\nueceq+L4lYMHYfhw2LIFZs40ZzCJiNjBK7Obdu/ezfr164mLiyvz+qlTp/jyyy959913y7yemppa\n8rXD4cDhcFiQ0n6GAe+/b+7Y+vDDZtdSrVp2pxIRf+B0OnE6nR5/Xcu6m87Kz8/H4XDw7LPP0rt3\n7zLvmTlzJtOmTWPevHnnBqwm3U07dpiF4cQJc0O+6Gi7E4mIP/PUZ6els5sKCwtJSkpi0KBBbgsE\nwIwZM6ptV1NREYwda26nkZhoHiWqAiEivsKyloRhGAwZMoTQ0FDeeOMNt/fl5eVx7bXXsm/fPmrX\nrn1uwCrcktiwwZy5FBIC//d/0KKF3YlEpKrw+YHrFStWMHXqVKKiooiNjQVg9OjR7N27F4Dk5GQA\n5s6dS0JCQpkFoqo6cwZefhkmTzZnLT34oNY8iIhvsnxMorKqWkti+XIYNgwiIuDtt6FxY7sTiUhV\n5PMtCSnt+HF46imYNw/eegvuusvuRCIiF6ZtObxg4ULzpLiCAnNLDRUIEfEXaklY6PBheOwxWLMG\nPvoIbr7Z7kQiIhdHLQkLGAZMmWJuyNe0qXnOtAqEiPgjtSQ8bM8e85zpAwfMrbzbt7c7kYhIxakl\n4SHFxeaAdLt20KmTeTCQCoSI+Du1JDxgyxbznOlLLoGMDGjd2u5EIiKeoZZEJRQUwEsvQefO5iFA\n33yjAiEiVYtaEhW0erXZerj6ali/Hpo1szuRiIjnqUhcpJMn4dlnYfp0eOMNGDBAW2qISNWl7qaL\nsHixuSiEyB+1AAAKYUlEQVQuJ8dcFHfPPSoQIlK1qSVRDkePwv/8D6Snw8SJcNttdicSEfEOtSTO\nwzBg9myz9XDZZWbrQQVCRKoTtSTc2L/fPGf6hx/gk0/gxhvtTiQi4n1qSfyOy2UeABQTA1FR5swl\nFQgRqa7UkviNH380z3o4fRq+/trce0lEpDpTSwLznOm//x06doQ774SVK1UgRERALQnWrzfPmQ4N\nhbVroXlzuxOJiPiOatuSOH3aPCkuIQEefRS++qr8BcLpdFqarSKUqfx8MZcylY8yeZ9lRSIrK4uu\nXbsSERFBZGQk48ePL/M+p9NJbGwskZGROBwOq+KU8s03EB0NP/0EGzfC/fdf3KI4X3xTKFP5+WIu\nZSofZfI+y7qbAgMDeeONN4iJiSE/P5927drRvXt3wsLCSu7Jzc1l+PDhfPnllzRt2pScnByr4gCQ\nlwdPPmkeJ/rOO+b4g4iIuGdZS6JRo0bExMQAEBwcTFhYGAcOHCh1z7Rp00hKSqJp06YAXHHFFVbF\nYf58c1GcYZiL4lQgREQuLMAwDMPqH7J79266dOnC5s2bCQ4OLvn+448/TmFhIZs3b+bEiRM89thj\nDB48uHRAbY4kIlIhnvh4t3x2U35+Pn379uXNN98sVSAACgsLWbduHUuXLuXUqVN07NiRG264geuu\nu67kHi/UMBERccPSIlFYWEhSUhKDBg2id+/e51xv1qwZV1xxBbVr16Z27dp07tyZDRs2lCoSIiJi\nH8vGJAzDYOjQoYSHhzNixIgy77nzzjvJyMiguLiYU6dOsXr1asLDw62KJCIiF8mylsSKFSuYOnUq\nUVFRxMbGAjB69Gj27t0LQHJyMq1bt6ZHjx5ERUVRo0YNhg0bpiIhIuJLDJs88MADRsOGDY3IyMgy\nr6enpxuXXXaZERMTY8TExBgvv/xyybVFixYZrVq1Mlq2bGmMGTPGtkwvvfRSybWrr77aaNOmjRET\nE2Ncf/31Xst0NldMTIwRERFhdOnSpeT7Vj2nyuay61m99tprJf/vIiMjjUsuucQ4duyYYRj2vafO\nl8mu53TkyBEjISHBiI6ONiIiIowPP/yw5Jqd76nz5bLrWR09etTo3bu3ERUVZXTo0MH4z3/+U3LN\nrvfU+TJV5DnZViSWLVtmrFu37rwfyHfcccc53y8qKjJatGhh7Nq1yygoKDCio6ONLVu22JrJMAzj\nmmuuMX7++WeP5LiYTMeOHTPCw8ONrKwswzDMv0iGYe1zqkwuw7DvWf3WggULjG7duhmGYe97yl0m\nw7DvOb3wwgvGU089ZRiG+f+tfv36RmFhoe3vKXe5DMO+Z/XXv/615B+L27Zt84n3lLtMhlGx52Tb\nthydOnXi8ssvP+89Rhkzm9asWUPLli255pprCAwMZMCAAcybN8/WTOW5VlEXyuRurYmVz6kyuc6y\n41n9Pt8999wD2P+eKivTWXY8p8aNG3P8+HEAjh8/TmhoKDVr1rT9PeUu11l2PKutW7fStWtXAFq1\nasXu3bs5fPiwre+psjIdOXKk5PrFPief3bspICCAlStXEh0dTc+ePdmyZQsA+/fvp1mzZiX3NW3a\nlP3799ua6ey1W265hfbt2zN58mSv5AH48ccfOXr0KF27dqV9+/ZMmTIFsPc5nS8X2Peszjp16hRf\nfvklSUlJgP3PqqxMYN9zGjZsGJs3b6ZJkyZER0fz5ptvAvY/J3e5wL5nFR0dzZw5cwDzHxt79uxh\n3759tj4rd5mgYs/JZ3eBbdu2LVlZWQQFBbFo0SJ69+7NDz/84LOZVqxYQePGjTly5Ajdu3endevW\ndOrUyfJM7taa2L0I8XxrYDIyMmjSpInXn9VZCxYsID4+nnr16gG+sWDz95nAvvfU6NGjiYmJwel0\nsnPnTrp3786GDRss/7kVzVW3bl3bntVTTz3FY489RmxsLG3atCE2NpZLLrnE1veUu0xAhf7u+WxL\nom7dugQFBQFw2223UVhYyNGjR2natClZWVkl92VlZZV0adiVCcymMECDBg3o06cPa9as8UqmZs2a\nceutt1K7dm1CQ0NL1ppcddVVtj2n8+UCaNKkCeD9Z3XWjBkzSnXr2P2sysoE9r2nVq5cSb9+/QBo\n0aIFzZs3Z/v27bb+3TtfLrDvWdWtW5cPPviA9evX8/HHH3PkyBFatGhh63uqrEzXXnstULG/ez5b\nJA4dOlTSd7ZmzRoMw6B+/fq0b9+eH3/8kd27d1NQUMDMmTPp1auXrZlOnTrFiRMnADh58iRfffUV\nbbx0apG7tSZ2Pqfz5bLzWQHk5eWxbNky7vzN5l12P6uyMtn5nFq3bs2SJUsA8z2/fft2rr32Wtuf\nk7tcdj6rvLw8CgoKAJg8eTJdunQhODjY1mflLlNFn5Nt3U333HMP33zzDTk5OTRr1owXX3yRwsJC\nwFxD8cknnzBhwgRq1qxJUFAQM2bMMAPXrMnbb79NQkICxcXFDB06tNTOsnZkys7O5q677gKgqKiI\ne++9l1tvvdUrmc631sSq51SZXD/99JNtzwpg7ty5JCQkULt27ZLfZ+d7yl2mQ4cO0adPH8D7z+np\np5/mgQceIDo6GpfLxT/+8Q/q168P2PuecpfLzvfUli1buP/++wkICCAyMpL3338fsPc95S5TRd9T\nXtngT0RE/JPPdjeJiIj9VCRERMQtFQkREXFLRUJERNxSkZBq7/eHYVXG2LFjCQsLIzY2lg4dOpRa\naZ6Tk0NgYCCTJk3y2M8TsZqKhFR7nlodO3HiRJYuXcratWtZv349S5cuLbVPzuzZs+nRowfTp0/3\nyM8T8QYVCZFfGYbByJEjadOmDVFRUcyaNQsAl8vFn/70J8LCwrj11ltJTEwkLS3tnN//6quvMmHC\nhJKWSd26dbnvvvtKrs+YMYNXXnmFw4cPe31vKJGKUpEQ+dWcOXPYsGEDGzduZMmSJYwcOZLs7Gzm\nzJnDnj172Lp1K1OmTGHVqlXntD6OHz/OiRMnuOaaa8p87aysLA4fPkx0dDR9+/Zl5syZXvgTiVSe\nioTIrzIyMhg4cCABAQE0bNiQLl26sHbtWlasWEH//v0BuPLKK0u2Yb4YM2fOpG/fvgD069dPXU7i\nN3x2F1gRbwsICHC71/6FNia47LLLCA4OZteuXTRv3vyc69OnT+fQoUNMnToVgIMHD7Jjxw5atmxZ\n+eAiFlJLQuRXnTp1YubMmbhcLo4cOcKyZcuIi4vjpptuIi0tDcMwOHToEE6ns8zfP2rUKIYPH16y\niVp+fj5Tpkzhhx9+4OTJk+zbt49du3axa9cunnrqKbUmxC+oSEi1d3Z8oU+fPkRFRREdHU23bt14\n7bXXaNiwYckJe+Hh4QwePJi2bdsSEhJyzuukpKTQtWtXrr/+etq0aUPnzp2pUaMGM2bMKNmA7qyk\npKSSDSJFfJk2+BMph5MnT1KnTh1+/vln4uLiWLlyJQ0bNrQ7lojlNCYhUg633347ubm5FBQU8Pzz\nz6tASLWhloSIiLilMQkREXFLRUJERNxSkRAREbdUJERExC0VCRERcUtFQkRE3Pr/gw9wApXt65gA\nAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x29b4650>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(1.9569709616766851, -0.39508420521305565, 0.99852626739620765, 0.001473732603792355, 0.075209753597987913)\n",
        "Intercept of the graph is -0.40\n",
        "Slope of the graph is 1.96\n",
        " Taking n = 2, rate of equation is 0.40 millimol/litre.hr CA**2 \n",
        "The sol slightly differ from that given in book because regress fn is used to calculate the slope\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3 page no : 99"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "'''\n",
      "Note : The sol varies from book as the value of CB taken in book at end is wrong\n",
      "'''\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "CAo = 1.4\n",
      "CBo = 0.8\n",
      "CRo = 0.\n",
      "#Volume(litre)\n",
      "V = 6.\n",
      "\n",
      "# Calculations\n",
      "#For 75% conversion of B\n",
      "#From stoichiometry of equation A+2B-->R\n",
      "CA = 1.4-(0.75*0.8)/2.;\n",
      "CB = 0.8-(0.75*0.8);\n",
      "CR = (0.75*0.8)/2.;\n",
      "#From the Given rate equation(mol/litre.min)\n",
      "rB = 2*(12.5*CA*CB*CB-1.5*CR);\n",
      "#Volumetric flow rate is given by\n",
      "v = V*rB/(CBo-CB);\n",
      "\n",
      "# Results\n",
      "print \" volumetric flow rate into and out of the reactor is %.1f litre/min\"%(v)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " volumetric flow rate into and out of the reactor is 2.0 litre/min\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4 page no : 104"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "from scipy.integrate import quad \n",
      "\n",
      "# Variables\n",
      "eA = (4-2.)/2;\n",
      "CAo = 0.0625;         # mol/liter\n",
      "xAo = 0.\n",
      "xAf = 0.8              # conversion\n",
      "k = 0.01;\n",
      "\n",
      "# Calculations\n",
      "def f1(xA): \n",
      "\t return math.sqrt((1+xA)/(1-xA))\n",
      "\n",
      "X =  quad(f1,xAo,xAf)[0]\n",
      "t = math.sqrt(CAo)*X/k;\n",
      "\n",
      "# Results\n",
      "print \" Space timesec needed is %.2f sec\"%(t)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Space timesec needed is 33.18 sec\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5 page no : 106"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "T = 922.         #Temperature(kelvin)\n",
      "P = 460000.;     # kPA\n",
      "FAo = 40.        # pure phosphine\n",
      "k = 10.\n",
      "R = 8.314;\n",
      "\n",
      "# Calculations\n",
      "CAo = P/(R*T);          # mol/m3\n",
      "e = (7-4)/4.;\n",
      "XA = 0.8;\n",
      "\n",
      "#The volume of plug flow reactor is given by\n",
      "V = FAo*((1+e)*math.log(1./(1-XA))-e*XA)/(k*CAo);\n",
      "\n",
      "# Results\n",
      "print \" volume of reactor is %.3f m**3\"%(V)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " volume of reactor is 0.148 m**3\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}