summaryrefslogtreecommitdiff
path: root/Chemical_Reaction_Engineering/ch14.ipynb
blob: 5eb6f664b8132de2cd1438017aa7be36a0fabbe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14 The Tanks-in-Series Model"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.1 pageno : 329"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#Original and new length(m)\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "L1 = 32.            # diameter pipe\n",
      "L2 = 50.            # pipeline length \n",
      "sigma1 = 8.         # bottles \n",
      "\n",
      "# Calculations\n",
      "# For small deviaqtion from plug flow,sigma_sqr is directly proportional to L\n",
      "sigma2 = sigma1*math.sqrt(L2/L1);\n",
      "\n",
      "# Results\n",
      "print \" No of bottles of rose expected is %.f\"%(sigma2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " No of bottles of rose expected is 10\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2 pageno : 330"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "sigma1 = 14.        # hours\n",
      "sigma2 = 10.5;      # hours\n",
      "L1 = 119.           # ohio miles apart\n",
      "\n",
      "# Calculations\n",
      "#spread of curve is directly proportional to sqrt of distance from origin\n",
      "L = sigma1**2*L1/(sigma1**2-sigma2**2);\n",
      "\n",
      "# Results\n",
      "print \" The dumping of toxic phenol must have occured within %.f miles upstream of cincinnati\"%(L)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The dumping of toxic phenol must have occured within 272 miles upstream of cincinnati\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3 pageno : 332"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "# from figure\n",
      "vo = 1.;          \n",
      "t1 = 1./6;\n",
      "t2 = 1.;\n",
      "t3 = 11./6;\n",
      "w = 1./10;\n",
      "\n",
      "# Calculations\n",
      "A2_by_A1 = 0.5;\n",
      "R = A2_by_A1/(1-A2_by_A1);\n",
      "#From the location of 1st peak\n",
      "V1 = (R+1)*vo*t1;\n",
      "#From the time between peaks\n",
      "V2 = (R*vo)*((t2-t1)-(t1));\n",
      "#From fig 14.3\n",
      "N = 1+(2*(t1/w))**2;\n",
      "\n",
      "# Results\n",
      "print \" The reflux ratio is %.f\"%(R)\n",
      "print \" The volume of 1st tank is %.3f\"%( V1)\n",
      "print \" The volume of 2nd tank is %.3f\"%(V2)\n",
      "print \" The number of tanks are %.f \"%(N)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The reflux ratio is 1\n",
        " The volume of 1st tank is 0.333\n",
        " The volume of 2nd tank is 0.667\n",
        " The number of tanks are 12 \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.4 page no  :333"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "%pylab inline\n",
      "\n",
      "from matplotlib.pyplot import *\n",
      "import math \n",
      "from numpy import *\n",
      "\n",
      "# Variables\n",
      "# from figure E14.4a\n",
      "t2 = 280.\n",
      "t1 = 220.\n",
      "sigma1_sqr = 100.\n",
      "sigma2_sqr = 1000.\n",
      "\n",
      "# Calculations\n",
      "dt = t2-t1;\n",
      "dsigma_sqr = sigma2_sqr-sigma1_sqr;\n",
      "N = dt**2/dsigma_sqr;\n",
      "\n",
      "E = zeros(200)\n",
      "\n",
      "for t in range(200):\n",
      "    E[t] = ((t**(N-1))*(N**N)*math.exp(-t*N/dt))/((math.factorial(N-1))*(dt**N));\n",
      "\n",
      "t = zeros(200)    \n",
      "for i in range(200):\n",
      "    t[i] = i;\n",
      "\n",
      "# Results\n",
      "plot(t,E)\n",
      "xlabel(\"t, s\")\n",
      "ylabel(\"E, s**-1\")\n",
      "show()\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAELCAYAAAAcKWtPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVGX+B/APBGRaG2aKxpAkMwoqjmwopZmzKZHUzpq2\nipWRl13WMtatNa29CFsqaO1mmoaVt1+ta20XaMUx3SIrBUyxi2iOCjUMQoXi5mqODM/vj0dnBbkM\nzJw5c/m8X695xTDnnPlywvlwznMLEkIIEBERuSBY7QKIiMj3MUyIiMhlDBMiInIZw4SIiFzGMCEi\nIpcxTIiIyGWKhYnJZEJsbCx0Oh1yc3Nb3CYzMxM6nQ56vR5lZWWO70+fPh0RERGIj4+/ZJ/ly5cj\nLi4OgwcPxrx585Qqn4iIOkCRMLHb7Zg9ezZMJhPKy8uxceNGHDhwoMk2hYWFOHz4MMxmM1avXo1Z\ns2Y5Xps2bRpMJtMlx/3ggw9QUFCAzz//HF9++SV+//vfK1E+ERF1kCJhUlpaCq1Wi+joaISGhiIt\nLQ35+flNtikoKEB6ejoAICkpCfX19aipqQEAjBo1Ct27d7/kuKtWrcITTzyB0NBQAEDPnj2VKJ+I\niDooRImDWq1WREVFOZ5rNBqUlJS0u43VakXv3r1bPa7ZbMaOHTvw5JNPokuXLnjmmWeQmJjYZJug\noCA3/RRERIHFlQlRFLkycfYDvXnh7e3X0NCAEydOoLi4GEuXLsWkSZNaPS4frj8WLFigeg3+9OD5\n5Pn05oerFAmTyMhIWCwWx3OLxQKNRtPmNlVVVYiMjGzzuBqNBhMmTAAADBs2DMHBwairq3Nj5URE\n1BmKhEliYiLMZjMqKyths9mwadMmGI3GJtsYjUZs2LABAFBcXIzw8HBERES0edzx48fj/fffBwAc\nOnQINpsNPXr0UOJHICKiDlAkTEJCQrBixQqkpKRg4MCBmDx5MuLi4pCXl4e8vDwAQGpqKvr16wet\nVouMjAysXLnSsf+UKVMwYsQIHDp0CFFRUVi7di0A2WX46NGjiI+Px5QpUxxhRMowGAxql+BXeD7d\ni+fTuwQJd9ws8yJBQUFuuf9HRBRIXP3s5Ah4IiJyGcOEiIhcxjAhIiKXMUyIiMhlDBMiInIZw4SI\niFzGMCEiIpcxTIiIyGUMEyIicpkiU9CT9xIC+Pxz4JNPgOpqoLER6NMHGD4cSEwELrtM7QqJyBfx\nyiRAnD0LrFoFxMQAEyYAZWXA5ZcDXbsC5eXAr34lQ+UPfwCOHVO7WiLyNbwyCQB79gBTpwLXXw+8\n+ipw881AS0vHmM3A888D8fHAvHnAnDnA+UUtiYjaxIke/dy6dcDjjwPLlgFTpji3j9kMPPww8N//\nAhs3yhAiIv/GiR6pVUuXAllZwEcfOR8kAKDTASYTMH68bEvZuVOxEonIT/DKxE+tXg0sWQJ8+CHQ\nzgKWbTKZgAceAF5+GWi2vhkR+RFXPzsZJn5oyxZg+nR5RaLVun68PXuA1FTgpZcYKET+imHSTKCH\nyTffAMOGAW+9BYwc6b7jfvqpDJTXXgOSk913XCLyDgyTZgI5TBoaAIMBuOsuYP589x//o4+AiROB\n7duBIUPcf3wiUg8b4Mnhb3+TY0cef1yZ448aBSxfLsOqpkaZ9yAi36RYmJhMJsTGxkKn0yE3N7fF\nbTIzM6HT6aDX61FWVub4/vTp0xEREYH4+PgW93v22WcRHByM48ePK1K7L6qoAHJzZcN7sIJ/Ikye\nDEybBvzyl4DNptz7EJFvUeRjx263Y/bs2TCZTCgvL8fGjRtx4MCBJtsUFhbi8OHDMJvNWL16NWbN\nmuV4bdq0aTCZTC0e22KxYNu2bejbt68SpfskIYCHHgLmzpUj3JW2YAEQHi4HNhIRAQqFSWlpKbRa\nLaKjoxEaGoq0tDTk5+c32aagoADp6ekAgKSkJNTX16Pm/L2TUaNGoXv37i0e+9FHH8WSJUuUKNtn\nbd0KHD0KPPqoZ94vOBhYvx5480353kREikynYrVaERUV5Xiu0WhQUlLS7jZWqxW9e/du9bj5+fnQ\naDQY0k7rb1ZWluNrg8EAg8HQsR/Ah9jt8ookJ8ezU59cc40cXT91KrBvH9Czp+fem4hcV1RUhKKi\nIrcdT5EwCWpp4qcWNO850NZ+p0+fxqJFi7Bt27ZW97/g4jDxdxs2yFtO48d7/r1vuw249145SeTb\nb7c83xcReafmf2hnZ2e7dDxFbnNFRkbCYrE4nlssFmg0mja3qaqqQmQbQ7WPHDmCyspK6PV63HDD\nDaiqqsKNN96Ib7/91v0/gI9oaACefhpYvFi9D/Knnwa+/lqOkCeiwKVImCQmJsJsNqOyshI2mw2b\nNm2CsdnQaaPRiA0bNgAAiouLER4ejoiIiFaPGR8fj9raWlRUVKCiogIajQZ79+5Fr169lPgRfMLf\n/y4nYbzlFvVquPxyWccTT8hQIaLApEiYhISEYMWKFUhJScHAgQMxefJkxMXFIS8vD3l5eQCA1NRU\n9OvXD1qtFhkZGVi5cqVj/ylTpmDEiBE4dOgQoqKisHbt2kvew9lbaf7KbgcWLQL++Ee1KwHi4oDf\n/U7ONByg40WJAh5HwPuot96SEznu2uUdbRU2G5CQIGcp/uUv1a6GiDqKI+AD1HPPAY895h1BAgBh\nYUBenlxQ6+RJtashIk/jlYkP2rMHuPtuObYkxMvWyszIkOvIX3TXkoh8ACd6bCYQwuSBB4DBg5Wb\ng8sVJ04AgwbJ23A33aR2NUTkLIZJM/4eJt9/L9coOXpUDhz0RuvXyyuTXbuUnSeMiNyHbSYBZsMG\n4Oc/994gAeSoeCHk2idEFBh4ZeJDhAAGDpQN3bfeqnY1bdu5E5g0CfjqK6BbN7WrIaL28MokgHzy\niQyUUaPUrqR9I0bIwGtl9QEi8jO8MvEh06bJxu3f/17tSpxjsQBDhwJ79wJcMYDIu7EBvhl/DZPT\np4HISKC8HOjTR+1qnLdgAWA2yylXiMh78TZXgCgoAIYP960gAeT0+B98AFy0kCYR+SGGiY949VXg\n/vvVrqLjrrxSzh82f77alRCRknibywd89x2g0wFVVfLD2dfYbLIX2urVcg0UIvI+vM0VAP75T2Dc\nON8MEkDO2/X00/LqxM9ynojOY5j4gDfekGM2fNmkSXIxrzffVLsSIlICb3N5udpaYMAA4Ngx4Ior\n1K7GNe+9BzzyCLB/v/dNUEkU6Hiby8+99RaQmur7QQIAycmyN9qrr6pdCRG5G8PEy/nDLa4LgoKA\n7GzgqaeAc+fUroaI3Ilh4sXq6oBPPwVSUtSuxH1GjwZuuEFOWElE/oNh4sVMJuBnP/OPW1wXy86W\nvbtsNrUrISJ3USxMTCYTYmNjodPpkNvKbH+ZmZnQ6XTQ6/Uou2iI9PTp0xEREYH4+Pgm28+dOxdx\ncXHQ6/WYMGECTvr5+rDvviunm/c3I0cC/fsD69apXQkRuYsiYWK32zF79myYTCaUl5dj48aNOHDg\nQJNtCgsLcfjwYZjNZqxevRqzZs1yvDZt2jSYTKZLjnv77bdj//79+Oyzz9C/f38sXrxYifK9wrlz\nwNatwJ13ql2JMrKzgYULgbNn1a6EiNxBkTApLS2FVqtFdHQ0QkNDkZaWhvz8/CbbFBQUID09HQCQ\nlJSE+vp61NTUAABGjRqF7t27X3Lc5ORkBJ9fui8pKQlVVVVKlO8VPv5Yrqjoa3NxOeumm+QMyGvW\nqF0JEbmDIr39rVYroqKiHM81Gg1KSkra3cZqtaJ3795OvceaNWswZcqUFl/LyspyfG0wGGAwGJwv\n3kv46y2ui2VlARMnyqn1u3RRuxqiwFJUVISioiK3HU+RMAkKCnJqu+YDZJzdb+HChQgLC8O9997b\n4usXh4mv+te/gE2b1K5CWcOHy/VOXn4ZmD1b7WqIAkvzP7Szs7NdOp4it7kiIyNhsVgczy0WCzQa\nTZvbVFVVITIyst1jr1u3DoWFhXjNjxcY/+oruX7J0KFqV6K87Gxg8WLgxx/VroSIXKFImCQmJsJs\nNqOyshI2mw2bNm2C0Whsso3RaMSG84MNiouLER4ejoiIiDaPazKZsHTpUuTn56OLH98Xefdd4K67\n5CA/f/fTn8oH206IfJsiYRISEoIVK1YgJSUFAwcOxOTJkxEXF4e8vDzk5eUBAFJTU9GvXz9otVpk\nZGRg5cqVjv2nTJmCESNG4NChQ4iKisLatWsBAI888ghOnTqF5ORkJCQk4KGHHlKifNX961/+315y\nsT/8AViyhKPiiXwZJ3r0MidOyPXSa2v9b7BiW8aOBe67TzbGE5HncaJHP7NtG3DrrYEVJIBcjXHx\nYsBuV7sSIuoMhomX2b5dzq4baEaPBnr2lBNbEpHvYZh4me3b5S2fQBMUJK9OFi4EGhvVroaIOoph\n4kWOHgXOnJHrpQeiO+6QS/y++67alRBRRzFMvMiFq5JA6BLckqAg2bPr6ae5VjyRr2GYeJFAvcV1\nsfHj5YDNbdvUroSIOoJdg71EYyPQqxewbx/QbLKAgPPaa0BeHrBjh9qVEAUOdg32E/v2yd5MgR4k\nADB5MlBdzTAh8iUMEy/BW1z/ExICzJ8ve3YRkW9gmHiJf/+bYXKxBx4ADhwAdu9WuxIicgbbTLzA\njz/KW1xVVcDVV6tdjfdYvlxesTVbV42IFMA2Ez+waxcweDCDpLmZM4HSUuCLL9SuhIjawzDxAtu3\nA2PGqF2F97niCmDOHCAnR+1KiKg9DBMvUFQE/OxnalfhnWbNArZuBY4cUbsSImoL20xUduaMbC+p\nrQW6dVO7Gu/0pz/J87N6tdqVEPkvtpn4uJISID6eQdKW3/4W+Oc/AatV7UqIqDUME5Xt2AGMGqV2\nFd7t2muBBx8EnnlG7UqIqDUME5Xt2CEXw6K2PfYYsH498N13aldCRC1RLExMJhNiY2Oh0+mQm5vb\n4jaZmZnQ6XTQ6/UoKytzfH/69OmIiIhAfHx8k+2PHz+O5ORk9O/fH7fffjvq6+uVKt8jzp2Tt7lG\njlS7Eu8XGQn88pfA88+rXQkRtUSRMLHb7Zg9ezZMJhPKy8uxceNGHDhwoMk2hYWFOHz4MMxmM1av\nXo1Zs2Y5Xps2bRpMJtMlx83JyUFycjIOHTqEMWPGIMfH+4zu3QvExADdu6tdiW94/HFg1Srg5Em1\nKyGi5hQJk9LSUmi1WkRHRyM0NBRpaWnIbzaMuaCgAOnp6QCApKQk1NfXo6amBgAwatQodG/hE/bi\nfdLT0/HOO+8oUb7HsL2kY2Ji5AJaq1apXQkRNadImFitVkRFRTmeazQaWJt1xXFmm+Zqa2sREREB\nAIiIiEBtba0bq/Y8tpd03Pz5wHPPyTVPiMh7hChx0CAnlwps3qfZ2f0ubNva9llZWY6vDQYDDAaD\n08f1lMZG4JNPgJdeUrsS3zJ4MHDTTcArrwCPPKJ2NUS+q6ioCEVFRW47niJhEhkZCYvF4nhusVig\nabZQR/NtqqqqEBkZ2eZxIyIiUFNTg969e+PYsWPo1atXi9tdHCbe6ssv5WDF3r3VrsT3PPkkcM89\nQEaGXDOeiDqu+R/a2dnZLh1PkdtciYmJMJvNqKyshM1mw6ZNm2A0GptsYzQasWHDBgBAcXExwsPD\nHbewWmM0GrF+/XoAwPr16zF+/HglyvcItpd03vDhwIABwKuvql0JETkIhRQWFor+/fuLmJgYsWjR\nIiGEEC+++KJ48cUXHds8/PDDIiYmRgwZMkTs2bPH8f20tDTRp08fERYWJjQajVizZo0QQoi6ujox\nZswYodPpRHJysjhx4sQl76vgj+RWkyYJsX692lX4rg8+EEKnE6KhQe1KiPyDq5+dnJtLBUIA110H\n7NwJ3HCD2tX4JiHk+Jw5c4BJk9Suhsj3cW4uH1RZCQQHA9HRalfiu4KCZNvJokUyWIhIXQwTFezc\nCdx8s/xApM67804ZJIWFaldCRAwTFezaJcOEXHPh6mThQl6dEKmNYaKCXbuAESPUrsI/3HMP8P33\nwIcfql0JUWBjA7yH/fe/QK9ewPHjwOWXq12Nf1izBvjHP4D33lO7EiLfxQZ4H7N7NzBkCIPEne6/\nHzh4UJ5bIlJHp8Jk3Lhx7q4jYPAWl/uFhQFz58qeXUSkjlanU9m7d2+L3xdCNFl7hDpm507g/MTH\n5EYzZsiG+P37gUGD1K6GKPC02mZy2WWX4dZWprQtLi7GmTNnFC2ss7y5zUQI2V6yb59c7Inca/Fi\nGSacZoWo41z97Gz1yiQ2NhZ5eXno37//Ja9dPHU8Oe/wYaBrVwaJUh56SK55cvQo0K+f2tUQBZZW\n20yysrLQ2NjY4mvPc+3UTrkwWJGUcfXVwG9+AyxZonYlRIGHXYM96De/AeLigN/+Vu1K/Nd338kZ\nhT//HGi26gERtcGjXYPvuuuuTr8RsSeXJ/TsCUyfDuTmql0JUWDp0JVJQkKC1/fk8tYrk//8R84U\nfPw4F3RSWm2tvAL84gu2TxE5y6NXJgkJCZ1+o0BXWgokJDBIPCEiQl6d5OSoXQlR4GgzTD777DMA\nwOeffw4AWLNmjfIV+anSUrl2OXnG3LnAa68BVqvalRAFhjbDZM2aNTCbzXjllVc8VY/fKi2Vy82S\nZ1y4OmHbCZFntBom2dnZaGxsRFJSEoQQLi82H8iEAEpKGCaeNneuHMDIqxMi5bXZAF9QUIAtW7Zg\n3LhxMBqNnqyr07yxAd5iARITgZoaLojlab//PWCzARwaRdQ2RRvgS0pKsGrVKuzuxHSsJpMJsbGx\n0Ol0yG3lXkNmZiZ0Oh30en2TXmKt7VtaWorhw4cjISEBw4YN61Rdarhwi4tB4nm8OiHyENGGffv2\nCSGE+Oyzz9ra7BINDQ0iJiZGVFRUCJvNJvR6vSgvL2+yzebNm8W4ceOEEEIUFxeLpKSkdvcdPXq0\nMJlMQgghCgsLhcFguOS92/mRVPH440L85S9qVxG4Hn1UiEceUbsKIu/m6menIg3wpaWl0Gq1iI6O\nRmhoKNLS0pCfn99km4KCAqSfnz43KSkJ9fX1qKmpaXPfPn364OTJkwCA+vp6RPrIIILSUiApSe0q\nAhevToiUp0gDvNVqbTIZpEajgbXZv+TWtqmurm5135ycHDz22GO4/vrrMXfuXCxevNjpmtRitwN7\n9sg2E1JH797AtGns2UWkpFZnDV6wYAEKCgrQ0NCAsWPHdqgBPsjJxgHRwcaeGTNm4Pnnn8fdd9+N\nN954A9OnT8e2bdsu2S4rK8vxtcFggMFg6ND7uNPBg/LD7JprVCuBIK9OBg4E5s3jqHgiACgqKkJR\nUZHbjtdqmAD/a4D/05/+1KEwiYyMhMVicTy3WCzQNJt1r/k2VVVV0Gg0OHfuXKv7lpaWYvv27QCA\ne+65BzNnzmzx/S8OE7WxS7B3uHB1kpMDLF+udjVE6mv+h7bLwz860sBSV1fnVGP8uXPnRL9+/URF\nRYU4e/Zsuw3wu3btcjTAt7VvQkKCKCoqEkIIsX37dpGYmHjJe3fwR1JcRoYQy5apXQUJIURNjRDd\nuwvx9ddqV0LkfVz97GzzygQARo8ejXfffRcNDQ248cYb0bNnT4wcORJ/+9vfWt0nJCQEK1asQEpK\nCux2O2bMmIG4uDjk5eUBADIyMpCamorCwkJotVp069YNa9eubXNfAFi9ejUefvhhnD17FldccQVW\nr17tWpJ6QGkp8OCDaldBgBwV/5vfAH/5C/Dyy2pXQ+Rf2p01eOjQodi3bx9efvllWCwWZGdnIz4+\nHl988YWnauwQbxq0eOYMcO21QF0d0KWL2tUQAJw4AfTvD3z8sVz3hIgkxWcNttvtOHbsGF5//XXc\neeedjjel9pWVyUZfBon36N4dePRR4M9/VrsSIv/Sbpj8+c9/RkpKCmJiYjB8+HAcOXIEOp3OE7X5\nPE7u6J0yM4EdO2TYE5F7cNleBd17L5CSApwfm0leZPlywGQCNm9WuxIi7+DRxbGoY9gt2Hv9+tfA\n/v2y7YSIXMcwUcj338sHG3m90+WXA1lZwJNPyiUCiMg1DBOF7N4NDBsGBPMMe6377we++w7YulXt\nSoh8X4c/6t555x2UlJQoUYtfYeO79wsJAZ56Sl6dNDaqXQ2Rb+twmJSUlODpp5/GHXfcoUQ9foNh\n4hsmTgTCwoC//13tSoh8G3tzKUAIoFcv4LPPgOuuU7UUcsLHH8ued199BVxxhdrVEKlDsd5cS5Ys\ncXz9xhtvNHntySef7PQbBoLKStnAyyDxDbfcAtx4I5f2JXJFq2GyceNGx9eLFi1q8tqWLVuUq8gP\nsEuw78nNBZYulT3wiKjj2NdIAbt3M0x8Tf/+QFqanASSiDqOYaKA0lLZLZh8y4IFsiHebFa7EiLf\n02oD/GWXXYauXbsCAM6cOYMrLmqZPHPmDBoaGjxTYQep3QDf0CAnE7RYgPBw1cqgTlq8WC6z/M9/\nql0JkWe5+tnZ6nomdru90wcNZAcOyGVhGSS+ac4cOWvBJ58AI0eqXQ2R7+BtLjfjLS7fdsUVciDj\nY49xICNRRzBM3IyN775v6lTAbgdee03tSoh8B8PEzS7MyUW+KzhYjjmZPx/44Qe1qyHyDRwB70Y/\n/ghccw1w/DhXV/QH6elA795yDAqRv/Pa9UxMJhNiY2Oh0+mQ28q/xszMTOh0Ouj1epRdtOxdW/su\nX74ccXFxGDx4MObNm6dU+Z2ybx8QF8cg8Rc5OcArrwCHDqldCZEPEApoaGgQMTExoqKiQthsNqHX\n60V5eXmTbTZv3izGjRsnhBCiuLhYJCUltbvv+++/L8aOHStsNpsQQohvv/32kvdW6EdyyrJlQmRk\nqPb2pIClS4VITVW7CiLlufrZqciVSWlpKbRaLaKjoxEaGoq0tDTk5+c32aagoADp59ezTUpKQn19\nPWpqatrcd9WqVXjiiScQGhoKAOjZs6cS5Xca20v8T2YmcPgwl/clao8iYWK1WhEVFeV4rtFoYLVa\nndqmurq61X3NZjN27NiBm266CQaDAZ9++qkS5Xcae3L5n7AwYNkyOf7k7Fm1qyHyXq0OWnRFUFCQ\nU9uJDjb2NDQ04MSJEyguLsbu3bsxadIkHD169JLtsrKyHF8bDAYYDIYOvU9n1NcDVqtsMyH/cscd\n8v/rc88BXtZMR9RpRUVFKCoqctvxFAmTyMhIWCwWx3OLxQKNRtPmNlVVVdBoNDh37lyr+2o0GkyY\nMAEAMGzYMAQHB6Ourg49evRocuyLw8RT9uwBEhLk6n3kf/76V+Cmm+RkkH37ql0Nkeua/6GdnZ3t\n0vEUuc2VmJgIs9mMyspK2Gw2bNq0CUajsck2RqMRGzZsAAAUFxcjPDwcERERbe47fvx4vP/++wCA\nQ4cOwWazXRIkauHId/+m1QK//S0we7Zc/IyImlLk7+iQkBCsWLECKSkpsNvtmDFjBuLi4pCXlwcA\nyMjIQGpqKgoLC6HVatGtWzesXbu2zX0BYPr06Zg+fTri4+MRFhbmCCNvsHs3MGmS2lWQkh5/HBg6\nFHj7beD8BTIRncdBi24SFQV8+CHQr5/H35o8aMcOucRveTnwk5+oXQ2R+7j62ckwcYNjx4D4eOC7\n7wAn+x6QD5s5E+jalcv8kn/x2hHwgWT3biAxkUESKJYsAV5/XbaTEZHEMHEDji8JLNdcAzzzDPDr\nX8vF0IiIYeIW7MkVeO67D7j2WjmgkYjYZuIyIYAePWSDbO/eHntb8gKHD8uxJ8XFsuswkS9jm4nK\njhwBrrySQRKItFrgj38EHnxQLqZFFMgYJi7i5I6BLTNTLqbF210U6BgmLmLje2ALDgbWrgUWLQIO\nHlS7GiL1MExcxMZ3iokBsrN5u4sCGxvgXdDQAISHy9mCr77aI29JXqqxEUhOBm6/nTMLk29iA7yK\n9u+X06gwSCg4GFizRo4/2b9f7WqIPI9h4gI2vtPF+vaVbScPPADYbGpXQ+RZDBMXsPGdmps5E4iM\nlF2GiQIJw8QFbHyn5oKC5O2ujRuBrVvVrobIc9gA30lnzsjpNOrqgC5dFH878jFFRXKq+rIyICJC\n7WqI2scGeJV8+ikwaBCDhFpmMAAzZsj2k8ZGtashUh7DpJOKi4Gbb1a7CvJmCxYAp07J9eOJ/B3D\npJN27ZKT/BG1JiQE+PvfgaVLZWcNIn/GMOkEIWSY8MqE2tO3L7ByJZCWBtTXq10NkXIUCxOTyYTY\n2FjodDrk5ua2uE1mZiZ0Oh30ej3Kysqc3vfZZ59FcHAwjh8/rlT5bfrmGxkoffuq8vbkYyZOBO68\nk+0n5N8UCRO73Y7Zs2fDZDKhvLwcGzduxIEDB5psU1hYiMOHD8NsNmP16tWYNWuWU/taLBZs27YN\nfVX8JL/QXsJleslZzzwje/4tXqx2JUTKUCRMSktLodVqER0djdDQUKSlpSE/P7/JNgUFBUhPTwcA\nJCUlob6+HjU1Ne3u++ijj2LJkiVKlO204mK2l1DHhIUBb7wBvPAC8N57aldD5H6KhInVakVUVJTj\nuUajgdVqdWqb6urqVvfNz8+HRqPBkCFDlCjbaWx8p8647jo5mPGBB4DKSrWrIXKvECUOGuTk/Z+O\nDJA5c+YMFi1ahG3btrW7f1ZWluNrg8EAg8Hg9Pu05+xZ4IsvgMREtx2SAsjo0cATTwBGI7Bzp1yl\nk0gNRUVFKCoqctvxFAmTyMhIWCwWx3OLxQKNRtPmNlVVVdBoNDh37lyL+x45cgSVlZXQ6/WO7W+8\n8UaUlpaiV69eTY59cZi42969wIABQLduir0F+bnMTODLL4H77wfeekvOOEzkac3/0M7OznbpeIr8\nGicmJsJsNqOyshI2mw2bNm2C0Whsso3RaMSGDRsAAMXFxQgPD0dERESr+w4ePBi1tbWoqKhARUUF\nNBoN9u7de0mQKI2DFclVQUGy7eT4ceBPf1K7GiL3UOTKJCQkBCtWrEBKSgrsdjtmzJiBuLg45OXl\nAQAyMjKQmpqKwsJCaLVadOvWDWvXrm1z3+acvZXmbrt2AT//uSpvTX4kLAx480056/TAgcB996ld\nEZFrONESjdbIAAAP7ElEQVRjB11/PfDvfwM6nWJvQQHkyy+B226TPb1Gj1a7GgpknOjRg6xW4PRp\nQKtVuxLyF4MHyx5ekyYB5eVqV0PUeQyTDrjQJZiDFcmdxoyRgxpTU4HqarWrIeocRdpM/NXHHwO3\n3KJ2FeSPpk6V0/TceadcC+Xqq9WuiKhjeGXSATt2ALfeqnYV5K+efBIYMUKOQTlzRu1qiDqGDfBO\nOnlSru19/LjsiUOkhMZGOUL+xAng7bf5u0aewwZ4D9m5U673zn/cpKTgYGDtWuCyy4D0dMBuV7si\nIucwTJzEW1zkKaGhwOuvA7W1wK9+xWnryTcwTJz00UcME/KcLl2Ad98FjhwBZs5koJD3Y5uJE86c\nAa69Fvj2W87JRZ516pTsMqzTAS+9xHm8SDlsM/GAkhIgPp5BQp535ZVAYSFgNssrFLahkLdimDiB\nt7hITRcC5ZtvgClTAJtN7YqILsUwccKOHcCoUWpXQYHsyiuBf/1LBsn48XJaHyJvwjaTdpw7B1xz\njfyrsHt3tx2WqFPOnQOmTwe+/hrIz+fvJLkP20wUVlYG9OvHf7TkHUJDgfXr5UqfI0YAFRVqV0Qk\nMUzawVtc5G2Cg4G//hV4+GFg5EigtFTtiogYJu1imJC3mj0byMuTk0O+/bba1VCgY5tJGxoa5PiS\nQ4cAD68OTOS0PXuAX/wCePRR4He/4xIJ1DlsM1HQ7t1AdDSDhLzbjTfKuePWr5fzebGnF6mBYdKG\nbduAsWPVroKofddfLxdvEwK4+Wbg8GG1K6JAo1iYmEwmxMbGQqfTITc3t8VtMjMzodPpoNfrUVZW\n1u6+c+fORVxcHPR6PSZMmICTJ08qVT4AYPt2hgn5jq5dgQ0bgIwM2dOroEDtiiigCAU0NDSImJgY\nUVFRIWw2m9Dr9aK8vLzJNps3bxbjxo0TQghRXFwskpKS2t33vffeE3a7XQghxLx588S8efMueW93\n/Ug//CBEt25CnDrllsMRedSuXUJERQnx5JNCnDundjXkC1z97FTkyqS0tBRarRbR0dEIDQ1FWloa\n8vPzm2xTUFCA9PR0AEBSUhLq6+tRU1PT5r7JyckIPj/TXVJSEqqqqpQoH4DsxZWYyPm4yDfddJNs\nmP/0U9kbkbe9SGmKrAFvtVoRFRXleK7RaFBSUtLuNlarFdXV1e3uCwBr1qzBlClTWnz/rKwsx9cG\ngwEGg6HDP4PJBNx+e4d3I/IaPXsCW7YAK1bIdpTFi4EZM9jbi6SioiIUFRW57XiKhEmQk7+topPd\n0BYuXIiwsDDce++9Lb5+cZh0hhDA5s3AW2+5dBgi1QUHA5mZwJgxwP33yzVSXn5ZBg0FtuZ/aGdn\nZ7t0PEVuc0VGRsJisTieWywWaDSaNrepqqqCRqNpd99169ahsLAQr732mhKlA5DjSs6eBYYMUewt\niDxq0CC5lEJcHKDXy5Uc/WuEGalNkTBJTEyE2WxGZWUlbDYbNm3aBKPR2GQbo9GIDRs2AACKi4sR\nHh6OiIiINvc1mUxYunQp8vPz0aVLFyVKByCn+05N5e0A8i9hYUBODvDmm8BTTwF33QVUVqpdFfkL\nRcIkJCQEK1asQEpKCgYOHIjJkycjLi4OeXl5yMvLAwCkpqaiX79+0Gq1yMjIwMqVK9vcFwAeeeQR\nnDp1CsnJyUhISMBDDz2kRPmOMCHyRzffLBvnb7lFdjJ55hk52wORKzidSjM//ABcdx1QXQ1cdZUb\nCyPyQkeOALNmySWply0DRo9WuyJSC6dTcbPCQvkXG4OEAkFMDLB1K/DEE3IqlrvvlksEE3UUw6SZ\nt94CJk5UuwoizwkKAiZPBg4elONTbr4ZmDMHOH5c7crIlzBMLvLjj/KvtGZ9BYgCQpcuwLx5wIED\nckXHAQOAhQuB//xH7crIFzBMLvLee8DQoZwlmAJbz57ACy8AH38sr1ZiYoCnn2aoUNsYJhd5803e\n4iK6YMAA4P/+T4bKV1/JUHnqKeDECbUrI2/EMDnv9Gk5yyrDhKipC6HyySey91dMjFzlkQ31dDGG\nyXkFBcDw4bJbMBFdqn9/YN064MsvgauvltPcjx8PfPghR9MTx5k4pKYC994r5y8iovadPi3XT3nu\nOeCyy4CZM4EHHgB69FC7MuoMV8eZMEwA1NQAsbGA1cop54k6Sgjgo4+Al16SE0mOGwf86leAwSAn\nmiTfwDBppjMn5Jln5KX7unXK1EQUKE6cAF59Vc5MfPy4HL8yZQrw059yrjtvxzBppqMnxG4HtFpg\n0ybZZkJE7rF/P7Bxo3yEhABpabKDS3w8g8UbMUya6egJyc8HFi2S03MTkfsJAezeDfzjH8Dbb8vv\n/eIXcnDwqFFAaKi69ZHEMGmmoydk7Fhg2jTgvvsULIqIAMhg+fJL+Udcfj5w9Chw223y3+HYsUC/\nfrxqUQvDpJmOnJC9e/+3pkNYmLJ1EdGlqquB7dv/97j88v8Fy223cUVIT2KYNNORE3LnnbLnyezZ\nChdFRO0SQs4LdiFYPvwQ6N1bTjx5881yXMvAgbIbMrkfw6QZZ0/Izp1yXMlXX8m/hojIu9jtshF/\n1y7573XXLqC2FkhKkp1lEhLkXHo33MAuyO7AMGnGmRPS2Ajceiswfbp8EJFv+O47oLhYNujv2ycf\n9fVyXfuhQ+Vj0CA5biw8XO1qfQvDpBlnTsgLLwCvvSYHWvGSmci31dUBn30mg6WsTN4qO3hQLnAX\nFyeD5cKjXz/g+uvZRtoShkkz7Z2Qigpg2DA5E2psrAcL80FFRUUwGAxql+E3eD7dq63z2dgoZ7Q4\neFA+DhyQt7SPHpWN/hER8vbYhUd0tPzv9dcDffoE5q1vV8MkxI21NGEymTBnzhzY7XbMnDkT8+bN\nu2SbzMxMbNmyBV27dsW6deuQkJDQ5r7Hjx/H5MmT8fXXXyM6Ohqvv/46wjtwLXvihOzb/uc/M0ic\nwQ8/9+L5dK+2zmdwMBAVJR/JyU1fa2gALBbZi7OiQj62bZP/raoCjh0DfvITIDJSTvx68aNPH9nD\n7Npr5aN7d7bXXKBImNjtdsyePRvbt29HZGQkhg0bBqPRiLi4OMc2hYWFOHz4MMxmM0pKSjBr1iwU\nFxe3uW9OTg6Sk5Px+OOPIzc3Fzk5OcjJyXGqpv/8Rw6UGjsWeOQRJX5qIvIFISH/uyL52c8ufb2x\nEfj+e3kFc+FhtcrbaFu2yNcuPH74QQbKtdc2DZkePeTMym09rrzSv4JIkTApLS2FVqtFdHQ0ACAt\nLQ35+flNwqSgoADp6ekAgKSkJNTX16OmpgYVFRWt7ltQUIAPP/wQAJCeng6DweBUmJSUyEGJd9wB\nPPssB0URUeuCg+Vqq716yQb9tpw7J+cguxAu330n/1tXJx9HjwInT7b8OH1atutcfbX8b9eucqLZ\ni//b1veuuELejrv4ERbW+nOl24cVCROr1YqoqCjHc41Gg5Jm85W0tI3VakV1dXWr+9bW1iIiIgIA\nEBERgdra2hbfP6iVtHjhBfkg52VnZ6tdgl/h+XQvXz+fF4LFHygSJq19mDfnTGOPEKLF4wUFBbX4\nfT/rT0BE5BMUuWMXGRkJi8XieG6xWKDRaNrcpqqqChqNpsXvR0ZGApBXIzU1NQCAY8eOoVevXkqU\nT0REHaRImCQmJsJsNqOyshI2mw2bNm2C0Whsso3RaMSGDRsAAMXFxQgPD0dERESb+xqNRqxfvx4A\nsH79eowfP16J8omIqIMUuc0VEhKCFStWICUlBXa7HTNmzEBcXBzy8vIAABkZGUhNTUVhYSG0Wi26\ndeuGtWvXtrkvAMyfPx+TJk3CK6+84ugaTEREXkD4kS1btogBAwYIrVYrcnJy1C7H5/Tt21fEx8eL\noUOHimHDhgkhhKirqxNjx44VOp1OJCcnixMnTqhcpfeaNm2a6NWrlxg8eLDje22dv0WLFgmtVisG\nDBggtm7dqkbJXq2l87lgwQIRGRkphg4dKoYOHSoKCwsdr/F8tu6bb74RBoNBDBw4UAwaNEgsW7ZM\nCOHe30+/CZOGhgYRExMjKioqhM1mE3q9XpSXl6tdlk+Jjo4WdXV1Tb43d+5ckZubK4QQIicnR8yb\nN0+N0nzCjh07xN69e5t8+LV2/vbv3y/0er2w2WyioqJCxMTECLvdrkrd3qql85mVlSWeffbZS7bl\n+WzbsWPHRFlZmRBCiB9++EH0799flJeXu/X302+GzFw8tiU0NNQxPoU6RjTrDXfxeKD09HS88847\napTlE0aNGoXu3bs3+V5r5y8/Px9TpkxBaGgooqOjodVqUVpa6vGavVlL5xNouccmz2fbevfujaHn\nB81ceeWViIuLg9Vqdevvp9+ESWvjVsh5QUFBGDt2LBITE/HSSy8BcH5sD7WstfNXXV3dpIcjf1+d\nt3z5cuj1esyYMQP19fUAeD47orKyEmVlZUhKSnLr76ffhImzY1uodZ988gnKysqwZcsWvPDCC/jo\no4+avN7a2B5yTnvnj+e2fbNmzUJFRQX27duHPn364LHHHmt1W57PS506dQoTJ07EsmXLcNVVVzV5\nzdXfT78JE2fGtlDb+vTpAwDo2bMn7r77bpSWlnJsj4taO39tjaei1vXq1cvxoTdz5kzHrReez/ad\nO3cOEydOxNSpUx3DKtz5++k3YeLM2BZq3enTp/HDDz8AAP773//ivffeQ3x8PMf2uKi182c0GvGP\nf/wDNpsNFRUVMJvNGD58uJql+oRjx445vn777bcRHx8PgOezPUIIzJgxAwMHDsScOXMc33fr76eC\nHQg8rrCwUPTv31/ExMSIRYsWqV2OTzl69KjQ6/VCr9eLQYMGOc5fXV2dGDNmDLsGOyEtLU306dNH\nhIaGCo1GI9asWdPm+Vu4cKGIiYkRAwYMECaTScXKvVPz8/nKK6+IqVOnivj4eDFkyBDxi1/8QtTU\n1Di25/ls3UcffSSCgoKEXq93dKvesmWLW38//W5xLCIi8jy/uc1FRETqYZgQEZHLGCZEROQyhgmR\nG508eRKrVq1Suwwij2OYELnRiRMnsHLlSrXLIPI4hgmRG82fPx9HjhxBQkIC5s2b1+p2drsdDz74\nIOLj4zFkyBA899xzHqySyP0UWc+EKFDl5uZi//79KCsra3O7ffv2obq6Gl988QUAeXuMyJfxyoTI\njZwdthUTE4OjR48iMzMTW7duxU9+8hOFKyNSFsOESAXh4eH4/PPPYTAY8OKLL2LmzJlql0TkEt7m\nInKjq666yjHH2QWxsbE4ePBgk+/V1dUhNDQUEyZMQP/+/TF16lRPlknkdgwTIjfq0aMHRo4cifj4\neKSmpmLu3Lktbme1WjFt2jQ0NjYCAHJycjxZJpHbcW4uIgVt3rwZFRUVmD17ttqlECmKYUJERC5j\nAzwREbmMYUJERC5jmBARkcsYJkRE5DKGCRERuYxhQkRELmOYEBGRy/4ftN3lgYtsSI8AAAAASUVO\nRK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x2625a50>"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}