summaryrefslogtreecommitdiff
path: root/Chemical_Reaction_Engineering/ch22.ipynb
blob: 069286887c0e1f57272d5d71be7bc3aca42e356a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 22  :\n",
      "\n",
      "G/L Reactions on Solid \n",
      "\n",
      "Catalysts: Trickle Beds, Slurry \n",
      "\n",
      "Reactors, and Three-Phase \n",
      "\n",
      "Fluidized Beds"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 22.1 pageno : 511"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "PA = 101325.            #Pa\n",
      "HA = 36845.             #PA.m3.l/mol\n",
      "CBo = 1000.             #mol/m3\n",
      "v = 10**-4              #m3*l/s\n",
      "h = 5.                  #m\n",
      "A = 0.1                 #m2\n",
      "\n",
      "# Calculations\n",
      "CA = PA/HA;\n",
      "FBo = v*CBo;\n",
      "Vr = A*h;\n",
      "dp = 5*10**-3;          #mcat\n",
      "d_solid = 4500.         #kg/m3cat\n",
      "De = 8*10**-10;         #m3l/mcat.s\n",
      "n = 0.5;\n",
      "b = 1.;\n",
      "k = 2.35*10**-3;\n",
      "L = dp/6.;\n",
      "kai_overall = 0.02;\n",
      "kac_ac = 0.05;\n",
      "f = 0.6;\n",
      "#For a half-order reaction\n",
      "Mt = L*math.sqrt((n+1)*(k*d_solid*(CA)**(n-1))/(2*De));\n",
      "E = 1/Mt;\n",
      "rA = (1/((1/(kai_overall))+(1/(kac_ac))+(1/(k*b*(CA**(n-1))*E*f*d_solid))))*(PA/HA);\n",
      "#From Material Balance\n",
      "XB = b*rA*Vr/FBo;\n",
      "\n",
      "# Results\n",
      "print \" The conversion of acetone is %.3f\"%(XB)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The conversion of acetone is 0.158\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 22.2 pageno : 513"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%pylab inline\n",
      "\n",
      "import math \n",
      "from matplotlib.pyplot import *\n",
      "from numpy import *\n",
      "\n",
      "# Variables\n",
      "PA = 14.6*101325;           #Pa\n",
      "HA = 148000.;               # liquid\n",
      "Vr = 2.;\n",
      "Vl = Vr;\n",
      "b = 1.;\n",
      "fs = 0.0055;\n",
      "\n",
      "# Calculations\n",
      "k = 5.*10**-5;              #m6l/kg.molcat.s\n",
      "dp = 5*10**-5;              #mcat\n",
      "kac = 4.4*10**-4;kai = 0.277;   #m3l/m3.r.s\n",
      "density = 1450.;                #kg/m3\n",
      "De = 5*10**-10;                 #m3l/mcat.s\n",
      "L = dp/6;                       #for spherical particle\n",
      "CA = PA/HA;\n",
      "X = 0.9;\n",
      "CBo = 2500.\n",
      "CB = CBo*(1-X);\n",
      "ac = 6*fs/dp;\n",
      "K = kac*ac;\n",
      "\n",
      "CB = [2500,1000,250];\n",
      "e = [0.19,0.29,0.5];\n",
      "Mt = zeros(3)\n",
      "rA = zeros(3)\n",
      "inv_rA = zeros(3)\n",
      "for i in range(3):\n",
      "    Mt[i] = L*math.sqrt(k*CB[i]*density/De);\n",
      "    rA[i] = CA/((1./kai)+(1./K)+(1./(k*density*e[i]*fs*CB[i])))\n",
      "    inv_rA[i] = 1/rA[i];\n",
      "\n",
      "# Results\n",
      "plot(CB,inv_rA)\n",
      "ylabel(\"1/-rA\")\n",
      "Area = 3460.\n",
      "t = Vl*Area/(b*Vr);\n",
      "t = t/60.                         #min\n",
      "print \" The time required for 90 percentage conversion of reactant is %.f\"%t,\n",
      "print \"min\"\n",
      "show()\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        " The time required for 90 percentage conversion of reactant is 58"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " min\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "WARNING: pylab import has clobbered these variables: ['draw_if_interactive', 'e']\n",
        "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD9CAYAAABJGYveAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwVPXdx/F3gDytsIgRTIJJLJJoyIVcBI0UwUWlhZYg\nELBSAQlIokIBRxzGPlTDqHjDC1j1UUZBRahaC2glYC0skiAID+EiVGSUTAIk+CxCSQyFAOf545iE\nJQmXsGfPXj6vmR2T3ZPdz55Z98v5/c75/sIMwzAQERFpQiu7A4iIiP9SkRARkWapSIiISLNUJERE\npFkqEiIi0iwVCRERaZYlRaK8vJx+/fqRkpJCamoqc+fObbSN2+1mwIABZGRkkJqayoIFC6yIIiIi\nFyHMiuskKisrqaysJCMjg+rqanr06MHSpUtJSkqq36agoIBjx47x5JNP4na7SUxM5MCBA7Rp08bb\ncUREpIUsOZKIjo4mIyMDAIfDQVJSEvv37/fYpnPnzhw5cgSAI0eO0LFjRxUIERE/Y/m3cmlpKSUl\nJWRlZXncP2HCBG655RauvPJKqqqqeP/99xv9bVhYmNXxRESCkrcGiSyduK6urmb48OHMmTMHh8Ph\n8disWbPIyMhg//79bNmyhYkTJ1JVVdXoOQzD0M0wePTRR23P4C837QvtC+2Ls9+8ybIiUVtbS05O\nDqNGjWLIkCGNHl+3bh0jRowAID4+nquvvppdu3ZZFUdERFrAkiJhGAbjx48nOTmZqVOnNrlNt27d\n+OyzzwA4cOAAu3btomvXrlbEERGRFrJkTqK4uJiFCxeSlpZGZmYmYA4vlZWVAZCfn88f//hHcnNz\nSU9P59SpUzzzzDNcfvnlVsQJCk6n0+4IfkP7ooH2RQPtC2tYcgqst4SFhXl9fE1EJNh587tTV1yL\niEizVCRERKRZKhIiItIsFQkREWmWioSIiDRLRUJERJqlInEOu3bB6NGgM3FFJBSpSJxDfDzs2AEL\nF9qdRETE93Qx3XnYtAkGDYKvvoJOnexOIyJydt787lSROE8PPACHD8P8+XYnERE5OxUJG1RXQ0qK\nWSRuucXuNCIizVNbDhs4HPDnP8O998LRo3anERHxDRWJC5CdDenp8MQTdicREfENDTddoIoKSEsD\nl8scfhIR8TcabrJR587w2GOQlwenTtmdRkTEWioSLZCXZ/739dftzSEiYjUNN7XQjh3gdMLWrXDl\nlXanERFpoFNg/cSMGWbbjg8+sDuJiEgDzUn4iRkzzCOJv//d7iQiItawpEiUl5fTr18/UlJSSE1N\nZe7cuU1u53K5yMzMJDU1NSAXMf/5z+F//gcmTjQvthMRCTaWDDdVVlZSWVlJRkYG1dXV9OjRg6VL\nl5KUlFS/zeHDh+nduzcrV64kNjYWt9tNpzMaI/n7cFOdsWMhIgJeeMHuJCIi3v3ubOOVZzlDdHQ0\n0dHRADgcDpKSkti/f79HkVi0aBE5OTnExsYCNCoQdQoKCup/djqdfnnEMXs2pKbCXXdBz552pxGR\nUONyuXC5XJY8t+UT16Wlpdx8883s2LEDh8NRf/8DDzxAbW0tO3bsoKqqiilTpjB69GjPcAFyJAHw\nzjvw/POwcSO0saT0ioicn4CZuK6urmb48OHMmTPHo0AA1NbWsnnzZpYvX87KlSt57LHH2L17t5Vx\nLDVqFHTsCHPm2J1ERMR7LPs3b21tLTk5OYwaNYohQ4Y0ejwuLo5OnTpxySWXcMkll9C3b1+2bt3K\nNddcY1UkS4WFmZPYN94IOTnQpYvdiURELp4lRxKGYTB+/HiSk5OZOnVqk9vcfvvtFBUVcfLkSWpq\natiwYQPJyclWxPGZhAR48EG4/34tdyoiwcGSOYmioiL69u1LWloaYWFhAMyaNYuysjIA8vPzAZg9\nezbz58+nVatWTJgwgcmTJ3uGC6A5iTq1tXDddeY1FL/7nd1pRCQU6YprP7d+PQwbZrbuiIiwO42I\nhBoViQAwcaJ5VKEmgCLiayoSAeDf/zbXm1i8GPr0sTuNiISSgDkFNpR16ABz55ptxY8dszuNiEjL\nqEhYaOhQSEyEp5+2O4mISMtouMli5eWQmQlFRdCtm91pRCQUaLgpgMTFwSOPwL336toJEQk8KhI+\nMHEi1NTA/Pl2JxERuTAabvKRrVuhf3/46iuIjLQ7jYgEM50CG6CmT4e9e+Hdd+1OIiLBTEUiQNXU\nmOtOvPIKDBhgdxoRCVaauA5QbdvCq6+aDQBrauxOIyJybjqSsMFdd0FsrK6fEBFraLgpwH3/vTns\n9OmnkJFhdxoRCTYabgpwkZHw1FNmy46TJ+1OIyLSPBUJm+TmmnMUL79sdxIRkeZpuMlGu3ZB795Q\nUmJemS0i4g0abgoSiYkweTJMmqSWHSLin1QkbDZ9OnzzDSxZYncSEZHGLCkS5eXl9OvXj5SUFFJT\nU5k7d26z227cuJE2bdrwt7/9zYoofu9nPzNXr5s82VyoSETEn1gyJ1FZWUllZSUZGRlUV1fTo0cP\nli5dSlJSksd2J0+epH///rRt25bc3FxycnI8wwX5nMTp8vIgPFwT2SJy8fx+TiI6OpqMny4AcDgc\nJCUlsX///kbbvfTSSwwfPpwrrrjCihgB5emnzSGnL76wO4mISIM2Vr9AaWkpJSUlZGVledy/b98+\nli1bxqpVq9i4cSNhYWFN/n1BQUH9z06nE6fTaWFa+0REwAsvmEcUmzebRxUiIufD5XLhcrkseW5L\nT4Gtrq7G6XQyY8YMhgwZ4vHYiBEjmDZtGllZWYwdO5bs7OyQHm4C8wyn3/4W+vSBhx+2O42IBKqA\naMtRW1vLoEGDGDhwIFOnTm30eNeuXevfhNvtpm3btsybN4/Bgwc3hAuxIgFQWgo9e8L69ZCQYHca\nEQlEfl8kDMPg7rvvpmPHjrzwwgvn3D43N5fs7GyGDRvmGS4EiwTAc89BYSH84x/QzCiciEiz/H7i\nuri4mIULF7J69WoyMzPJzMyksLCQ1157jddee82KlwwqU6bADz/AwoV2JxGRUKe2HH5q0yYYNMhc\n7rRTJ7vTiEgg8fvhJm8J5SIB8MADcOgQLFhgdxIRCSQqEiGiuhpSUmD+fLjlFrvTiEig8Ps5CfEO\nhwP+/GfIz4ejR+1OIyKhSEXCz2Vnm6vXPfGE3UlEJBRpuCkAVFRAWhqsXm0ueyoicjYabgoxnTvD\nY4+Zw06nTtmdRkRCiYpEgMjLM//7+uv25hCR0KLhpgCyYwc4nbB1K1x5pd1pRMRf6RTYEDZjhrk2\n9gcf2J1ERPyV5iRC2IwZ5pHExx/bnUREQoGOJALQqlWQm2sOPzkcdqcREX+j4SZh7NiGhYpERE6n\nIiG43eY1E3//u7n+hIhIHc1JCJ06wbPPwoQJcOKE3WlEJFipSASwUaPMYjFnjt1JRCRYabgpwH37\nLWRlmetPdOlidxoR8QcabpJ68fHw4INw332geioi3qYiEQSmTYO9e+G99+xOIiLBRsNNQWL9ehg2\nzLx2IiLC7jQiYie/H24qLy+nX79+pKSkkJqayty5cxtt8+6775Kenk5aWhq9e/dm27ZtVkQJGTfe\naBaJ6dPtTiIiwcSSI4nKykoqKyvJyMigurqaHj16sHTpUpKSkuq3+eKLL0hOTqZDhw6sWLGCgoIC\n1q9f7xlORxIX5MgRSE6GxYuhTx+704iIXfz+SCI6OpqMjAwAHA4HSUlJ7N+/32ObXr160aFDBwCy\nsrLYu3evFVFCyqWXwty5ZlvxY8fsTiMiwaCN1S9QWlpKSUkJWVlZzW7zxhtv8Jvf/KbJxwoKCup/\ndjqdOJ1OLycMLkOHwttvw1NPwaOP2p1GRHzB5XLhcrkseW5LJ66rq6txOp3MmDGDIUOGNLnN6tWr\nmThxIsXFxUScMeOq4aaWKS+HzEwoKoJu3exOIyK+5vfDTQC1tbXk5OQwatSoZgvEtm3bmDBhAh99\n9FGjAiEtFxcHjzyi5U5F5OJZUiQMw2D8+PEkJyczderUJrcpKytj2LBhLFy4kISEBCtihLSJE+Ho\nUZg/3+4kIhLILBluKioqom/fvqSlpREWFgbArFmzKCsrAyA/P5977rmHJUuWcNVVVwEQHh7Ol19+\n6RlOw00XZetW6N8ftm+HqCi704iIr6hVuJy36dPNOYpFi+xOIiK+oiIh562mxlx34pVXYMAAu9OI\niC8ExMS1+Ie2beHVV+H+++HHH+1OIyKBRkcSIeKuuyAmBp55xu4kImI1DTfJBfv+e3PY6dNP4aeL\n4UUkSGm4SS5YZKR5FfaECXDypN1pRCRQqEiEkNxcaNcOXn7Z7iQiEig03BRidu2C3r2hpMS8MltE\ngo+Gm6TFEhNh8mSYNEnLnYrIualIhKDp0+Gbb2DJEruTiIi/03BTiFq7FkaONJc7/WlZDxEJEjoF\nVrwiLw/CwzWRLRJsVCTEKw4dgpQU+PBD6NXL7jQi4i2auBaviIiAF14wjyhqa+1OIyL+qEVF4sCB\nA97OITa54w7zVNjZs+1OIiL+6LyHmw4dOsSHH37I4sWL2blzJxUVFVZn03CTj5SWQs+esH49aP0n\nkcDnszmJmpoali1bxuLFi9myZQtHjhxh6dKl9OnTh9atW3slwFnDqUj4zHPPQWEh/OMf8NM6USIS\noHwyJzFy5EhSU1NZs2YNU6dOZc+ePUREROB0On1SIMS3pkyBH36AhQvtTiIi/qTZIvGvf/2LyMhI\nkpKSSEpKUmEIcm3awOuvw0MPgdttdxoR8RfNFoktW7Ywf/58Dh48SL9+/ejTpw9VVVVUVlb6Mp/4\nUM+e5gV206bZnURE/MV5T1xv2rSJxYsX88EHHxAbG8u6deua3ba8vJwxY8bw/fffExYWRl5eHpMn\nT2603eTJkyksLKRt27YsWLCAzMxMz3Cak/C56mrz2ok334Rbb7U7jYi0hFe/O42zOHHihPH88897\n3Hfy5EnD5XKd7c+MiooKo6SkxDAMw6iqqjKuvfZaY+fOnR7bfPLJJ8bAgQMNwzCM9evXG1lZWY2e\n5xzxxCIff2wYCQmGUVNjdxIRaQlvfnee9TqJ1q1bs2jRIo/7WrVqxc0333zWwhMdHU3GT8ufORwO\nkpKS2L9/v8c2H330EXfffTcAWVlZHD58WNdf+IlBg8zV6x5/3O4kImK3Nufa4KabbmLSpEn87ne/\no127dhiGQVhYGNddd915vUBpaSklJSVkZWV53L9v3z7iTlvQIDY2lr179xIVFeWxXUFBQf3PTqcT\np9N5Xq8rF2fuXEhLM+coUlPtTiMiZ+NyuXC5XJY89zmLRElJCWFhYTzyyCMe969evfqcT15dXc3w\n4cOZM2cODoej0ePGGWNmYU2coH96kRDf6dwZHnvMbNlRVASt1MBFxG+d+Q/omTNneu25z1kkWlqd\namtrycnJYdSoUQwZMqTR4zExMZSXl9f/vnfvXmJiYlr0WmKNvDx45x147TW47z6704iIHS7o34eD\nBg06r+0Mw2D8+PEkJyczderUJrcZPHgwb7/9NgDr16/nsssuazTUJPZq1cq8duKRR+CMKSURCREX\n1Co8MzOTkpKSc25XVFRE3759SUtLqx9CmjVrFmVlZQDk5+cDMGnSJFasWEG7du2YP39+o3kOnQLr\nH2bMgK+/hr/+1e4kInI+bFtPIjc3l/nz53vlhc+HioR/+M9/zEns556D7Gy704jIufikSOTl5TFw\n4EBuu+022rdv75UXu1AqEv5j1SoYO9Zc7tSmj4OInCefFIn169dTWFjIqlWrCA8P59e//jUDBgwg\nPT3dKy98XuFUJPzK2LFw2WXw4ot2JxGRs/H5cJPb7ebTTz9lxYoVbNu2jeuuu44BAwZwxx13eCVE\ns+FUJPyK221eM/Hxx3D99XanEZHm2LrGtWEYPPvss9TW1vLf//3fXgnRHBUJ//POO/D887Bxo9k5\nVkT8j61FAiAuLs7jGgerqEj4H8OAX/0Kfv1rdYsV8Vc+KRLdu3dv9o927drF8ePHvRLgbFQk/NO3\n30JWlnk0cfXVdqcRkTP5pEhERUWxYsUKIiIiGj32y1/+slHDPiuoSPivJ5+Ezz+H5cu13KmIv/Hm\nd2ezo8q//e1vqa6ubrTGA3DOLrAS/KZNg0WL4L334M477U4jIlZp0ZyEr+hIwr+tXw9Dh5rXTlx+\nud1pRKSO7RPXvqIi4f8mTYJjx2DePLuTiEgdFQnxG0eOQHKyOfTUt6/daUQEvPvdqVUC5KJceqm5\nQFFennlEISLBRUVCLtrQodCtGzz1lN1JRMTbNNwkXlFeDpmZ5ip23brZnUYktGm4SfxOXBw8+ijk\n58OpU3anERFvUZEQr7n/fnPtCR8uOSIiFtNwk3jV1q3Qvz9s3w5ajVbEHjoFVvza9OnmHMWiRXYn\nEQlNKhLi12pqzHUnXnkFBgywO41I6PH7ietx48YRFRXVbCdZt9vNgAEDyMjIIDU1lQULFlgRQ2zS\nti28+ircdx/8+KPdaUTkYlhyJLF27VocDgdjxoxh+/btjR4vKCjg2LFjPPnkk7jdbhITEzlw4ABt\nzljFRkcSge2uuyAmBp55xu4kIqHF748k+vTp02SL8TqdO3fmyJEjABw5coSOHTs2KhAS+F54ARYs\ngC1b7E4iIi1lyzfzhAkTuOWWW7jyyiupqqri/fffb3bbgoKC+p+dTidOp9P6gOIVkZHmVdgTJpgd\nY1u3tjuRSHByuVy4XC5LntuyievS0lKys7ObHG56/PHHcbvdvPjii3z77bf079+frVu30r59e89w\nGm4KeIYB/fqZrTumTLE7jUho8PvhpnNZt24dI0aMACA+Pp6rr76aXbt22RFFLBYWBq+9Bo89Zp4W\nKyKBxZYi0a1bNz777DMADhw4wK5du+jatasdUcQHEhNh8mSYONE8shCRwGHJcNPIkSNZs2YNbreb\nqKgoZs6cSW1tLQD5+fm43W5yc3MpKyvj1KlTPPzww/z+979vHE7DTUHj2DHIyIDHH4ecHLvTiAQ3\nXUwnAWntWhg50lzutEMHu9OIBC8VCQlYeXnQpo15NbaIWENFQgLWoUOQkgIffgi9etmdRiQ4BfzZ\nTRK6IiLMi+zy8uD4cbvTiMi5qEiIz91xh7lI0ezZdicRkXPRcJPYorQUevaEL76Aa66xO41IcNFw\nkwS8Ll3g4Yfh3nt17YSIP1ORENtMmWJOZL/zjt1JRKQ5Gm4SW23aBIMGwVdfQadOdqcRCQ46BVaC\nygMPwA8/wFtv2Z1EJDioSEhQqa42r51480249Va704gEPk1cS1BxOODllyE/H44etTuNiJxORUL8\nwqBBkJlpNgAUEf+h4SbxGxUVkJYGq1dDaqrdaUQCl4abJCh17mwuTpSXB6dO2Z1GREBFQvxMXl7D\nanYiYj8NN4nf2bEDnE7YuhWuvNLuNCKBR6fAStCbMQO+/hr++le7k4gEHs1JSNCbMQO2bYOPPrI7\niUho05GE+K1Vq2DsWHP4qX17u9OIBA6/P5IYN24cUVFRdO/evdltXC4XmZmZpKam4nQ6rYghAe6W\nW8wrsP/0J7uTiIQuS44k1q5di8PhYMyYMWzfvr3R44cPH6Z3796sXLmS2NhY3G43nZro7qYjCTl4\n0GzZ8fHHcP31dqcRCQx+fyTRp08fIiIimn180aJF5OTkEBsbC9BkgRAB6NgRnn3WPDX2xAm704iE\nnjZ2vOju3bupra2lX79+VFVVMWXKFEaPHt3ktgUFBfU/O51ODU2FoFGj4O234cUXYdo0u9OI+B+X\ny4XL5bLkuS2buC4tLSU7O7vJ4aZJkyaxefNm/vnPf1JTU0OvXr345JNPuOaMdSw13CR1vv0WsrJg\n40a4+mq704j4N78fbjqXuLg4fvWrX3HJJZfQsWNH+vbty9atW+2IIgEiPh4efBDuv1/LnYr4ki1F\n4vbbb6eoqIiTJ09SU1PDhg0bSE5OtiOKBJBp02DvXvjLX+xOIhI6LJmTGDlyJGvWrMHtdhMXF8fM\nmTOpra0FID8/n27dujFgwADS0tJo1aoVEyZMUJGQcwoPh3nzYOhQc0K7Vy9dPyFiNV1MJwHn9ddh\n4ULYvBkSE+Gmm8xb797q9SQC6t0kAsCxY2ahKCpquHXo0FA0broJunWDVmo+IyFGRUKkCadOwa5d\nnkXj8GHzCKOuaPToAT/7md1JRaylIiFynioqoLi4oWh8/bW5TGpd0fjlL+Es132KBCQVCZEWqqqC\nDRsaisaGDdCli+cQ1VVXmQsfiQQqFQkRL6mtNRc3On2IKjzcczK8e3do3drupCLnT0VCxCKGAd99\n51k09u83T7etKxw33ABt29qdVKR5KhIiPvR//wfr1jUUjW3bzKOL0482rrjC7pQiDVQkRGx09KjZ\nQ6quaKxbB1FRnvMaCQma1xD7qEiI+JGTJ83V8+qKxtq1cPy4Z9HIyDDnOkR8QUVCxM+VlTUUjeJi\nc57jhhsahqduvBEuvdTulBKsVCREAszhw/DFFw2F43//F6691vNoQy1FxFtUJEQC3JktRYqLzSML\ntRQRb1CREAkyhtG4pcihQ+YV4XVFo2dPtRSR86MiIRIC1FJEWkpFQiQEnd5SpLjY/PkXv2iYDL/p\nJvN3nXorKhIiwokTjVuKtG7tOa+hliKhSUVCRBpRSxGpoyIhIufF7fZsKbJ1K6SmerYUiYy0O6V4\nm4qEiLSIWoqEBr8vEuPGjeOTTz4hMjKS7du3N7vdxo0b6dWrF++//z7Dhg1rHE5FQsRSp7cUqTuT\n6j//8ZwMz8xUS5FA4/dFYu3atTgcDsaMGdNskTh58iT9+/enbdu25ObmkpOT0zicioSIz5WVeZ56\n+913cP31DUcaaini/7z53dnGK89yhj59+lBaWnrWbV566SWGDx/Oxo0brYggIi101VXmbeRI8/fT\nW4o88UTjliK9e0NMjL2ZxTqWFIlz2bdvH8uWLWPVqlVs3LiRsLMMgBYUFNT/7HQ6cTqd1gcUkXqX\nXQYDB5o3MDvc1rUUWbQI7r8f2rf3nNdISlJLEV9yuVy4XC5LntuyievS0lKys7ObHG4aMWIE06ZN\nIysri7Fjx5Kdna3hJpEA1VRLkR9+aJjT6N3bbCny85/bnTR0+P2cBJy9SHTt2rX+Dbjdbtq2bcu8\nefMYPHiwZzgVCZGAVNdSpG5u41//MtfUOL2lyOWX250yeAV8kThdbm4u2dnZOrtJJIhVVze0FCkq\nMn++6irPISq1FPEev5+4HjlyJGvWrMHtdhMXF8fMmTOpra0FID8/34qXFBE/5nDArbeaN/BsKbJs\nGTz0kNk+pG6I6qabIC1NLUX8gS6mExHbGQbs2eM5r7Fvn3m67ektRdq1sztpYAiI4SZvUJEQCV1n\naynSu7d5i4qyO6V/UpEQkZBT11KkbjJ83Tq44grPeY1rrtG8BqhIiIhw6lRDS5G629GjnkUjVFuK\nqEiIiDShqZYiPXs2FI1evUKjpYiKhIjIeTh8GNavbygamzaZQ1KnH20EY0sRFQkRkRY4vaVI3a2u\npUjd6bfJyYHfUkRFQkTEC+paipw+RHXwoHlFeN2RRiC2FFGREBGxSGWlZ9HYudOcAA+kliIqEiIi\nPtJUS5G4OM95jS5d/OvUWxUJERGbnDgB27Y1FI21a805jNOLht0tRVQkRET8xNlaitRNhmdl+bal\niIqEiIgfO3jQs6XIli2QkuK5mp+VLUVUJEREAsjRo+Y1GnVFw+qWIioSIiIB7MyWIsXFUFPj2So9\nMxP+679a9vwqEiIiQaa83PPU22+/bXlLERUJEZEg9+9/wxdfNG4pcvrRRmxs03+rIiEiEmKOH4eS\nEs+zqNq185zXqGspoiIhIhLiDAO++cazaNS1FPnkE+99dwZ4G6vQ4XK57I7gN7QvGmhfNAi1fREW\nBomJMH48zJ8Pu3ebLURyc737OpYUiXHjxhEVFUX37t2bfPzdd98lPT2dtLQ0evfuzbZt26yIEVRC\n7X+As9G+aKB90UD7AqKjISfHu89pSZHIzc1lxYoVzT7etWtXPv/8c7Zt28af/vQn8vLyrIghIiIX\nyZIi0adPHyIiIpp9vFevXnTo0AGArKws9u7da0UMERG5SJZNXJeWlpKdnc327dvPut3s2bP55ptv\neP311xuH86e2iiIiAcRbX+1tvPIsLbR69WrefPNNiouLm3xcZzaJiNjLtiKxbds2JkyYwIoVK846\nNCUiIvax5RTYsrIyhg0bxsKFC0lISLAjgoiInAdL5iRGjhzJmjVrcLvdREVFMXPmTGprawHIz8/n\nnnvuYcmSJVx11VUAhIeH8+WXX3o7hoiIXCzDTxUWFhqJiYlGQkKC8dRTT9kdxyd+8YtfGN27dzcy\nMjKM66+/3jAMwzh48KBx2223Gddcc43Rv39/49ChQ/Xbz5o1y0hISDASExONlStX2hX7ouXm5hqR\nkZFGampq/X0ted+bNm0yUlNTjYSEBGPy5Mk+fQ/e0tS+ePTRR42YmBgjIyPDyMjIMJYvX17/WDDv\ni7KyMsPpdBrJyclGSkqKMWfOHMMwQvOz0dy+8MVnwy+LxIkTJ4z4+Hhjz549xvHjx4309HRj586d\ndseyXJcuXYyDBw963PfQQw8ZTz/9tGEYhvHUU08Z06dPNwzDMHbs2GGkp6cbx48fN/bs2WPEx8cb\nJ0+e9Hlmb/j888+NzZs3e3wxXsj7PnXqlGEYhnH99dcbGzZsMAzDMAYOHGgUFhb6+J1cvKb2RUFB\ngfHcc8812jbY90VFRYVRUlJiGIZhVFVVGddee62xc+fOkPxsNLcvfPHZ8Mu2HF9++SUJCQl06dKF\n8PBw7rzzTpYtW2Z3LJ8wzhj9++ijj7j77rsBuPvuu1m6dCkAy5YtY+TIkYSHh9OlSxcSEhICdsiu\nqetqLuR9b9iwgYqKCqqqqrjhhhsAGDNmTP3fBJLmrjE683MBwb8voqOjycjIAMDhcJCUlMS+fftC\n8rPR3L4A6z8bflkk9u3bR1xcXP3vsbGx9TskmIWFhXHbbbfRs2dP5s2bB8CBAweI+mmdw6ioKA4c\nOADA/v1kFVARAAACkklEQVT7iT2tT3Cw7aMLfd9n3h8TExNU++Oll14iPT2d8ePHc/jwYSC09kVp\naSklJSVkZWWF/Gejbl/ceOONgPWfDb8sEqF6EV1xcTElJSUUFhby8ssvs3btWo/Hw8LCzrpvgnW/\nnet9B7v77ruPPXv2sGXLFjp37syDDz5odySfqq6uJicnhzlz5tC+fXuPx0Lts1FdXc3w4cOZM2cO\nDofDJ58NvywSMTExlJeX1/9eXl7uUf2CVefOnQG44oorGDp0KF9++SVRUVFUVlYCUFFRQWRkJNB4\nH+3du5eYmBjfh7bIhbzv2NhYYmJiPNq7BNP+iIyMrP8yvOeee+qHFUNhX9TW1pKTk8Po0aMZMmQI\nELqfjbp9MWrUqPp94YvPhl8WiZ49e7J7925KS0s5fvw47733HoMHD7Y7lqVqamqoqqoC4Mcff+TT\nTz+le/fuDB48mLfeeguAt956q/7DMXjwYP7yl79w/Phx9uzZw+7du+vHGYPBhb7v6OhoLr30UjZs\n2IBhGLzzzjv1fxPoKioq6n9esmRJfXflYN8XhmEwfvx4kpOTmTp1av39ofjZaG5f+OSz4Z25d+9b\nvny5ce211xrx8fHGrFmz7I5jue+++85IT0830tPTjZSUlPr3fPDgQePWW29t8nS/J554woiPjzcS\nExONFStW2BX9ot15551G586djfDwcCM2NtZ48803W/S+607ti4+PN/7whz/Y8VYu2pn74o033jBG\njx5tdO/e3UhLSzNuv/12o7Kysn77YN4Xa9euNcLCwoz09PT6UzwLCwtD8rPR1L5Yvny5Tz4bfr0y\nnYiI2Msvh5tERMQ/qEiIiEizVCRERKRZKhIiItIsFQkREWmWioSIiDTr/wHpKRh1i3Z8jAAAAABJ\nRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x32eab90>"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}