summaryrefslogtreecommitdiff
path: root/Chemical_Reaction_Engineering_by_O._Levenspiel/ch3.ipynb
blob: 4dda3df48773b0b62f82be41ce63ef07d2a1fac9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 :  Interpretation of Batch Reactor Data"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.1 page no : 60"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%matplotlib inline\n",
      "\n",
      "import math \n",
      "from numpy import *\n",
      "from matplotlib.pyplot import *\n",
      "from scipy import stats\n",
      "\n",
      "# Variables\n",
      "#Given\n",
      "t = [0, 20, 40 ,60, 120 ,180, 300];        # time\n",
      "C_A = [10 ,8, 6, 5, 3, 2, 1];              # concentration\n",
      "CAo = 10.;\n",
      "k = zeros(7)\n",
      "CA_inv = zeros(7)\n",
      "\n",
      "# Calculations\n",
      "#Guesmath.sing 1st order kinetics\n",
      "for i in range(7):\n",
      "    k[i] = math.log(CAo/C_A[i]);\n",
      "    CA_inv[i] = 1/C_A[i];\n",
      "\n",
      "T = array([18.5,23,35]);\n",
      "CAo = array([10,5,2]);\n",
      "CA = zeros(3)\n",
      "log_Tf = zeros(3)\n",
      "log_CAo = zeros(3)\n",
      "\n",
      "for i in range(3):\n",
      "    CA[i] = 0.8*CAo[i];\n",
      "    log_Tf[i] = math.log10(T[i]);\n",
      "    log_CAo[i] = math.log10(CAo[i]);\n",
      "\n",
      "# Results\n",
      "plot(log_CAo,log_Tf)\n",
      "plot(log_CAo,log_Tf,\"go\")\n",
      "xlabel(\"Ln CAO\")\n",
      "ylabel(\"log r\")\n",
      "#plot(log_Tf,log_CAo)\n",
      "#coeff1 = linalg.lstsq(log_CAo,log_Tf);\n",
      "slope, intercept, r_value, p_value, std_err = stats.linregress(log_CAo,log_Tf)\n",
      "coeff1 = stats.linregress(log_CAo,log_Tf)\n",
      "n = 1-coeff1[0];\n",
      "print \"From graph we get slope and intercept for calculating rate eqn\"\n",
      "k1 = ((0.8**(1-n))-1)*(10.**(1-n))/(18.5*(n-1));\n",
      "print \" The rate equation is given by %.3f\"%(k1),\n",
      "print \"CA**1.4 mol/litre.sec\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "From graph we get slope and intercept for calculating rate eqn"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        " The rate equation is given by 0.005 CA**1.4 mol/litre.sec\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVVX+x/H3CbBUTEWRCCgQzEvKxQtaSmGJePnpeKsk\n84KOUVNmTc1k2UVyprScmtJyqskaK8USE0slM4W8lJiWWmpegmIwHM38lfpLAffvjzWRxu2IHPY5\n8Hk9T89zPPucfT4QD1/W+u61tsOyLAsREZFKXGB3ABERcX8qFiIiUiUVCxERqZKKhYiIVEnFQkRE\nqqRiISIiVXJZsRg/fjwBAQF06tSp3ONZWVk0bdqUmJgYYmJimD59eumx0NBQIiMjiYmJITY21lUR\nRUTESd6uOnFycjKTJk1izJgxFb7m2muvZdmyZWWedzgcZGVl4efn56p4IiJyDlw2soiLi6N58+aV\nvqay9YBaKygi4j5cNrKoisPhYOPGjURFRREUFMSsWbPo0KFD6bE+ffrg5eVFSkoKEydOLPf9IiJy\n7qr1x7jlQrm5uVbHjh3LPfbjjz9ax48ftyzLslasWGG1adOm9NiBAwcsy7Ks//znP1ZUVJT10Ucf\nlXk/YPUd19d6b9V7Lkjueo8++qjdEarNk7NblvLbTfntVd1f+7ZdDdWkSRMaNWoEQP/+/SkqKuLI\nkSMABAYGAuDv78/QoUPJyckp9xyrQlcx+fnJLP9gee2EFhGpp2wrFgcPHiwdCuXk5GBZFn5+fpw4\ncYKffvoJgOPHj7Nq1aoKr6gC2B+zn9lps2sls4hIfeWynkVSUhLZ2dkcPnyYkJAQUlNTKSoqAiAl\nJYXFixczd+5cvL29adSoEWlpaQAUFhYybNgwAIqLixk1ahR9+/at9LN+LvnZVV+Gy8THx9sdodo8\nOTsov92U3zM5LMszLztyOBwwzTy+bn8iH87PtDWPiIgncDgc1Wpwe/wK7qarwtn+4SSysuxOIiJS\nd3l0sUj8NpE3pz3LG/MGMmoUTJkCp07ZnUpEpO7x6GmoM6MfOgQTJsCBA/Dmm9C2rY3hRETcVL2d\nhvqFvz9kZJiC0asXvPwyeGYZFBFxP3VmZHGmXbsgKQlatzZFo0WLWg4nIuKm6v3I4kzt28OmTaZY\nREfDhx/anUhExLPVyZHFmT74AJKT4eab4S9/gQYNaiGciIib0siiAgkJ8PnnsGcP9OgBu3fbnUhE\nxPPU+WIB0LIlvPMO3HYbxMXBiy+q+S0ici7q/DTUb+3eDaNGQUgI/POfppCIiNQXmoZyUrt28PHH\nZh1GdLTpaYiISOXq3cjiTGvWwNixcOON8PjjcOGFNRRORMRNaWRRDdddZ5rfubnQvTvs3Gl3IhER\n91SviwWYBXvp6TBpElx7LbzwgprfIiK/Va+noX5rzx7T/L7kEnjlFWjVqkZPLyJiO01D1YArroAN\nG6BjR9P8ztQtMkREAI0sKpSVBWPGwLBhMGMGXHSRyz5KRKTWaGRRw+LjTfO7oABiY+GLL+xOJCJi\nHxWLSvj5wVtvwT33QO/eMGeOmt8iUj9pGspJ+/aZzQj9/WHePAgIqLWPFhGpMZqGcrGICNP8jokx\nze/ly+1OJCJSezSyqIaPPjLN70GD4MknoWFDW2KIiJwzjSxq0TXXmOb3oUPQrRts3253IhER11Kx\nqKZmzWDhQvjzn+H66+HZZ+H0abtTiYi4hqahasD+/XDLLdC0Kbz2mlkBLiLijjQNZaPwcNPHiI01\nDfB337U7kYhIzdLIooatXw+jR0P//jBrFjRqZHciEZFfaWThJnr1Ms3v//1f6NrVPBYR8XQuKxbj\nx48nICCATp06lXs8KyuLpk2bEhMTQ0xMDH/5y19Kj2VmZtKuXTvatGnDzJkzXRXRZZo2hTffhKlT\noW9fePppNb9FxLO5bBpq3bp1+Pr6MmbMGHbs2FHmeFZWFk8//TTLli076/mSkhLatm3L6tWrCQoK\nolu3bixcuJD27dufHdxNp6F+KzfXNL8bNzbN70svtTuRiNRnbjcNFRcXR/PmzSt9TXmBc3JyiIiI\nIDQ0FB8fH0aOHElGRoarYrpcWBhkZ0PPntC5M3jwlyIi9Zi3XR/scDjYuHEjUVFRBAUFMWvWLDp0\n6EBBQQEhISGlrwsODmbTpk3lnmPatGmlj+Pj44mPj3dx6urx9oZHH4WEBDPKWLkS/vY3M9oQEXGl\nrKwssrKyzvs8thWLzp07k5+fT6NGjVi5ciVDhgxhz54953SOM4uFJ7j6atPwvvNO6NIFFiwwow0R\nEVf57R/Sqamp1TqPbVdDNWnShEb/va60f//+FBUVceTIEYKDg8nPzy99XX5+PsHBwXbFrHEXXwzz\n55uRRr9+8NRTan6LiPuzrVgcPHiwtGeRk5ODZVn4+fnRtWtX9u7dS15eHqdOnWLRokUMHjzYrpgu\nk5QEmzfDsmVmeqqgwO5EIiIVc9k0VFJSEtnZ2Rw+fJiQkBBSU1MpKioCICUlhcWLFzN37ly8vb1p\n1KgRaWlpJpC3N3PmzCExMZGSkhImTJhQ5kqouuLyy83tW594wkxH/eMfMHSo3alERMrSCm43sWkT\njBpl7sj397+r+S0iruF2l87KueneHT77DIqKzCjj00/tTiQi8isVCzfSpIlZuPfYYzBgAMyYASUl\ndqcSEdE0lNv69luzIeEFF5irp85YeiIiUm2ahqpjLrsM1qwxe0t17QqLF9udSETqM40sPMDmzXDz\nzRAXB889B76+dicSEU+lkUUd1q2baX47HObmSjk5dicSkfpGIwsPs3gx3HEHTJ4M998PXl52JxIR\nT1Ld350qFh4oPx/GjDFXSr3xhulviIg4Q9NQ9UhICKxeDQMHmub3okV2JxKRuk4jCw+3ZYtpfvfo\nAXPmmLUaIiIV0ciinurSBbZuhQsvhOho+OQTuxOJSF2kkUUd8s47cPvtpgH+4INqfotIWWpwC2C2\nOh87Fk6ehNdfh9BQuxOJiDvRNJQAEBQEq1bB734HsbHmbnwiIudLI4s6bOtW0/zu1s00v5s2tTuR\niNhNIwspo3NnUzAaNzYrvzdutDuRiHgqjSzqiYwMSEmB226Dhx4Cb5fdI1FE3Jka3FKl774zze9j\nx+DNNyEszO5EIlLbNA0lVQoMhMxMuOEG0/x+4w1QvRURZ2hkUU99/rlpfkdHwwsvQLNmdicSkdqg\nkYWck+hoc5/v5s3N4/Xr7U4kIu5MIwvhvfdg4kT4/e/hkUfAx8fuRCLiKmpwy3kpLIRx4+DoUdP8\nDg+3O5GIuIKmoeS8XHIJrFjx6w62//qXmt8i8iuNLKSMHTsgKQk6doS5c01fQ0TqBo0spMZ06gSb\nN0OrVqb5nZ1tdyIRsZtGFlKpFStgwgQYPx6mTVPzW8TTaWQhLjFggFmT8fnn0LMn7N1rdyIRsYPL\nisX48eMJCAigU6dOlb5u8+bNeHt7k56eXvpcaGgokZGRxMTEEBsb66qI4qSAAHN57ZgxcPXVMG+e\nmt8i9Y3LpqHWrVuHr68vY8aMYceOHeW+pqSkhISEBBo1akRycjLDhw8HICwsjC1btuDn51dxcE1D\n2eKLL8wVU23bwosvQiX/i0TEDbndNFRcXBzNq7iMZvbs2YwYMQJ/f/8yx1QI3FPHjpCTA8HBpvm9\ndq3diUSkNti2UXVBQQEZGRmsWbOGzZs343A4So85HA769OmDl5cXKSkpTJw4sdxzTJs2rfRxfHw8\n8fHxLk4tABddBM88A4mJcMstMHo0PPYYNGhgdzIR+a2srCyysrLO+zy2FYu7776bGTNmlA6JzhxJ\nbNiwgcDAQA4dOkRCQgLt2rUjLi6uzDnOLBZS+/r1M43v8eNNL+PNN830lIi4j9/+IZ2amlqt89h2\nNdSWLVsYOXIkYWFhpKen84c//IFly5YBEBgYCIC/vz9Dhw4lJyfHrphSBX9/WLbMXF7bqxe8/LKa\n3yJ1kW3F4uuvvyY3N5fc3FxGjBjB3LlzGTx4MCdOnOCnn34C4Pjx46xatarKK6rEXg4H3H67Wbz3\n/PMwfDh8/73dqUSkJrlsGiopKYns7GwOHz5MSEgIqampFBUVAZCSklLh+woLCxk2bBgAxcXFjBo1\nir59+7oqptSgDh1g0yaYOtU0v197Da6/3u5UIlITtIJbXOKDDyA52VxmO306XHih3YlEBNzw0lmp\n3xISTPN7zx646irYvdvuRCJyPlQsxGVatoR33oHbboO4OLOIT4NBEc+kaSipFbt3mympyy6Df/7T\nFBIRqX2ahhK31q4dfPwxXHEFREWZnoaIeA6NLKTWffghjB0LN90Ejz+u5rdIbdLIQjzG9dfDtm2Q\nmwvdu8POnXYnEpGqqFiILVq0gPR0uPNOuPZaeOEFNb9F3JmmocR2e/aY5ndgILzyirmdq4i4hqah\nxGNdcQVs3Gi2P4+OhsxMuxOJyG9pZCFuZe1a0/weNgxmzDDboYtIzdHIQuqE3r3Nyu+CAoiNNXfm\nExH7qViI2/Hzg7fegnvuMcVj9mw1v0XspmkocWv79pnmd8uW8OqrEBBgdyIRz6ZpKKmTIiJgwwbo\n3Nk0v5cvtzuRSP2kkYV4jI8+Mvf7HjwYnnwSGja0O5GI59HIQuq8a64xze///Ae6dYPt2+1OJFJ/\nqFiIR2neHNLS4E9/MtuGPPssnD5tdyqRuk/TUOKx9u+HUaOgWTPT/A4MtDuRiPvTNJTUO+HhsG6d\nWY/RuTO8+67diUTqLo0spE5Yv940v/v3h1mzoFEjuxOJuCeNLKRe69ULPvsMjh6Frl1NI1xEao6K\nhdQZzZrBggXw4IOQkABPP63mt0hNqbRYlJSU8Mwzz9RWFpEaccstkJMDixdDv35w4IDdiUQ8X6XF\nwsvLiwULFtRWFpEaExZmFvH17Gma30uX2p1IxLNV2eC+5557KCoq4qabbqJx48alz3fu3Nnl4Sqj\nBrc4a+NGM9r4ZWrqjB9jkXqnur87qywW8fHxOByOMs+vXbv2nD+sJqlYyLn48UdzC9ecHNPXsPlv\nHRHbuKxYuCsVC6mOhQth8mSzAvzee+ECXeIh9YyKhYiT8vLMmowGDWD+fAgKsjuRSO1xu3UW48eP\nJyAggE6dOlX6us2bN+Pt7U16enrpc5mZmbRr1442bdowc+ZMV0WUeio01Ny+NT7eTEe9847diUTc\nn8uKRXJyMpmZmZW+pqSkhPvvv59+/fqd9dydd95JZmYmO3fuZOHChezatctVMaWe8vaGhx+GjAy4\n7z6YOBGOHbM7lYj78q7qBenp6WUa3E2bNqVTp060atWqwvfFxcWRl5dX6blnz57NiBEj2Lx5c+lz\nOTk5REREEBoaCsDIkSPJyMigffv2VUUVOWc9epiV33fdZUYZCxaYFeAicrYqi8W8efP4+OOP6d27\nNwBZWVl07tyZ3NxcHnnkEcaMGVOtDy4oKCAjI4M1a9awefPm0oJUUFBASEhI6euCg4PZtGlTueeY\nNm1a6eP4+Hji4+OrlUXqt4svhtdeg0WLYMAA+OMfTQPcy8vuZCLnLysri6ysrPM+T5XFoqioiF27\ndhHw35sfHzx4kNGjR7Np0yauueaaaheLu+++mxkzZpQ2W35puJR3mW5FziwWIufrppvgqqtM8/v9\n903z+4y/W0Q80m//kE5NTa3WeaosFvn5+aWFAqBVq1bk5+fTokULGjRoUK0PBdiyZQsjR44E4PDh\nw6xcuRIfHx+CgoLIz88/6/ODg4Or/Tki5+Kyy2DNGpg500xHPf88jBhhdyoR+1VZLHr37s3AgQO5\n8cYbsSyL9PR04uPjOX78OM2aNav2B3/99delj5OTkxk0aBCDBw+muLiYvXv3kpeXx6WXXsqiRYtY\nuHBhtT9H5Fx5eZnNCPv0MTdXWrECnnsOfH3tTiZinyqLxZw5c1iyZAkbNmwAYOzYsQwfPhyHw1Hp\nKu6kpCSys7M5fPgwISEhpKamUlRUBEBKSkrFgby9mTNnDomJiZSUlDBhwgQ1t8UWsbGm+T15MsTE\nwJtvmudE6iOnFuUVFhaWXrHUvXv3Sq+Cqi1alCe16e234Y47TOGYMkXNb/FcLluU99Zbb9G9e3fe\nfvtt3n77bWJjY3n77berFVLEU91wA2zZAqtXQ+/e8O23dicSqV1VjiwiIyNZvXp16Wji0KFDXH/9\n9Wzfvr1WAlZEIwuxQ0mJuW3r3/4Gs2ebK6hEPInLRhaWZeHv71/67xYtWuiXtNRbXl5w//2wciU8\n8giMHQs//WR3KhHXq7JY9OvXj8TERF577TVeffVVBgwYQP/+/Wsjm4jb6tIFtm41mxFGR8Mnn9id\nSMS1qpyGsiyLJUuWsH79ehwOB3FxcQwdOrS28lVI01DiLpYsgdtvN/fLeOABs++UiLvSFuUiNioo\ngDFj4ORJeOMNs7OtiDuq8Z6Fr68vTZo0Kfe/iy+++LzCitQ1QUHwwQfwu99Bt25mQ0KRukQjC5Ea\ntnUr3HyzKRpz5kDTpnYnEvmV2938SKS+6tzZFIzGjc3K740b7U4kcv40shBxoYwMSEmB226Dhx5S\n81vspwa3iJs6cADGjTN34nvjDWjd2u5EUp9pGkrETV16KWRmmq3Ou3eH118H/Z0jnkYjC5Fa9Pnn\npvkdHQ0vvADnscu/SLVoZCHiAaKj4dNPoXlz83j9ersTiThHIwsRm7z3HkycCL//vdlnysfH7kRS\nH6jBLeKBCgtN8/voUXNzpfBwuxNJXadpKBEPdMkl5ratSUnQowf8619qfot70shCxE1s326a31de\nCf/4h+lriNQ0jSxEPFxkJGzeDK1ameZ3drbdiUR+pZGFiBtasQImTIDx42HaNDW/peaowS1Sxxw8\nCMnJcPiwaX7vyVvOcwue46R1kgsdF3LXzXcxMGGg3THFw1T3d6d2qhFxUwEBsHw5PP88dLl6ORd1\nmsyha/eXHt//vHmsgiG1QSMLEQ/Q84ZENnZcVeb5xG8TyXwl04ZE4qnU4Bapw3wanyz3+Z9Lfq7l\nJFJfqViIeIALHReW+/zB/Iv4v/+r5TBSL6lYiHiAu26+i/DPzl7eHfxxOE2LJ9G6NcyaZbZAF3EV\n9SxEPMTyD5YzO202P5f8zEVeFzFp5CQGJgxk2zb461/NuozJk+HOO+Hii+1OK+5Kl86K1HM7d5qi\nsWqVKRh33aVV4FKW2zW4x48fT0BAAJ06dSr3eEZGBlFRUcTExNClSxfWrFlTeiw0NJTIyEhiYmKI\njY11VUSROqVDB7MeY+NGyMuDiAiYOtWs0xA5Xy4bWaxbtw5fX1/GjBnDjh07yhw/fvw4jRs3BmDH\njh0MHTqUffv2ARAWFsaWLVvw8/OrOLhGFiKVys2FGTPg7bfNavB77zUbF0r95nYji7i4OJpXMgb+\npVAAHDt2jJYtW551XIVA5PyEhcGLL8K2bfDzz2bkMXkyFBTYnUw8ka0ruJcuXcoDDzzAd999x6pV\nvy44cjgc9OnTBy8vL1JSUpg4cWK57582bVrp4/j4eOLj412cWMTzhITA7Nnw4IPmqqlOneCmm2DK\nFLj8crvTiatlZWWRlZV13udxaYM7Ly+PQYMGlTsNdaZ169bx+9//nq+++gqA7777jsDAQA4dOkRC\nQgKzZ88mLi7u7OCahhKplkOH4Omn4aWXYMgQeOAB09+Q+sHtpqHORVxcHMXFxXz//fcABAYGAuDv\n78/QoUPJycmxM55IneLvD088AXv3QnCwuenS6NGwe7fdycSd2VYs9u/fX1rdtm7dCkCLFi04ceIE\nP/30E2Ca4KtWrarwiioRqT4/P0hNhf37oW1buOYaMz1VxUSA1FMu61kkJSWRnZ3N4cOHCQkJITU1\nlaKiIgBSUlJIT09n/vz5+Pj44OvrS1paGgCFhYUMGzYMgOLiYkaNGkXfvn1dFVOk3mvaFB56yDS/\n586FhAS4+mrzXOfOdqcTd6FFeSJylhMnTD/jqacgJgYefhi6d7c7ldQUj+5ZiIj7aNQI7r7bTE8N\nGAA33AB9+8K6dXYnEztpZCEilTp1Cv71L9MUv+wyM9K47jpwOOxOJtWhvaFExKWKimDBAnj8cWjR\nAh55BBITVTQ8jYqFiNSKkhJ46y34y1/MlNXDD8OgQSoankLFQkRq1enT8M47MH26+fdDD8GwYXCB\nOqFuTcVCRGxhWfDee6ZoHD9udrq96Sbw8rI7mZRHxUJEbGVZ5l4a06fDf/5j9qIaNQp8fOxOJmdS\nsRARt2BZkJUFjz0G33xjNiwcNw4aNLA7mYDWWYiIm3A4oHdvWLsW5s+H9HSzUeHzz5ut0sUzqViI\niMv06gXvvw+LF0NmJoSHwzPPmFXi4llULETE5WJj4d13TSN8/Xpo3RpmzoT/7hkqHkDFQkRqTUyM\nmZZavRo+/9wUjenT4ehRu5NJVVQsRKTWdewICxeaUca+faan8fDD8N9b2ogbUrEQEdu0bWv2ndq0\nCQoL4Yor4P77zaW34l5ULETEduHh8PLL8NlncOwYtGsH99wDBw7YnUx+oWIhIm7jssvMJbY7dpj1\nGh07wh13wLff2p1MVCxExO0EBcHf/w67dkHjxhAdDbfeCrm5dierv1QsRMRtBQTAk0/Cnj3QqhV0\n7WpWg+/ZY3ey+kfFQkTcXsuWZkv0ffsgLAx69oSbb4Yvv7Q7Wf2hYiEiHqN5c3j0UXPL106dzB37\nbrgBtm2zO1ndp2IhIh7n4ovhgQfg66+hRw/o3x9+9zv49FO7k9VdKhYi4rEaN4Z77zUjjT59YOhQ\nUzg2brQ7Wd2jLcpFpM44eRJeew2eeMKs3Xj4Ybj2Wt3y9Uy6n4WIyH8VFcEbb8Djj8Mll5iikZCg\nogEqFiIiZRQXw6JF8Ne/mj7HQw/BwIH1u2ioWIiIVKCkBJYsMTvcenubojFkCFxQD7u2KhYiIlU4\nfRqWLTNF49QpUzRGjAAvL7uT1R4VCxERJ1kWrFxpisYPP8DUqZCUZEYddZ2KhYjIObIs+PBDUzQK\nCszajdGjoUEDu5O5TnV/d7psxm78+PEEBATQqVOnco9nZGQQFRVFTEwMXbp0Yc2aNaXHMjMzadeu\nHW3atGHmzJmuiigi9ZzDYdZnZGfDvHmQlgZt2sDcueYyXPmVy0YW69atw9fXlzFjxrBjx44yx48f\nP07jxo0B2LFjB0OHDmXfvn2UlJTQtm1bVq9eTVBQEN26dWPhwoW0b9/+7OAaWYiIC3z8sdmHats2\n+NOfYOJEaNTI7lQ1x+1GFnFxcTRv3rzC478UCoBjx47RsmVLAHJycoiIiCA0NBQfHx9GjhxJRkaG\nq2KKiJzlqqtg+XLIyICsLLO4b9Ysc1Om+szWds7SpUt54IEH+O6771i1ahUABQUFhISElL4mODiY\nTZs2lfv+adOmlT6Oj48nPj7elXFFpB7p0gXeeQe2bzfrNJ56CiZPhjvvNGs2PEVWVhZZWVnnfR5b\ni8WQIUMYMmQI69atY/To0ezevfuc3n9msRARcYXISLOwb9cuUzTCw83d+yZPNrvgurvf/iGdmppa\nrfO4xZKUuLg4iouLOXLkCMHBweTn55cey8/PJzg42MZ0IiLQvr3ZQmTjRnOb14gIePBBOHzY7mS1\nw7ZisX///tImy9atWwFo0aIFXbt2Ze/eveTl5XHq1CkWLVrE4MGD7YopInKWNm3MlVNbtsCRI3DF\nFXDffVBYaHcy13LZNFRSUhLZ2dkcPnyYkJAQUlNTKSoqAiAlJYX09HTmz5+Pj48Pvr6+pKWlmUDe\n3syZM4fExERKSkqYMGFCmSuhRETsFhoK//iHWQX+5JPQoQPccgv8+c9QFydDtChPRKQGfPeduWrq\n1VfhpptgyhS4/HK7U5XldpfOiojUJ4GB8Le/wVdfQbNm0LkzTJhg7hteF6hYiIjUIH9/c/OlvXvN\ndFSPHmYLkXO82NPtqFiIiLiAnx+kpppbvrZrB9dcY6anytnQwiOoWIiIuFDTpmZX26+/hq5dzR37\nhg6F/14E6jFULEREaoGvr9lr6uuvIT4eBg0yd+375BO7kzlHxUJEpBY1amRWf+/fD//zP2ZqKiEB\nPvrI7mSV06WzIiI2OnUK5s83TfGQEHj4YbjuOtfdJ1w3PxIR8WDFxbBggdl/qkULUzT69av5oqFi\nISJSB5SUwNtvm3tqNGxoVogPHlxzRUPFQkSkDjl9GpYuNbd8PX3aFI3hw+GC8+w0q1iIiNRBlmVu\nxjR9urkB09Sppinu5VW986lYiIjUYZYFH3xgisbBg2Z79FGjwMfn3M6jYiEiUg9YFmRnw2OPQV6e\n2bBw7Fi48ELn3q+NBEVE6gGHwyzqW7MGXn8dliwx99iYMwd+/tl1n6tiISLioXr2hMxMWLwYVq2C\n1q3h6afh+PGa/ywVCxERDxcbC8uWwYoV5rav4eEwYwb89NOvr1n+wXISkxOr/RnqWYiI1DFffmkW\n933wAUyaBG0jlzP1tcnsj9kP01CDW0REfrVnDzz+OLyZlUhx8irz5LTqFQtNQ4mI1FFXXAGvvQZd\nepw873OpWIiI1HFNGzp5XW0lVCxEROq4u26+i/DPws/rHN41lEVERNzUwISBAMxOm837vF+tc6jB\nLSJSj2gFt4iIuIyKhYiIVEnFQkREqqRiISIiVVKxsElWVpbdEarNk7OD8ttN+T2Ty4rF+PHjCQgI\noFOnTuUef/PNN4mKiiIyMpKePXuyffv20mOhoaFERkYSExNDbGysqyLaypN/4Dw5Oyi/3ZTfM7ms\nWCQnJ5OZmVnh8datW/PRRx+xfft2Hn74YW699dbSYw6Hg6ysLD777DNycnJcFVFERJzksmIRFxdH\n8+bNKzx+1VVX0bRpUwC6d+/Ov//977OOaw2FiIj7cOmivLy8PAYNGsSOHTsqfd2sWbPYs2cPL730\nEmBGHU2bNsXLy4uUlBQmTpxY5j0Oh8MlmUVE6rrq/Nq3fbuPtWvXMm/ePDZs2FD63IYNGwgMDOTQ\noUMkJCTQrl074uLiznqfRh4iIrXH1quhtm/fzsSJE1m2bNlZU1aBgYEA+Pv7M3ToUPUtRERsZlux\n+PbbbxmvxDVIAAAI20lEQVQ2bBhvvPEGERERpc+fOHGCn/57L8Djx4+zatWqCq+oEhGR2uGyaaik\npCSys7M5fPgwISEhpKamUlRUBEBKSgqPPfYYP/zwA7fffjsAPj4+5OTkUFhYyLBhwwAoLi5m1KhR\n9O3b11UxRUTEGZabW7lypdW2bVsrIiLCmjFjRpnjS5cutSIjI63o6Girc+fO1ocffmhDyopVlf8X\nOTk5lpeXl5Wenl6L6apWVf61a9daF198sRUdHW1FR0db06dPtyFl+Zz53q9du9aKjo62rrzySuva\na6+t3YBVqCr/U089Vfp979ixo+Xl5WX98MMPNiQtX1X5Dx06ZCUmJlpRUVHWlVdeab366qu1H7IS\nVeU/cuSINWTIECsyMtKKjY21vvjiCxtSli85Odlq1aqV1bFjxwpfM2nSJCsiIsKKjIy0tm7dWuU5\n3bpYFBcXW+Hh4VZubq516tQpKyoqytq5c+dZrzl27Fjp4+3bt1vh4eG1HbNCzuT/5XW9e/e2Bg4c\naC1evNiGpOVzJv/atWutQYMG2ZSwYs5k/+GHH6wOHTpY+fn5lmWZX17uwtmfnV+8++671vXXX1+L\nCSvnTP5HH33UmjJlimVZ5nvv5+dnFRUV2RG3DGfy33fffdZjjz1mWZZl7d69262+/x999JG1devW\nCovF8uXLrf79+1uWZVmffPKJ1b179yrP6dbbfeTk5BAREUFoaCg+Pj6MHDmSjIyMs17TuHHj0sfH\njh2jZcuWtR2zQs7kB5g9ezYjRozA39/fhpQVcza/5YZXpjmTfcGCBQwfPpzg4GAAj/zZ+cWCBQtI\nSkqqxYSVcyZ/YGAgP/74IwA//vgjLVq0wNvb9gs0Aefy79q1i969ewPQtm1b8vLyOHTokB1xy6hq\nnduyZcsYO3YsYNa5HT16lIMHD1Z6TrcuFgUFBYSEhJT+Ozg4mIKCgjKvW7p0Ke3bt6d///4899xz\ntRmxUs7kLygoICMjo7R3407rR5zJ73A42LhxI1FRUQwYMICdO3fWdsxyOZN97969HDlyhN69e9O1\na1def/312o5ZIWd/9sFcFPL+++8zfPjw2opXJWfyT5w4kS+//JJLL72UqKgonn322dqOWSFn8kdF\nRbFkyRLAFJdvvvmmzOJid1Xe11dVdrcuFs7+4hwyZAi7du3i3XffZfTo0S5O5Txn8t99993MmDGj\n9O5V7vRXujP5O3fuTH5+Ptu2bWPSpEkMGTKkFpJVzZnsRUVFbN26lRUrVvD+++8zffp09u7dWwvp\nqnYufzS8++679OrVi2bNmrkw0blxJv/jjz9OdHQ0Bw4c4PPPP+eOO+4ovRLSbs7knzJlCkePHiUm\nJoY5c+YQExODl5dXLaSrGb/9XVPV1+weY74KBAUFkZ+fX/rv/Pz80imD8sTFxVFcXMz3339PixYt\naiNipZzJv2XLFkaOHAnA4cOHWblyJT4+PgwePLhWs5bHmfxNmjQpfdy/f3/+8Ic/cOTIEfz8/Got\nZ3mcyR4SEkLLli1p2LAhDRs25JprrmHbtm20adOmtuOWcS4/+2lpaW41BQXO5d+4cSNTp04FIDw8\nnLCwML766iu6du1aq1nL4+zP/rx580r/HRYWRuvWrWst4/n47df373//m6CgoMrfVGMdFRcoKiqy\nWrdubeXm5lonT54st8m0b98+6/Tp05ZlWdaWLVus1q1b2xG1XM7kP9O4cePc6mooZ/IXFhaWfv83\nbdpkXX755TYkLcuZ7Lt27bKuv/56q7i42Dp+/LjVsWNH68svv7Qp8dmc/dk5evSo5efnZ504ccKG\nlBVzJv8999xjTZs2zbIs83MUFBRkff/993bELcOZ/EePHrVOnjxpWZZlvfTSS9bYsWNtSFqx3Nxc\npxrcH3/8sVMNbrceWXh7ezNnzhwSExMpKSlhwoQJtG/fnhdffBEw6zXS09OZP38+Pj4++Pr6kpaW\nZnPqXzmT3505k3/x4sXMnTsXb29vGjVq5Dbff2eyt2vXjn79+hEZGckFF1zAxIkT6dChg83JDWd/\ndpYuXUpiYiINGza0M24ZzuR/8MEHSU5OJioqitOnT/Pkk0/aPiL9hTP5d+7cybhx43A4HHTs2JFX\nXnnF5tS/qmqd24ABA1ixYgURERE0btyYV199tcpzunQjQRERqRvcusEtIiLuQcVCRESqpGIhIiJV\nUrEQEZEqqViI/Iavr2+131tYWMjIkSOJiIiga9euDBw48KyFfn//+99p2LBh6TYXv1i6dClRUVF0\n6NCByMjISrf2ELGDroYS+Y0mTZpUayWxZVlcffXVJCcnc+uttwLmBl8//vgjvXr1Asw+PAEBAQwb\nNoxx48YBsG3bNkaMGMHq1au5/PLLycvLIyEhgSVLluheLuI2NLIQccK4ceOYPHkyPXv2JDw8nPT0\n9DKvWbt2LQ0aNCgtFACRkZGlhWL//v0UFRXx4IMPsnDhwtLXzJo1i6lTp3L55ZcDEBoaygMPPMBT\nTz3l4q9KxHkqFiJOcDgcFBYWsmHDBt577z2mTJlS5jVffPEFXbp0qfAcaWlp3HjjjfTo0YN9+/aV\n7lC6c+fOMu/r0qULX375Zc1+ESLnQcVCxEm/bJLYvn37crdzrmojtrS0NG644YbSc7311ls1H1LE\nRVQsRJzUoEGD0sfltfquvPJKtmzZUu57d+zYwd69e+nTpw9hYWGkpaWVTkV16NCBTz/99KzXb9my\nhY4dO9ZgepHzo2IhUkOuu+46Tp48ycsvv1z63Pbt21m/fj0LFy4kNTWV3NxccnNzKSgo4MCBA3z7\n7bfcd999PPHEE3zzzTcA5OXl8cQTT3Dvvffa9aWIlOHWGwmK2OHEiRNn3Rjmj3/8I3D2NFNFU07v\nvPMOd999NzNnzuSiiy4iLCyMZ555hkWLFrFy5cqzXjt06FAWLVrEn/70J2bOnMmgQYMoKirCx8eH\np556isjISBd8dSLVo0tnRUSkSpqGEhGRKqlYiIhIlVQsRESkSioWIiJSJRULERGpkoqFiIhU6f8B\nCpcenvGDsSAAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x33a3310>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.2 page no : 65"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "\n",
      "import math\n",
      "# Variables\n",
      "CA = array([10,8,6,5,3,2,1]);              # concentration\n",
      "T = array([0,20,40,60,120,180,300]);       # time\n",
      "y = array([-0.1333,-0.1031,-0.0658,-0.0410,-0.0238,-0.0108,-0.0065]);     # slope\n",
      "\n",
      "log_y = zeros(7)\n",
      "log_CA = zeros(7)\n",
      "\n",
      "# Calculations\n",
      "for i in range(7):\n",
      "    log_y[i] = log10(complex(y[i]));\n",
      "    log_CA[i] = log10(CA[i]);\n",
      "\n",
      "\n",
      "# Results\n",
      "plot(log_CA,log_y)\n",
      "plot(log_CA,log_y,\"go\")\n",
      "xlabel(\"log10 CA\")\n",
      "ylabel(\"log10 (-dCA/dt)\")\n",
      "show()\n",
      "coeff1 = stats.linregress(log_CA,log_y);\n",
      "n = coeff1[0];\n",
      "k = -10**(coeff1[1]);\n",
      "print \" After doing linear regression, the slope and intercept of the graph is %.0f, %.0f\"%(-coeff1[1],coeff1[0])\n",
      "print \" The rate equation is therefore given by %.3f\"%(-k),\n",
      "print \"CA**1.375 mol/litre.sec\"\n",
      "print ('The answer slightly differs from those given in book as regress fn is used for \\\n",
      " calculating slope and intercept')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n",
        "`%pylab --no-import-all` prevents importing * from pylab and numpy\n",
        "-c:14: ComplexWarning: Casting complex values to real discards the imaginary part\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEMCAYAAAA4S+qsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVfW+//EX4lRZliaWSJmgMQgoUmo5QEaIOyqnUirN\nW9pwQ+12LKvzK+2WWh5vOXVKmwfAHFALtdDCnNAMjxZ5UgmKRLA0NTVRcP3+WEfUANkMe6+9N+/n\n48HjwGKx14d1cr/5Duv79TIMw0BERMQODawuQERE3IdCQ0RE7KbQEBERuyk0RETEbgoNERGxm0JD\nRETsZkloHDhwgJiYGDp27Mgtt9zCwYMHKzxvypQphISEEBoaSkJCAsXFxU6uVEREzmZJaEydOpWY\nmBh27txJ3759mTp1arlz8vLymDdvHllZWXz77beUlpaSkpJiQbUiInKaJaGxbNkyRowYAcCIESNY\nsmRJuXMuueQSGjVqxLFjxygpKeHYsWP4+vo6u1QRETlLQysuWlRUROvWrQFo3bo1RUVF5c5p0aIF\njz/+OFdddRUXXHABsbGx3HzzzeXO8/Lycni9IiKeqCYLgjispRETE0NoaGi5j2XLlp1znpeXV4Vv\n/Dk5Obz66qvk5eVRUFDAkSNH+Oijjyq8lmEY+jAMnnvuOctrcJUP3QvdC92L83/UlMNaGunp6ZV+\nr3Xr1hQWFnLFFVewd+9efHx8yp2zZcsWbrjhBlq2bAnAwIED2bBhA3fffbejShYRkSpYMqZx2223\n8d577wHw3nvvcccdd5Q7JzAwkMzMTP78808Mw2DVqlUEBwc7u1QRETmLJaExYcIE0tPT6dixI198\n8QUTJkwAoKCgAJvNBkB4eDjDhw8nMjKSsLAwAEaPHm1FuW4jKirK6hJchu7FGboXZ+he1J6XUZvO\nLRfg5eVVq/45EZH6qKbvnXoiXERE7KbQEBERuyk0RETEbgoNEZF6JC09jdiRsTX+eUueCBcREedL\nS09j7Jyx5HTJqfFrqKUhIlJPzEyaWavAAIWGiEi9UWzUfnsJhYaISD1x5ECTWr+GQkNExMNt2wax\nsVCwfQxXrPWv1WspNEREPFR+Ptx3nxkY8fHw0y4bbz45g9ifaz57SsuIiIh4mEOHYOpUmDsXHn4Y\nnngCLrnk3HO0jIiISD134gTMnAkdO8K+fWa31AsvlA+M2tBzGiIibs4wYMECeOopuPZaWLUKQkMd\ncy2FhoiIG1u7Fv72NygpMbuj+vZ17PUUGiIibujf/4YnnzS7oF58EYYNgwZOGHDQmIaIiBspLISH\nHoJevaB3bzM87r7bOYEBCg0REbdw5AhMmgQhIdCsGfzwAzz+ODRt6tw6FBoiIi6spATeeMOcEbVz\nJ3zzDfzjH9CihTX1aExDRMQFGQZ88ok5bnHllebnXbtaXZVCQ0TE5WzeDOPHw/79MH06xMWBl5fV\nVZkUGiIiTpKWnsbMpJkUG8U08WrCmIQx2GJsZd/PyYGnn4Z16+D552HECGjoYu/SLlaOiIhnqmgD\npJw55ufduth44QX48EMYNw7efhsuusiqSs9Pa0+JiDhB7MhYPm/3ebnjHTNi2f/tSoYOhWefBR8f\n59TjVmtPLViwgJCQELy9vcnKyqr0vJUrVxIYGEiHDh146aWXnFihiEjdqmwDpANHjrNhA8ye7bzA\nqA1LQiM0NJTU1FR69+5d6TmlpaU8+uijrFy5ku+//57k5GR27NjhxCpFROpOE6+KN0DqGtaUjh2d\nXEwtWDKmERgYWOU5mzdvJiAggHbt2gEwdOhQli5dSlBQULlzJ06cWPZ5VFQUUVFRdVSpiEjdGJMw\nhu+m5VBw45kxDf8sfxIfTXTK9TMyMsjIyKj167jsQPiePXvw8/Mr+7pt27Zs2rSpwnPPDg0REVdT\nUgKb1to4/i1EXjiLiy49TlPvpiQ+mnjO7ClH+usf1JMmTarR6zgsNGJiYigsLCx3fPLkycTHx1f5\n816uMilZRKQW9uyBhARo3Bi+/5eN1q2dExKO4rDQSE9Pr9XP+/r6kp+fX/Z1fn4+bdu2rW1ZIiJO\ns2IFjBwJiYkwYQJ4e1tdUe1Z3j1V2ZSvyMhIdu3aRV5eHm3atGH+/PkkJyc7uToRkeo7eRL+/ndI\nSoKPPzZXo/UUlsyeSk1Nxc/Pj8zMTGw2G3FxcQAUFBRgs5lNt4YNGzJ79mxiY2MJDg7mrrvuqnAQ\nXETElfz0kxkS334LW7d6VmCAHu4TEakzS5fC6NHmTnqPP+68PS5qoqbvnZZ3T4mIuLviYnM12iVL\nzI8ePayuyHEUGiIitZCTA3fdBX5+ZnfUZZdZXZFjuXDjSUTEtX38sdmqGDECFi/2/MAAtTRERKrt\nzz/hf/4H0tPNabWusDmSs6ilISJSDT/8AN27w4ED5tar9SkwQKEhImK3Dz+Enj3hkUcgJQWaN7e6\nIudT95SISBWOHjWf6t6wAVavhrAwqyuyjloaIiLnkZ0N119vLjq4ZUv9DgxQaIiIVMgw4K23ICoK\nxo+H99+HZs2srsp66p4SEfmLP/6Ahx6CbdtgzRoIDra6ItehloaIyFn+9S9zRtSFF8LmzQqMv1Jo\niIhgdke99hrExMDEiTBvnhkcci51T4lIvXfwIIwaBbt3w/r1uNWe3c6mloaI1Gtffw0REdC6NWzc\nqMCoikJDROolw4BXXgGbDaZNg9mzoWlTq6tyfeqeEpF658ABuO8+KCyEzExo397qityHWhoiUq+s\nXw9dukCHDrBunQKjutTSEJF64dQpePlls0vqzTchPt7qityTQkNEPN6+fTB8uPnQ3tdfw1VXWV2R\n+1L3lIi4vbT0NGJHxhJ1XxSxI2NJS08r+15Ghjk7KiLC/FyBUTtqaYiIW0tLT2PsnLHkdMkpO5Yz\nJ4dTpyAr08brr8O770JsrHU1ehIvwzAMq4uoDS8vL9z8VxCRWogdGcvn7T4vd7zFwljCLl/JRx9B\nmzYWFObiavreaUn31IIFCwgJCcHb25usrKwKz8nPzyc6OpqQkBA6derEzJkznVyliLiDYqO4wuMX\ntzzOqlUKjLpmSWiEhoaSmppK7969Kz2nUaNGvPLKK2RnZ5OZmcmcOXPYsWOHE6sUEXfQxKtJhccD\n/Zvi7e3kYuoBS0IjMDCQjlU8q3/FFVfQuXNnAJo1a0ZQUBAFBQXOKE9E3MiYhDH4b/U/55h/lj+J\nQxMtqsizucVAeF5eHlu3bqVbt24Vfn/ixIlln0dFRREVFeWcwkTEcrYYG3/8Af/15CyuDjjO1W2a\nkvhoIrYYm9WluZSMjAwyMjJq/ToOGwiPiYmhsLCw3PHJkycT/5+naqKjo5k+fToRERGVvs6RI0eI\niori73//O3fccUe572sgXKR+KymB/v0hNBSmT7e6GvdR0/dOh7U00tPTa/0aJ0+eZNCgQdxzzz0V\nBoaIyIQJ5v++9JK1ddQXlndPVZZ0hmFw//33ExwczLhx45xclYi4g48+gtRU8ynvhpa/m9UPlgyE\np6am4ufnR2ZmJjabjbi4OAAKCgqw2cx+yPXr1/Phhx/y5Zdf0qVLF7p06cLKlSutKFdEXNA338C4\ncbB0KbRoYXU19Yce7hMRt1NUBNddB6++CgMHWl2Ne3Krh/tERGrqxAkYNMjcD0OB4XxqaYiIW3no\nIdi71xzLaKA/e2vM5WZPiYjUtTfegK++MnfbU2BYQy0NEXEL69aZ3VLr1pm77kntaExDRDxWfj7c\neSe8954Cw2oKDRFxaX/+CXfcYU6v7dfP6mqkyu6pgwcPsnHjRvLy8vDy8qJdu3b06NGD5s2bO6vG\n81L3lIjnMgy4915zf++PPgIvL6sr8hw1fe+sNDTWrl3LtGnTyMvLo0uXLrRp0wbDMNi7dy9bt26l\nXbt2PPHEE/Ts2bPWxdeGQkPEc02fbobFunVw4YVWV+NZ6nz2VGpqKtOnT6dDJR2IO3fu5PXXX7c8\nNETEM33+OfzjH7BpkwLDlVTZPZWbm8s111xT5TGrqKUh4nl274Ybb4QFC+A8e7VJLThs9tTACh65\nHDRoULUvJCJijz/+gNtvh+eeU2C4okq7p3bs2MH333/PoUOHWLx4MYZh4OXlxeHDhykurnhPXhGR\n2jh1CoYPhxtugIcftroaqUilofHDDz/wySefcOjQIT755JOy4xdffDHz5s1zSnEiUr/87//Cvn2Q\nkqKZUq6qyjGNjRs30qNHD2fVU20a0xDxDEuWQGKiuTfGFVdYXY3nq/Mpt4mJZzZlP/vFvf4T/zNn\nzqxJnXVOoSHi/rKzISoKli83lzwXx6vzgfCuXbvStWtXiouLycrKomPHjnTo0IGtW7dy4sSJWhUr\nInLagQPmwPf06QoMd1Bl91S3bt1Yt24djRo1Asx9u3v27MmmTZucUmBV1NIQcV8lJWCzQXAwvPKK\n1dXULw6bcnvw4EEOHz5c9vUff/zBwYMHq30hEZG/euopKC2FadOsrkTsVeV+GhMmTCAiIoLo6GgM\nw2DNmjVMnDjRCaWJiCf76CNYvBg2b4aG2tnHbVTaPXXy5MmyLqm9e/eyadMmvLy8uP7667nyyiud\nWuT5qHtKxP188425Yu0XX0BoqNXV1E91PnsqMjISX19f4uLi6NevH+3atattjQ6h0BBxL0VF5oD3\nK6+YmyqJNeo8NMBcY2rlypV89tln/PLLL/Tq1Yu4uDj69OlDkyZNalVwXVFoiLiutPQ0ZibNpNgo\npolXEx4eMobpU2xERZkP8ol1HBIaZztx4gRr165l5cqVrFmzhlatWpGWllbtC9Y1hYaIa0pLT2Ps\nnLHkdMkpO3bJZ/5c6z2DzDU27fFtMYdv99q4cWP69u1LYmIigwcPZu7cudW+2GkLFiwgJCQEb29v\nsrKyzntuaWkpXbp0IT4+vsbXExHnm5k085zAADgcm8Ml7WcpMNyYXf/X7du3jzlz5tCzZ0+ioqIo\nKirC19e3xhcNDQ0lNTWV3nYsYTljxgyCg4PLnkQXEfdQbFS8sGmJ13EnVyJ1qdLQOHz4MO+++y6x\nsbH06NGDH3/8kdzcXH788UemT59eq4sGBgbSsWPHKs/75ZdfWL58OQ888IC6oETcTBOvisc9m3o3\ndXIlUpcqnR3dunVrYmJimDRpEt27dwdg8eLFTisM4LHHHmPatGnnPFxYkbOfG4mKiiIqKsqxhYnI\nef3wAxTvGUODrBxODTzTReWf5U/io4nn+UlxlIyMDDIyMmr9OpWGxpQpU0hOTuaRRx7hzjvvZMiQ\nIdV64ZiYGAoLC8sdnzx5sl3jE59++ik+Pj506dKlyl9UDxuKuIbdu81ZUcuXw2OP2fjvTvDW0lkc\nLz1OU++mJD6aiC3GZnWZ9dJf/6CeNGlSjV6nytlTOTk5pKSkkJKSwq5du5g0aRIDBgywq3upKtHR\n0UyfPp2IiIhy33v66af54IMPaNiwIcePH+fw4cMMGjSI999//9xfQLOnRCz344/wwguwbBmMGQNj\nx0Lz5lZXJefjsNlT/v7+PPPMM3z77bd8/fXXHDp0iLi4uBoVWZHKip48eTL5+fnk5uaSkpLCTTfd\nVC4wRMRaP/0Eo0fD9deDn5/Z0nj2WQWGJ6s0NHbt2sW6devOORYaGkr//v357LPPanXR1NRU/Pz8\nyMzMxGazlYVQQUEBNlvFTVfNnhJxHfn55nasERHQqhXs3AmTJsGll1pdmThapd1TNpuNKVOmEBYW\nds7x7du388wzz5yzBayV1D0l4jwFBTBlirnY4KhR8Le/maEh7qfOu6eKiorKBQZAWFgYubm51b6Q\niLivwkIYNw46dYLGjWHHDnjpJQVGfVRpaJxvz4zjx/Vwjkh9sG+f2ZoIDja/zs42d9hr3drausQ6\nlYZGZGRkhUuFzJs3j65duzq0KBGx1m+/wYQJEBQEx4/Dt9/Cq6+CC+2KIBapdEyjsLCQAQMG0Lhx\n47KQ+OabbyguLiY1NdVl9tTQmIZI3TlwwGxJvP463HknPP20OStKPI9DVrk1DIMvv/yS7777Di8v\nL0JCQrjppptqVWhdU2iI1N7Bg+b+FnPmwIAB8Mwz4KJb6EgdqfPQOHDgQNnnp085e9prixYtqn0x\nR1BoiNTc4cMwYwbMnAnx8fD3v0P79lZXJc5Q0/fOSpcRiYiIKHvRn3/+mcsuuwyA33//nauvvloz\nqETc2B9/wKxZZusiLg42bIAOHayuStxBpQPheXl55ObmEhMTw6effsr+/fvZv38/aWlpxMTEOLNG\nEakjR4/Cyy9DQAB89x2sXQvvv6/AEPtVufZUp06d+O6776o8ZhV1T4lU7dgx+Oc/Ydo06NPHXOoj\nJMTqqsRKdd49dVqbNm144YUXuOeeezAMg6SkpFptwCQizvPnnzB3rvkgXo8e8PnnUMEzuyJ2q3LB\nwuTkZPbt28eAAQMYOHAg+/btIzk52Rm1iUgNFRfD7Nlmt9MXX0BaGixapMCQ2quye+pse/fudZnn\nM05T95TIGSdOwNtvw4svQng4TJwIkZFWVyWuyGFLo5+tshVoRcRaJ0/Cm29Cx46wZAksXAiffqrA\nkLpX5ZjG2fQXvYhrKSmBDz4wd8vz94ekJLjhBqurEk9WrdAYNWqUo+oQkWooKYHkZHj+eWjbFt59\nF3r3troqqQ8qHdP4448/uPjii8/7w/ac42ga05D6pLQU5s83Nzzy8TFDIzra6qrEHdX5lNsBAwZw\n7bXXcvvttxMZGVm2bMj+/fvZsmULS5YsYdeuXaxatarmVYuIXU6dMscpJk40t1KdPRtuvhm0oaU4\n23lnT33xxRckJSWxfv16CgoKAPO5jZ49e3L33XcTFRXlrDorpZaGeLJTp8yB7eeegwsuMFsWsbEK\nC6k9h6xy6w4UGuKJDAOWLTNbFg0amN1RNpvCQuqOw54IFxHnMQxYvtxsWZSUmGFx220KC3EdCg0R\nF2AY8NlnZlgcPWqGxYABZitDxJUoNEQsZBiwerW5gODBg2Z31ODBCgtxXVWGRlFREb/88gteXl74\n+vrSWjvKi9SJjAwzLIqKzBbGXXeBt7fVVYmcX6V/z2zdupXu3bvTp08fnnzySZ544gn69OlD9+7d\nycrKqtVFFyxYQEhICN7e3ud9rYMHDzJ48GCCgoIIDg4mMzOzVtcVcQVr15rPVjzwAIwaBdnZkJCg\nwBD3UGlL47777mPu3Ll069btnOOZmZmMHDmSbdu21fiioaGhpKam8uCDD573vLFjx9K/f38WLlxI\nSUkJR48erfE1Ray2YYPZoti922xh3HMPNGpkdVUi1VNpaBw7dqxcYAB079691m/egYGBVZ5z6NAh\n1q5dy3vvvQdAw4YNad68ea2uK2KFTZvMsNixw9yDe8QIaNzY6qpEaqbS0IiLi6N///6MGDECPz8/\nDMMgPz+f999/n379+jm8sNzcXFq1alXWqunatSszZszgwgsvLHfuxIkTyz6PiopyiYcORb75xgyL\nbdvg6adh6VJo0sTqqqS+ysjIICMjo9avc96H+5YvX86yZcvYs2cPAL6+vtx2223079+/yheOiYmh\nsLCw3PHJkycTHx8PQHR0NNOnTyciIqLceVu2bKFHjx5s2LCB6667jnHjxnHJJZfw/PPPn/sL6OE+\nsUBaehozk2ZSbBTTxKsJYxLGYIsxtw7417/MsNiyBZ56yhy7aNrU4oJF/sIhD/f179/froCoSHp6\neo1+7rS2bdvStm1brrvuOgAGDx7M1KlTa/WaInUhLT2NsXPGktMlp+xYzpwc8vLgi5U2NmyAJ5+E\nlBRz6Q8RT1Kj2eCjR4+uswIqS7orrrgCPz8/du7cCcCqVasICQmps+uK1NTMpJnnBAZATpcc/mfy\nLG64AXJyYNw4BYZ4pkpD48CBAxV+7N+/n7S0tFpdNDU1FT8/PzIzM7HZbMTFxQFQUFBwzu6As2bN\n4u677yY8PJzt27fz9NNP1+q6InWh2Ciu8Pj1PY/z+ONQwbCbiMeodEyjQYMGXH311RX+0J49ezhx\n4oRDC7OXxjTE2WJHxvJ5u8/LH/85lpVvrbSgIpHqq/Mxjfbt27N69eoKg8PPz6/aFxLxFPfEjSFj\nag4nbj/TReWf5U/io4kWViXiHJWGxrhx4/j9998rDI3x48c7tCgRV5WbC88/Y2NwL9j/0yyOnzpO\nU++mJD6aWDZ7SsSTaT8NETtlZ0O/fubMqEcftboakdpx2H4aixYtwusvi/k3b96c0NBQfHx8qn1B\nEXe0aRPcfjtMnw533211NSLWqbKlYbPZ2LhxI9H/2b0+IyODiIgIcnNzefbZZxk+fLhTCq2MWhri\naKtWwbBh8M47cOutVlcjUjcc1tI4efIkO3bsKFsSvaioiHvvvZdNmzbRu3dvy0NDxJEWL4aHHoJF\ni6B3b6urEbFelQ/35efnn7OHho+PD/n5+bRs2ZLGWnVNPNjbb5tjF599psAQOa3KlkZ0dDQ2m407\n77wTwzBYtGgRUVFRHD16lEsvvdQZNYo43T/+AbNnmxsldexodTUirqPKMY1Tp06xePFi1q9fD8CN\nN97IoEGDyg2OW0VjGlKXDAOeeQZSUyE9Hdq2tboiEcdw2JhGgwYN6NmzJ03+s6Zzt27dXCYwROpS\naSn893+bS5qvXQuXX251RSKup8oxjY8//phu3bqxYMECFixYwPXXX8+CBQucUZuI05w4YW65unMn\nfPGFAkOkMlV2T4WFhbFq1aqyZzJ+/fVX+vbty/bt251SYFXUPSW1dfQoDBpk7nmRkqK9L6R+qOl7\nZ5UtDcMwaNWqVdnXLVu21Ju0eIzff4eYGLjySli4UIEhUpUqxzT69etHbGwsCQkJGIbB/Pnzy5Yy\nF3Fne/dCbCzcfLM5W6pBjXaXEalfquyeMgyDxYsXs27dOry8vOjVqxcDBgxwVn1VUveU1MSPP8It\nt8DIkeb+3ZrbIfVNTd87tWCh1DvffWcuPPjMM/Dww1ZXI2KNOp9y26xZs0qn1np5eXH48OFqX0zE\napmZ5sKDr75qriclItWjlobUG+np5gq1774L/ftbXY2ItRw2e0rEEyxcaAbG4sUKDJHaUGiIx5s3\nD8aMgc8/h549ra5GxL1VOeVWxJ29/DL885+wZg106GB1NSLuT6EhHskw4Kmn4JNPYN068PW1uiIR\nz6DQEI9TWmpOpd22Db76Clq2tLoiEc9hyZjGggULCAkJwdvbm6ysrErPmzJlCiEhIYSGhpKQkEBx\ncbETqxR3VFxsTqX98Udzm1YFhkjdsiQ0QkNDSU1Npfd5tkPLy8tj3rx5ZGVl8e2331JaWkpKSooT\nqxR3c+QIxMebLY20NLj4YqsrEvE8lnRPBQYGVnnOJZdcQqNGjTh27Bje3t4cO3YMX3VMSyUOHACb\nDYKD4Y03oKE6XkUcwmX/abVo0YLHH3+cq666igsuuIDY2FhuvvnmCs+dOHFi2edRUVFERUU5p0hx\nCQUF5sKDsbEwbZrWkRKpSEZGBhkZGbV+HYc9ER4TE0NhYWG545MnTyY+Ph4w9x+fPn06ERER5c7L\nyckhPj6etWvX0rx5c4YMGcLgwYO5++67z/0F9ER4vZaTYy48+MADMGGCAkPEXg7b7rWm0tPTa/Xz\nW7Zs4YYbbqDlf0YyBw4cyIYNG8qFhtRf27dDXBz8v/8HDz1kdTUi9YPlT4RXlnSBgYFkZmby559/\nYhgGq1atIjg42MnViavasMHcPOn//k+BIeJMloRGamoqfn5+ZGZmYrPZyjZ1KigowGazARAeHs7w\n4cOJjIwkLCwMgNGjR1tRrriYzz6DO+6A996Du+6yuhqR+kWr3Ipb+fhjSEw0Fx688UarqxFxX1rl\nVjze3Lnw2GPmEucKDBFruOyUW5HTDANeeskMja++An9/qysSqb8UGuLSDAOeeAJWrDAXHmzTxuqK\nROo3hYa4rJISePBByM42WxgtWlhdkYgoNMQlFRdDQgIcPmwuPNismdUViQhoIFxc0JEj5jpSXl7w\n6acKDBFXotAQl7J/P9x8M7RrB/PnQ5MmVlckImdTaIjL2LMHeveGPn3Mfb29va2uSET+SqEhLmH3\nbujVC4YPN6fXauFBEdek0BDLbdtmti6eegqefNLqakTkfDR7Siy1fj0MHAizZ8OQIVZXIyJVUWiI\nZVasgBEj4MMPzT0xRMT1qXtKLJGcDPfdB0uXKjBE3IlaGuJ0//wnvPii+dBeaKjV1YhIdSg0xGkM\nA6ZMgbfeMpcFad/e6opEpLoUGuIUhgF/+xt8/rm58OCVV1pdkYjUhEJDHK6kBEaPhn//22xhXHaZ\n1RWJSE0pNMShjh+HYcPg2DFz86SLLrK6IhGpDYWG1Jm09DRmJs2k2CimiVcTHhgwhtdn2Lj8cnMd\nqcaNra5QRGpLe4RLnUhLT2PsnLHkdMkpO9ZkmT9RbWeQttimdaREXIz2CBdLzUyaeU5gABTflgMt\nZykwRDyIQkPqRLFRXOHx46eOO7kSEXEkjWlIrezYYT7dvXl9E7im/Pebejd1flEi4jCWtDTGjx9P\nUFAQ4eHhDBw4kEOHDlV43sqVKwkMDKRDhw689NJLTq5SKvPzz/Dyy9Cli7lh0pEj8OJjY/DP8j/n\nPP8sfxKHJlpUpYg4giUD4enp6fTt25cGDRowYcIEAKZOnXrOOaWlpVx77bWsWrUKX19frrvuOpKT\nkwkKCjrnPA2EO8evv8KCBWarYscOc2XahARzD4zTYxZp6WnMSpnF8dLjNPVuSuLQRGwxNmsLF5EK\n1fS905LuqZiYmLLPu3XrxqJFi8qds3nzZgICAmjXrh0AQ4cOZenSpeVCQxzn8GFYsgSSkiAzE/r3\nN/e7uOWWiqfP2mJsCgkRD2f5mMbbb7/NsGHDyh3fs2cPfn5+ZV+3bduWTZs2VfgaEydOLPs8KiqK\nqKioui6z3jh+HJYvN4MiPR2ioszVaBct0oN5Iu4sIyODjIyMWr+Ow0IjJiaGwsLCcscnT55MfHw8\nAC+++CKNGzcmISGh3Hle1djv8+zQkOorKYHVq82up6VLISLCfIp77lxo0cLq6kSkLvz1D+pJkybV\n6HUcFhpuMDROAAAMiUlEQVTp6enn/f67777L8uXLWb16dYXf9/X1JT8/v+zr/Px82rZtW6c11men\nTsHGjWZQLFgA7dqZQTF5MrRpY3V1IuKqLOmeWrlyJdOmTWPNmjU0bVrxlMzIyEh27dpFXl4ebdq0\nYf78+SQnJzu5Us9iGLB9uxkUKSlmd9OwYeaWqwEBVlcnIu7AktlTHTp04MSJE7T4T99Hjx49eO21\n1ygoKGDUqFGkpaUBsGLFCsaNG0dpaSn3338/Tz31VLnX0uypquXkmEGRlGQuHDh0qDnzKTQUqtEL\nKCIepKbvnVp7ykMVFMDHH5tB8dNPcOedZquiRw8FhYgoNKwuwyUcOGDOckpOhq1b4Y47zKC46SZo\naPk8ORFxJQqNeuroUVi2zAyKNWvMZyiGDTOfqahkuEhERKFRn5w4AZ99ZgbF8uVml9OwYWbL4pJL\nrK5ORNyBQsPDlZaaW6UmJ8PixRAUZAbFkCHQqpXV1YmIu3GrZUTEPoYBW7aYQTF/Pvj4mEGRlQVX\nXWV1dSJSHyk0XNDp5cZPP5YybBisWmW2LkRErKTQcBE//2w+cJeUZK4oO3SoGRpdu2qKrIi4Do1p\nWGjfvjPLjf/73zBokNmqOHu5cRERR9BAuJs4fBhSU82gyMwEm80MisqWGxcRcQSFhgs7fhzS0syg\nOL3c+LBhEB+v5cZFxBoKDRdT2XLjgwbBZZdZXZ2I1HcKDRdQ0XLjCQnmuk9XXml1dSIiZ+g5DYuc\nXm48Kcmc/dSsmRkUGzaAv7/V1YmI1C2FRg3t3n3mWYrTy41/8omWGxcRz6buqWooKDCfzE5O1nLj\nIuLeNKbhIFpuXEQ8kUKjDmm5cRHxdAqNWjq93HhSEqxYoeXGRcSzKTRq4PRy40lJ5nLjwcFablxE\n6gdNubWTYcDXX59Zbrx1a3OK7NatWm5cRKQq9SY0duwwWxTJyeZMp4QE+OILCAy0ujIREffRwOoC\n6kLsyFjS0tPKHf/pJ3jpJejcGW6+2XyeIiUFdu6ESZMUGCIi1eURofF5u88ZO2csaelp7NsHc+ZA\nz57mXhQ//givvmruVzF9OkRGeu4zFRkZGVaX4DJ0L87QvThD96L2LAmN8ePHExQURHh4OAMHDuTQ\noUPlzsnPzyc6OpqQkBA6derEzJkzz/uaOV1yuO9vs+jY0VzCY8IE82G8N94wV5WtD/tT6B/EGboX\nZ+henKF7UXuWhMYtt9xCdnY227Zto2PHjkyZMqXcOY0aNeKVV14hOzubzMxM5syZw44dO877uj5t\nj7NnD3z0Edx6q/anEBGpa5aERkxMDA0amJfu1q0bv/zyS7lzrrjiCjp37gxAs2bNCAoKoqCg4Lyv\n63dFU+1PISLiQJY/pxEfH8+wYcNISEio9Jy8vDz69OlDdnY2zZo1O+d7Xp46QCEi4mAu9ZxGTEwM\nhYWF5Y5PnjyZ+Ph4AF588UUaN2583sA4cuQIgwcPZsaMGeUCA2r2S4uISM1Y1tJ49913mTdvHqtX\nr6ZpJQs6nTx5kltvvZW4uDjGjRvn5ApFROSvLAmNlStX8vjjj7NmzRouv/zyCs8xDIMRI0bQsmVL\nXnnlFSdXKCIiFbEkNDp06MCJEydo0aIFAD169OC1116joKCAUaNGkZaWxrp16+jduzdhYWFl4xZT\npkyhX79+zi5XREROM9zEihUrjGuvvdYICAgwpk6dWuE5iYmJRkBAgBEWFmZkZWU5uULnqepefPjh\nh0ZYWJgRGhpq3HDDDca2bdssqNI57PnvwjAMY/PmzYa3t7exaNEiJ1bnXPbciy+//NLo3LmzERIS\nYvTp08e5BTpRVffi119/NWJjY43w8HAjJCTEeOedd5xfpBOMHDnS8PHxMTp16lTpOdV933SL0Cgp\nKTH8/f2N3Nxc48SJE0Z4eLjx/fffn3NOWlqaERcXZxiGYWRmZhrdunWzolSHs+debNiwwTh48KBh\nGOY/nvp8L06fFx0dbdhsNmPhwoUWVOp49tyL33//3QgODjby8/MNwzDfOD2RPffiueeeMyZMmGAY\nhnkfWrRoYZw8edKKch3qq6++MrKysioNjZq8b7rFMiKbN28mICCAdu3a0ahRI4YOHcrSpUvPOWfZ\nsmWMGDECMJ/9OHjwIEVFRVaU61D23IsePXrQvHlzoPLnYDyBPfcCYNasWQwePJhWHrzevT33Iikp\niUGDBtG2bVuASscT3Z099+LKK6/k8OHDABw+fJiWLVvS0AO34uzVqxeXXXZZpd+vyfumW4TGnj17\n8PPzK/u6bdu27Nmzp8pzPPHN0p57cba33nqL/v37O6M0p7P3v4ulS5fy8MMPA577XI8992LXrl0c\nOHCA6OhoIiMj+eCDD5xdplPYcy9GjRpFdnY2bdq0ITw8nBkzZji7TJdQk/dNt4hWe/+hG38Z0/fE\nN4jq/E5ffvklb7/9NuvXr3dgRdax516MGzeOqVOnlm0489f/RjyFPffi5MmTZGVlsXr1ao4dO0aP\nHj3o3r07HTp0cEKFzmPPvZg8eTKdO3cmIyODnJwcYmJi2LZtGxdffLETKnQt1X3fdIvQ8PX1JT8/\nv+zr/Pz8siZ2Zef88ssv+Pr6Oq1GZ7HnXgBs376dUaNGsXLlyvM2T92ZPffim2++YejQoQD89ttv\nrFixgkaNGnHbbbc5tVZHs+de+Pn5cfnll3PBBRdwwQUX0Lt3b7Zt2+ZxoWHPvdiwYQPPPPMMAP7+\n/lxzzTX88MMPREZGOrVWq9XofbPORlwc6OTJk0b79u2N3Nxco7i4uMqB8I0bN3rs4K899+Knn34y\n/P39jY0bN1pUpXPYcy/Odt9993ns7Cl77sWOHTuMvn37GiUlJcbRo0eNTp06GdnZ2RZV7Dj23IvH\nHnvMmDhxomEYhlFYWGj4+voa+/fvt6Jch8vNzbVrINze9023aGk0bNiQ2bNnExsbS2lpKffffz9B\nQUG88cYbADz44IP079+f5cuXExAQwEUXXcQ777xjcdWOYc+9eP755/n999/L+vEbNWrE5s2brSzb\nIey5F/WFPfciMDCQfv36ERYWRoMGDRg1ahTBwcEWV1737LkXTz/9NCNHjiQ8PJxTp07x8ssvlz03\n5kmGDRvGmjVr+O233/Dz82PSpEmcPHkSqPn7puULFoqIiPtwi9lTIiLiGhQaIiJiN4WGiIjYTaEh\nIiJ2U2iIQIUbfNlr9uzZBAQE0KBBAw4cOHDO98aMGUOHDh0IDw9n69atFf78kSNHePDBBwkICCAy\nMpLo6OhzZrstWbKEBg0a8MMPP9S4RpG6otAQoXarB/Ts2ZPVq1dz9dVXn3N8+fLl7N69m127djF3\n7tyyKdB/9cADD3D55Zeze/dutmzZwjvvvMNvv/1W9v3k5GRuvfVWkpOTa1yjSF1RaIicxTAMxo8f\nT2hoKGFhYXz88ccAnDp1ikceeYSgoCBuueUWbDYbixYtAqBz587lAgPsWwwuJyeHzZs388ILL5Qd\na9euXdl6YUeOHGHTpk3Mnj2b+fPnO+R3FqkOt3i4T8RZFi9ezLZt29i+fTu//vor1113Hb1792bd\nunX89NNP7Nixg6KiIoKCgrj//vvP+1qVLQbXunXrsmPZ2dl07ty50pbO0qVL6devH1dddRWtWrUi\nKyuLiIiIuvllRWpALQ2Rs6xbt46EhAS8vLzw8fGhT58+fP3116xfv54777wTgNatWxMdHW3X6/31\n2dm/hkNV3WLJyckMGTIEgCFDhqiLSiynlobIWU6vhluR6i6eYM9icMHBwWzbto1Tp07RoMG5f8Md\nOHCAL7/8ku+++w4vLy9KS0vx8vJi2rRp1apDpC6ppSFyll69ejF//nxOnTrFr7/+yldffUW3bt24\n8cYbWbRoEYZhUFRUREZGRoU/f3aw3Hbbbbz//vsAZGZmcumll57TNQXmCquRkZE899xzZcfy8vJY\nvnw5CxcuZPjw4eTl5ZGbm8vPP//MNddcw9q1a+v+Fxexk0JDhDPdRAMGDCAsLIzw8HD69u3LtGnT\n8PHxKdvxLjg4mHvvvZeIiIiy3RFnzpyJn58fe/bsISwsjNGjRwPQv39/2rdvT0BAAA8++CCvvfZa\nhdd+8803KSoqIiAggNDQUP7rv/4LHx8fUlJSGDBgwDnnDho0iJSUFAfeCZHz04KFInY6evQoF110\nEfv376dbt25s2LABHx8fq8sScSqNaYjY6dZbb+XgwYOcOHGCZ599VoEh9ZJaGiIiYjeNaYiIiN0U\nGiIiYjeFhoiI2E2hISIidlNoiIiI3RQaIiJit/8Pra1C6ryaTBgAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x365aa90>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " After doing linear regression, the slope and intercept of the graph is 2, 1\n",
        " The rate equation is therefore given by 0.005 CA**1.375 mol/litre.sec\n",
        "The answer slightly differs from those given in book as regress fn is used for  calculating slope and intercept\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.4 page no : 73"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "k1 = 2.3           # temperatures\n",
      "k2 = 2.3\n",
      "T1 = 400.          # K\n",
      "T2 = 500.          # K\n",
      "\n",
      "# Calculations\n",
      "R = 82.06*10**-6;\n",
      "R1 = 8.314\n",
      "E = (math.log(k2/k1)*R)/(1./T1-1./T2)\n",
      "\n",
      "# Results\n",
      "print \"using pressure units is %.0f EJ/mol\"%(E)\n",
      "\n",
      "#pA = CA*RT\n",
      "#-rA = 2.3(RT)**2*CA**2\n",
      "k1 = 2.3*(R*T1)**2\n",
      "k2 = 2.3*(R*T2)**2\n",
      "E = (math.log(k2/k1)*R1)/(1./T1-1./T2)\n",
      "print \"using concentration units is %.f J/mol\"%(E)\n",
      "\n",
      "# Answers might be different because of Rounding error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "using pressure units is 0 EJ/mol\n",
        "using concentration units is 7421 J/mol\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}