1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11 : Basics of Non-Ideal Flow"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1 pageno : 267"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"%matplotlib inline\n",
"\n",
"from numpy import *\n",
"from matplotlib.pyplot import *\n",
"import math \n",
"\n",
"# Variables\n",
"T = array([0,5,10,15,20,25,30,35]) # time\n",
"Cpulse = array([0,3,5,5,4,2,1,0]) # tracer output concentration\n",
"dt = 5.;\n",
"sum1 = 0.;\n",
"sum2 = 0.;\n",
"Area = 0. #Initialization\n",
"\n",
"# Calculations\n",
"for i in range(8):\n",
" sum1 = sum1+T[i]*Cpulse[i]*dt;\n",
" sum2 = sum2+Cpulse[i]*dt;\n",
" Area = Area+Cpulse[i]*dt;\n",
"\n",
"t = sum1/sum2;\n",
"E = zeros(8)\n",
"for j in range(8):\n",
" E[j] = Cpulse[j]/Area;\n",
"\n",
"# Results\n",
"print \" The mean residence time is %.f min \"%(t)\n",
"plot(T,E)\n",
"plot(T,E,\"go\")\n",
"xlabel(\"t, min\")\n",
"ylabel(\"E\")\n",
"show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
" The mean residence time is 15 min \n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAELCAYAAADDZxFQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1wU3W6B/BvKAWkuIIIAZNq1zTYFkpaKWZ1ZYkj3SiV\nKILe+oJdKC63Syl1HF/YF23de1mqszu3FBXwKsrOiKzecdulLxcYN1dU0g4QV7zlXktth7QLvcJs\nWd7bht/9IzbblFOapCc5OTnfz0xnkpNfTp+eQJ6c3+85T3RCCAEiIqJBRikdABERxSYmCCIiksQE\nQUREkpggiIhIEhMEERFJYoIgIiJJEUkQDQ0NSEtLg9lsRkVFheSYkpISmM1mWCwWuN1u//bu7m4s\nXboU6enpyMjIgMvlikSIREQ0DNkThNfrRXFxMRoaGtDc3IwdO3bgyJEjAWPq6upw9OhRtLS0YOvW\nrSgqKvI/tnbtWixcuBBHjhzBl19+ifT0dLlDJCKiIMieIJqampCamoqUlBQkJiYiPz8f1dXVAWNq\nampQUFAAALBareju7kZXVxdOnz6Nffv2YcWKFQCA0aNH47rrrpM7RCIiCsJouXfY2dmJ5ORk/32j\n0YjGxsZhx3R0dCAhIQFTpkzB8uXL8Ze//AVz5sxBZWUlxo8f7x+r0+nkDpmISBNCbZwh+xlEsG/g\ngwPV6XTo6+vDoUOH8LOf/QyHDh1CUlISNmzYIPlctf689NJLisfA+JWPQ4vxqzn2eIg/HLInCIPB\nAI/H47/v8XhgNBqvOqajowMGgwFGoxFGoxFz584FACxduhSHDh2SO0QiIgqC7AkiJycHLS0taG9v\nR09PD3bu3AmHwxEwxuFwYPv27QAAl8uFiRMnQq/XY9q0aUhOTsbXX38NANi7dy9mzpwpd4hERBQE\n2dcgRo8ejU2bNsFut8Pr9aKwsBDp6enYsmULAGDVqlVYuHAh6urqkJqaiqSkJGzbts3//KqqKjz+\n+OPo6emByWQKeCwe2Gw2pUMYEcavLDXHr+bYAfXHHw6dCHdySiE6nS7s+TQiIq0K572TV1ITEZEk\nJggiIpLEBEFERJKYIIiISBITBBERSWKCICIiSUwQREQkiQmCiIgkMUEQEZEkJggiIpLEBEFERJKY\nIIiISBITBBERSWKCICIiSUwQREQkiQmCiIgkMUEQEZEkJggiIpLEBEFERJKYIIiISBITBBERSWKC\nICIiSUwQREQkiQmCiIgkMUEQEZEkJggiIpLEBEFERJKYIIiISFJEEkRDQwPS0tJgNptRUVEhOaak\npARmsxkWiwVut9u/PSUlBbNnz0Z2djZuv/32SIRHYajdUwv7cjtsP7HBvtyO2j21SocUErXHT6SE\n0XLv0Ov1ori4GHv37oXBYMDcuXPhcDiQnp7uH1NXV4ejR4+ipaUFjY2NKCoqgsvlAgDodDo4nU5c\nf/31codGYardU4u1r61Fa3arf1vra77bebl5SoUVNLXHT6QU2c8gmpqakJqaipSUFCQmJiI/Px/V\n1dUBY2pqalBQUAAAsFqt6O7uRldXl/9xIYTcYdEIbHxvY8CbKwC0Zrei6v0qhSIKjdrjJ1KK7GcQ\nnZ2dSE5O9t83Go1obGwcdkxnZyf0ej10Oh0WLFiAhIQErFq1Ck899dQVv6OsrMx/22azwWazyf1n\n0ACXxCXJ7Qf+chGLFkU5mDAcPH4JSLly+0XvxajHQhQtTqcTTqdzRPuQPUHodLqgxg11lvDpp5/i\nxhtvxLfffovc3FykpaVh3rx5AWMGJgiKvLG6sZLbb5o+Dj/9aZSDCUPnlrE4JbF97KhxUY+FKFoG\nf3guLy8PeR+yJwiDwQCPx+O/7/F4YDQarzqmo6MDBoMBAHDjjTcCAKZMmYLFixejqanpigRB0VXy\nWAlaN7Wi9bZ/TNOYDpnw65I1yMtVMLAgjRpXgrWvtQZMM13zJxO6Rq3Bt98CU6YoGBxRDJN9DSIn\nJwctLS1ob29HT08Pdu7cCYfDETDG4XBg+/btAACXy4WJEydCr9fj/PnzOHPmDADg3Llz2L17NzIz\nM+UOkUKUl5uHxZmVmLDDjh99Mx/2Y3ZUFleqZoE3LzcPlasrYT9mx/w2X/zv/0sl7rsnDzk5QFOT\n0hESxSadiMCKcH19PUpLS+H1elFYWIh169Zhy5YtAIBVq1YBAIqLi9HQ0ICkpCRs27YNt912G775\n5hs89NBDAIC+vj48/vjjWLduXWDAOh0XsaPs5Elg1iygpgaIt8rj6mrgqaeA8nLgn/8ZCHKGlEh1\nwnnvjEiCiCQmiOhbtsw3DfO73ykdSWS0tABLlgBZWcDmzcD48UpHRCS/cN47eSU1XVVDA/Dpp8Cv\nf610JJFjNgP79wNCAHfcARw9qnRERLGBCYKGdPasb9plyxYgKUnpaCIrKQnYvh346U+BO+/0TacR\naR2nmGhIpaVAdzfwzjtKRxJdLhfwyCO+qbWXXwYSEpSOiGjkuAZBsnG5gMWLga++AiZPVjqa6Pv2\nWyA/Hxg1CnjvPZbCkvpxDYJk0dMDrFwJ/Nu/aTM5AL6E8J//CeTkgKWwpFlMEHSFDRuAW27xTbNo\n2ejRwG9+A2zcCNx/P/DGG76FbCKt4BQTBWhuBubPB9xuYNAF8JrGUlhSO04x0YhcvuybWnr5ZSaH\nwVgKS1rEBEF+r7/uq9j57mJ3GoSlsKQ1nGIiAMCxY8CcOcC+fUBamtLRxD6WwpLasMyVwiKEbxH2\nzjuBX/xC6WjU4//+D3j0UZbCkjpwDYLC8v77gMcDPPus0pGoy9SpLIWl+MYzCI2L506t0cSusBTr\nOMVEIYv3Tq3RxFJYimWcYqKQaKFTazSxFJbiDROERmmpU2s0sRSW4gmnmDRKq51ao4mlsBRLuAZB\nQdF6p9ZoYiksxQquQdCw2Kk1ulgKS2rGBKEx7NQafewKS2rFKSYNYadW5bEUlpTCKSYaEju1xgaW\nwpKaMEFoBDu1xg6WwpJacIpJA9ipNXaxFJaihWWudAV2ao19LIWlaOAaBF2BnVpjH0thKVbxDCKO\nsVOr+rArLEUKp5goADu1qhNLYSkSYmaKqaGhAWlpaTCbzaioqJAcU1JSArPZDIvFArfbHfCY1+tF\ndnY2Fi1aFInwNIGdWtVLqhS2dk8t7MvtsP3EBvtyO2r31CodJmnAaLl36PV6UVxcjL1798JgMGDu\n3LlwOBxIT0/3j6mrq8PRo0fR0tKCxsZGFBUVweVy+R+vrKxERkYGzpw5I3d4mtDfqXXrVnZqVav+\nUtjXXwfm3FmL8Za1OHFXq//x1td8t/Ny85QKkTRA9jOIpqYmpKamIiUlBYmJicjPz0d1dXXAmJqa\nGhQUFAAArFYruru70dXVBQDo6OhAXV0dVq5cyamkMP3yl4DNBvz4x0pHQiOh0wGrVwPpd20MSA4A\n0Jrdiqr3qxSKjLRC9jOIzs5OJCcn++8bjUY0NjYOO6azsxN6vR5PP/00Xn31Vfz9738f8neUlZX5\nb9tsNthsNtniVzuXC9i509epleLDuO9dktx+0XsxypGQmjidTjidzhHtQ/YEoQuy7GLw2YEQArt2\n7cLUqVORnZ191T9sYIKgf2Cn1vg0VjdWcvu4hHFRjoTUZPCH5/Ly8pD3IfsUk8FggMfj8d/3eDww\nDmr+M3hMR0cHDAYDPv/8c9TU1OD73/8+Hn30UXz88cd48skn5Q4xbrFTa3wqeawEJrcpYJtxvwlr\n8tcoFBFphpBZb2+vuOWWW0RbW5u4dOmSsFgsorm5OWBMbW2tuO+++4QQQuzfv19YrdYr9uN0OsX9\n999/xfYIhBwX/vu/hbjhBiE8HqUjoUjYtXuXsK+wi/kF88Xse+3iZvMucemS0lGRmoTz3in7FNPo\n0aOxadMm2O12eL1eFBYWIj09HVu2bAEArFq1CgsXLkRdXR1SU1ORlJSEbdu2Se4r2OkqrWOn1viX\nl5vnr1jqb5/y6qtsn0KRxQvl4sCmTb6F6f/6L18/H4p/bMBIoeKV1Bp07Bhw222+i+L4RqEt/GBA\noYiZK6kpOoQAioqA0lImBy0qKgK8XuC72Vsi2fEMQsV27PB91/GBA8CYMUpHQ0rg18hSsDjFpCHs\n1Er9yst9HxJqatj9lYbGKSYNefpp4LHHmBwIWLcOaGsD/vAHpSOheMMzCBVqaPDNP3/1FZvxkY/L\nBSxe7Ps3wavoSQqnmDTg7Fnf1NLWrWzGR4HWrgVOnwbeeUfpSCgWMUFoQGkp0N3NNwG6Uv+Hhzff\nBHJzlY6GYg0TRJzjNAINp6EB+NnPgMOHOf1IgbhIHcfYqZWCce+9wA9/CPzqV0pHQvGAZxAq8fLL\nvlLG6mqWMtLVsQSapHCKKU7xYigK1Xvv+dq/8yJK6scppjjETq0UjkcfBZKTfR1ficLFM4gYx4Zs\nFC52fKWBOMUUZ9iplUaKHzCoH6eY4gg7tZIc2PGVRoJnEDGKnVpJLixyIIBTTHGDZYokN3Z8JU4x\nxQl2aiW5seMrhYNnEDGGnVopUtiqRds4xaRy7NRKkcaOr9rFBKFy7NRKkcYPIdrFBKFiPP2naOE0\npjZxkVql2KmVounee4G77mLHVxoezyBiADu1UrSxlFp7OMWkQryIiZTCjq/awikmlWGnVlISO77S\ncHgGoSA2UiOlseOrdsTMGURDQwPS0tJgNptRUVEhOaakpARmsxkWiwVutxsAcPHiRVitVmRlZSEj\nIwPr1q2LRHiKqN1TC/tyO2w/scG+3I533qtFWZnvC+aZHEgpN90EvPQS8NRTvjNaogBCZn19fcJk\nMom2tjbR09MjLBaLaG5uDhhTW1sr7rvvPiGEEC6XS1itVv9j586dE0II0dvbK6xWq9i3b1/AcyMQ\ncsTt2r1LmB4wCZTB/zN+rkk8sWKX0qERib4+Ie64Q4jXX1c6EoqkcN47Zf/s2tTUhNTUVKSkpCAx\nMRH5+fmorq4OGFNTU4OCggIAgNVqRXd3N7q6ugAA48ePBwD09PTA6/Xi+uuvlzvEqNv43ka0ZrcG\nbDuf14quy1UKRUT0DwkJwL//O/Dii0BHh9LRUCwZPdQDr7zyCp577jkAwAcffICHH37Y/9jPf/5z\nrF+/XvJ5nZ2dSE5O9t83Go1obGwcdkxHRwf0ej28Xi/mzJmD1tZWFBUVISMj44rfUVZW5r9ts9lg\ns9mu/lcq7JK4JLm9R1yMciRE0jIygOJi3wV07PgaH5xOJ5xO54j2MWSC2LFjhz9BrF+/PiBB1NfX\nD5kgdEH+yxKDFkv6n5eQkIAvvvgCp0+fht1uh9PpvCIBDEwQajBWN1Zy+7iEcVGOhGho69b5vsHw\nD38A/umflI6GRmrwh+fy8vKQ9yH7FJPBYIDH4/Hf93g8MA6q4Rw8pqOjAwaDIWDMddddh7y8PBw4\ncEDuEKOu5LESmNymgG2mQyasyV+jUEREVxozxlc0UVoKnDqldDQUC2RPEDk5OWhpaUF7ezt6enqw\nc+dOOByOgDEOhwPbt28HALhcLkycOBF6vR4nT55Ed3c3AODChQvYs2cPsrOz5Q4x6vJy81C5uhKz\nPrfj+pr5sB+zo7K4Enm5eUqHRhTgjjuARx4BnnlG6UgoFgx5HURCQoJ/wfjChQu45ppr/I9duHAB\nfX19Q+60vr4epaWl8Hq9KCwsxLp167Dluy/FXbVqFQCguLgYDQ0NSEpKwrZt23Dbbbfh8OHDKCgo\nwOXLl3H58mUsW7YMzz77bGDAKr0OQghfvfn69b5eOESxih1f4xNbbcSwTz8FCguBI0d43QPFPnZ8\njT8xc6EcXWnjRl+VCJMDqQE7vhLAM4io6OgAZs8G2tuB731P6WiIgsOOr/GFZxAx6o03gGXLmBxI\nXW64Afjd73wNJXt6lI6GlMAziAi7cAG4+WbfGsSMGUpHQxQaIYC8PODOO4Ff/lLpaGgkeAYRg95/\nH8jJYXIgddLpgM2bfd92+D//o3Q0FG1MEBEkBFBVBZSUKB0JUfhuugkoK2PHVy1igoigzz4Dzp1j\nLTmpX1ER4PUC313ORBrBNYgIeuQRYN48YA07alAc4NfjqhsvlIshLG2leFRe7vsOa3Z8VR8uUscQ\nlrZSPFq3Dmhr83V8pfjHM4gIYGkrxbP9+4GHHvK14Zg8WeloKFg8g4gRLG2leMaOr9rBBCEzlraS\nFvzrvwJOJ7B7t9KRUCQxQciMpa2kBRMm+C6gW7XK9++d4hMThMzYtZW0gh1f4x8XqWXE0lbSGnZ8\nVQ8uUiuMpa2kNez4Gt94BiETlraSVrHjqzrwDEJBLG0lrWLH1/jFBCEDlraS1rHja3xigpABS1uJ\n2PE1HnENQgbs2krkw46vsYvdXBXA0laiQOz4Gpu4SK0AlrYSBWLH1/jBM4gRYGkrkTR2fI09PIOI\nMpa2Ekljx9f4wAQRJpa2El0dO76qHxNEmFjaSnR1Azu+nj2rdDQUjogkiIaGBqSlpcFsNqOiokJy\nTElJCcxmMywWC9xuNwDA4/Hg7rvvxsyZMzFr1ixs3LgxEuHJgl1biYZ3771Ayq21mPVjO2w/scG+\n3I7aPbVKh0XBEjLr6+sTJpNJtLW1iZ6eHmGxWERzc3PAmNraWnHfffcJIYRwuVzCarUKIYQ4fvy4\ncLvdQgghzpw5I2bMmHHFcyMQcsg8HiEmTRLi9GmlIyGKbbt27xIp95sEyuD/MT1gErt271I6NM0J\n571T9s+/TU1NSE1NRUpKChITE5Gfn4/q6uqAMTU1NSgoKAAAWK1WdHd3o6urC9OmTUNWVhYAYMKE\nCUhPT8df//pXuUMcMZa2EgVn43sb0Z7TGrCtNbsVVe9XKRQRhWK03Dvs7OxEcnKy/77RaERjY+Ow\nYzo6OqDX6/3b2tvb4Xa7YbVar/gdZWVl/ts2mw02m02+P2AYFy4Ab77pK20loqu7JC5Jbr/ovRjl\nSLTH6XTC6XSOaB+yJwhdkJdOikH1uAOfd/bsWSxduhSVlZWYMGHCFc8dmCCijaWtRMEbqxsruX3c\nqHFRjkR7Bn94Li8vD3kfsk8xGQwGeDwe/32PxwPjoKYsg8d0dHTAYDAAAHp7e7FkyRI88cQTePDB\nB+UOb0RY2koUmpLHSmBymwK2jak24YJnDSubVED2BJGTk4OWlha0t7ejp6cHO3fuhMPhCBjjcDiw\nfft2AIDL5cLEiROh1+shhEBhYSEyMjJQWloqd2gjxtJWotDk5eahcnUl7MfsmN82H/Zjduz4dSVS\nb8qD1crvj4h5si+VCyHq6urEjBkzhMlkEuvXrxdCCLF582axefNm/5jVq1cLk8kkZs+eLQ4ePCiE\nEGLfvn1Cp9MJi8UisrKyRFZWlqivrw/Yd4RCDsrDDwuxcaNiv54orrz5phA33CDEhx8qHYk2hPPe\nyV5MQWLXViL5HTgALF0KPPww8JvfAKNlXxWlfuzFFEEsbSWSX04OcPAgcPgwsGABcOKE0hHRQEwQ\nQegvbV29WulIiOLP5MlAba3vi4ZycnxrfRQbmCCCwNJWoshKSPB90dDWrb424ZWVvqpBUhbXIIYh\nBDBnDrB+va+vDBFFVlsbsGQJcOutvjN3iUuhKAxcg4gAlrYSRdf3v+/7fzd+PGC1Av/7v0pHpF1M\nEMNg11ai6LvmGuCtt4CnnwbmzQP+4z+UjkibOMV0FSxtJVIeS2HlwSkmmbG0lUh5LIVVDhPEEFja\nShQ7WAqrDCaIIbC0lSi2sBQ2+rgGIYGlrUSx7ZtvfKWwaWkshQ0W1yBkwtJWoth2yy3A55/7qp1Y\nChs5TBASWNpKFPv6S2FLS1kKGymcYhqEpa1E6sNS2OFxikkGLG0lUp+BpbC5uUBXl9IRxQcmiAH6\nS1uLi5WOhIhC1V8K+6Mf+YpMWAo7ckwQA/SXtprNSkdCROFgKay8uAbxHZa2EsUXlsIG4hrECLC0\nlSi+sBR25JggvsPSVqL4M7AU9q67WAobKk4xgaWtRFqg9VJYTjGFiaWtRPGPpbCh03yCYGkrkXYM\nLIXNyfGtUdDQNJ8gWNpKpC39pbBbtgCLF/vWH9U10R49ml6DYGkrkbb1l8Kmp/uunYjnUliuQYSI\npa1E2tZfCjtuHEthpWg6QbC0lYhYCjs0zU4xsbSViAaL51JYTjGFgKWtRDRYTo4vSXz5JUthgQgl\niIaGBqSlpcFsNqOiokJyTElJCcxmMywWC9xut3/7ihUroNfrkZmZGYnQALC0lYiGdsMNQF2d70uI\ncnKAVzfWwr7cDttPbLAvt6N2T63SIUaN7CdQXq8XxcXF2Lt3LwwGA+bOnQuHw4H09HT/mLq6Ohw9\nehQtLS1obGxEUVERXC4XAGD58uVYs2YNnnzySblD82NpKxFdTUIC8PLLwKhxtXjhrbW4/FCr/7HW\n13y383LzlAovamQ/g2hqakJqaipSUlKQmJiI/Px8VFdXB4ypqalBQUEBAMBqtaK7uxsnTpwAAMyb\nNw+TJk2SOyw/IYCqKqCkJGK/gojixP6WjQHJAQBas1tR9X6VQhFFl+xnEJ2dnUhOTvbfNxqNaGxs\nHHZMZ2cnpk2bFtTvKCsr89+22Wyw2WxBx8fSViIK1iVxSXL7Re/FKEcSOqfTCafTOaJ9yJ4gdDpd\nUOMGr6YH+zwgMEGEiqWtRBSssbqxkttPfzsuypGEbvCH5/Ly8pD3IfvbpMFggMfj8d/3eDwwGo1X\nHdPR0QGDwSB3KFfo6AD27gW+m90iIrqqksdKYHKbArYZ95vQ+eUaPPss0NenUGBRInuCyMnJQUtL\nC9rb29HT04OdO3fC4XAEjHE4HNi+fTsAwOVyYeLEidDr9XKHcgWWthJRKPJy81C5uhL2Y3bMb5sP\n+zE7Nj9TiWZ3njZKYUUE1NXViRkzZgiTySTWr18vhBBi8+bNYvPmzf4xq1evFiaTScyePVscPHjQ\nvz0/P19Mnz5djBkzRhiNRvH2228H7DvckM+fF2LKFCG+/jqspxMRBejrE+JXvxLCaBTis8+UjmZ4\n4bx3auZK6m3bgA8+8NU3ExHJpbYWWLEC+MUvgDVrgBCWU6MqnPdOTSQIdm0lokhSQ1dYttoYAktb\niSiSBnaF/cEP4qcrrCYSBEtbiSjS+rvCrl0bP11h436KiV1biSjaYrErLKeYJLC0lYiiLV66wsZ1\ngmDXViJSSn9X2B/9yJcwPv9c6YhCF9cJgl1biUhJCQlAeTmwZQuweLFvPVRNk/pxuwbB0lYiiiVK\nl8JyDWIAlrYSUSwZWAprtaqjFDZuEwRLW4ko1vSXwpaWqqMUNi6nmFjaSkSxLtqlsJxi+g5LW4ko\n1qmhFDbuEgRLW4lILWK9FDbuEgRLW4lITWK5FDau1iBY2kpEatZfCpuW5psJkbMUVvNrECxtJSI1\n6y+Fveaa2CiFjasEwdJWIlK7WCqFjZspJpa2ElG8kbMUVtNTTCxtJaJ4k5MDHDwIHD6sTClsXCQI\nlrYSUbyaPNn3vddKlMLGRYJgaSsRxTOlSmFVvwbB0lYi0pJwS2E1uQbB0lYi0pJolsKqPkGwtJWI\ntCZapbCqnmJiaSsRaV2wpbCam2JiaSsRaV0kS2FVmyBY2kpE5DOwFHbOHN/arBxUmyDUWtrqdDqV\nDmFEGL+y1By/mmMHYj/+/lLYrVuBhx4CKitHXgobkQTR0NCAtLQ0mM1mVFRUSI4pKSmB2WyGxWKB\n2+0O6bn25Xb8yyu1KCmJRPSRFev/yIbD+JWl5vjVHDugnvgXLgT27wfeeQd47DHgwz/Vwr7cHta+\nZE8QXq8XxcXFaGhoQHNzM3bs2IEjR44EjKmrq8PRo0fR0tKCrVu3oqioKOjnAsDulN3wjFuLXl2t\n3OETEalefynsyTO1eOyltdidsjus/cieIJqampCamoqUlBQkJiYiPz8f1dXVAWNqampQUFAAALBa\nreju7saJEyeCem6/3gdb8dofquQOn4goLlxzDTBqykb0PtAa/k6EzD744AOxcuVK//3f//73ori4\nOGDM/fffLz777DP//XvuuUccOHBAfPjhh8M+FwB/+MMf/vAnjJ9QjaB5rDSdThfUOBHm6km4zyMi\notDIniAMBgM8Ho//vsfjgdFovOqYjo4OGI1G9Pb2DvtcIiKKDtnXIHJyctDS0oL29nb09PRg586d\ncDgcAWMcDge2b98OAHC5XJg4cSL0en1QzyUiouiQ/Qxi9OjR2LRpE+x2O7xeLwoLC5Geno4tW7YA\nAFatWoWFCxeirq4OqampSEpKwrZt2676XCIiUkDIqxYKqq+vF7feeqtITU0VGzZsUDqckN18880i\nMzNTZGVliblz5yodzrCWL18upk6dKmbNmuXfdurUKbFgwQJhNptFbm6u+Nvf/qZghFcnFf9LL70k\nDAaDyMrKEllZWaK+vl7BCK/u2LFjwmaziYyMDDFz5kxRWVkphFDHazBU7Go5/hcuXBC33367sFgs\nIj09XbzwwgtCCHUceyGGjj/U46+aBNHX1ydMJpNoa2sTPT09wmKxiObmZqXDCklKSoo4deqU0mEE\n7ZNPPhGHDh0KeIN99tlnRUVFhRBCiA0bNojnn39eqfCGJRV/WVmZ+O1vf6tgVME7fvy4cLvdQggh\nzpw5I2bMmCGam5tV8RoMFbuajv+5c+eEEEL09vYKq9Uq9u3bp4pj308q/lCPv2pabYRyjUQsEyqq\nwpo3bx4mTZoUsG3gNSwFBQX44x//qERoQZGKH1DPazBt2jRkZWUBACZMmID09HR0dnaq4jUYKnZA\nPcd//PjxAICenh54vV5MmjRJFce+n1T8QGjHXzUJorOzE8nJyf77RqPR/w9OLXQ6HRYsWICcnBy8\n+eabSocTlq6uLuj1egCAXq9HV7S/RV0GVVVVsFgsKCwsRHd3t9LhBKW9vR1utxtWq1V1r0F/7D/4\nwQ8AqOf4X758GVlZWdDr9bj77rsxc+ZMVR17qfiB0I6/ahJEsNdXxLLPPvsMbrcb9fX1eO2117Bv\n3z6lQxoRnU6nutelqKgIbW1t+OKLLzB9+nQ888wzSoc0rLNnz2LJkiWorKzEtddeG/BYrL8GZ8+e\nxdKlS1FAvgYZAAADfElEQVRZWYkJEyao6viPGjUKX3zxBTo6OvDJJ5/gz3/+c8DjsX7sB8fvdDpD\nPv6qSRDBXF8R66ZPnw4AmDJlChYvXoympiaFIwqdXq/HiRMnAADHjx/H1KlTFY4oNFOnTvX/x165\ncmXMvwa9vb1YsmQJli1bhgcffBCAel6D/tifeOIJf+xqO/4AcN111yEvLw8HDx5UzbEfqD/+AwcO\nhHz8VZMg1H6NxPnz53HmzBkAwLlz57B7925kZmYqHFXoHA4H3n33XQDAu+++6/+PrxbHjx/33/7o\no49i+jUQQqCwsBAZGRkoLS31b1fDazBU7Go5/idPnvRPv1y4cAF79uxBdna2Ko49MHT8/ckNCPL4\ny792Hjl1dXVixowZwmQyifXr1ysdTki++eYbYbFYhMViETNnzlRF/Pn5+WL69OkiMTFRGI1G8fbb\nb4tTp06Je+65J+bL/IS4Mv633npLLFu2TGRmZorZs2eLBx54QJw4cULpMIe0b98+odPphMViCShL\nVMNrIBV7XV2dao7/l19+KbKzs4XFYhGZmZnilVdeEUIIVRx7IYaOP9Tjr7rvpCYiouhQzRQTERFF\nFxMEERFJYoIgIiJJTBBERCSJCYJIwunTp/HGG2/Itr+DBw9i7dq1su2PKBpYxUQkob29HYsWLcLh\nw4eVDoVIMTyDIJLwwgsvoLW1FdnZ2Xj++eevOnbChAl47rnnMGvWLOTm5sLlcmH+/PkwmUz405/+\nBABwOp1YtGgRAKCsrAwrVqzA3XffDZPJhKqqqoj/PUThYIIgklBRUQGTyQS3242Kioqrjj1//jzu\nuecefPXVV7j22mvx4osv4uOPP8ZHH32EF198UfI5X3/9NXbv3o2mpiaUl5fD6/VG4s8gGhHZv1GO\nKB6EMvM6ZswY2O12AEBmZibGjRuHhIQEzJo1C+3t7VeM1+l0yMvLQ2JiIiZPnoypU6eiq6sLN954\no1zhE8mCZxBEI5SYmOi/PWrUKIwZM8Z/u6+vT/I5/WMAICEhYchxREpigiCScO211/qbK/ZLS0uT\nZd+sCyG1YIIgkjB58mT88Ic/RGZmJp5//nmcPHlyyLGDvxNg4H2p27H+PQJE/VjmShSE2tpatLW1\nobi4WOlQiKKGCYKIiCRxiomIiCQxQRARkSQmCCIiksQEQUREkpggiIhIEhMEERFJ+n/ZImkGAKXm\n0wAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x32abdd0>"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2 pageno : 268"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"M = 150. #Molecular mass(gm)\n",
"v = 5. #litre/sec\n",
"v = 5*60. #litre/min\n",
"V = 860. #litres\n",
"Cpulse = .75\n",
"# Calculations and Results\n",
"#From Material Balance\n",
"Area1 = M/v; #gm.min/litre\n",
"A1 = 0.375;\n",
"Area2 = A1*(1+1./4+1./16+1./64+1./256+1./1024+1./4096); #Taking Significant Areas\n",
"\n",
"\n",
"print \" From material balance Area is %.1f gm.min/litre\"%(Area1)\n",
"print \" From Tracer Curve Area is %.1f gm.min/litre\"%(Area2)\n",
"print \" Part a\"\n",
"print \" As the two areas are equal,this is a properly done experiment \"\n",
"#For the liquid,calculating t\n",
"sum1 = 0;\n",
"for i in range(10):\n",
" sum1 = sum1+2*i*A1/(4**(i-1));\n",
" t = sum1/Area1;\n",
"\n",
"#liquid volume in vessel\n",
"Vl = t*v;\n",
"#Fraction of liquid\n",
"f = Vl/V;\n",
"E = Cpulse/(M/v)\n",
"\n",
"print \" Part b\"\n",
"print \" Fraction of liquid is %.f %%\"%(f*100)\n",
"\n",
"print \" Part c\"\n",
"print \" The E curve is %.1f C\"%E\n",
"print \" Part d\"\n",
"print \" The vessel has a strong recirculation of liquid,probably induced by the rising bubbles\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" From material balance Area is 0.5 gm.min/litre\n",
" From Tracer Curve Area is 0.5 gm.min/litre\n",
" Part a\n",
" As the two areas are equal,this is a properly done experiment \n",
" Part b\n",
" Fraction of liquid is 93 %\n",
" Part c\n",
" The E curve is 1.5 C\n",
" Part d\n",
" The vessel has a strong recirculation of liquid,probably induced by the rising bubbles\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3 pageno : 272\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"Cin = zeros(14)\n",
"E = zeros(14)\n",
"Cout = zeros(14)\n",
"Cin[0] = 0.\n",
"Cin[1] = 8.\n",
"Cin[2] = 4.\n",
"Cin[3] = 6\n",
"Cin[4] = 0\n",
"E[4] = 0\n",
"E[5] = 0.05\n",
"E[6] = 0.5\n",
"E[7] = 0.35\n",
"E[8] = 0.1\n",
"E[9] = 0.\n",
"\n",
"# Calculations\n",
"for t in range(8,14):\n",
" sum1 = 0;\n",
" for p in range(5,t-1):\n",
" if p>10 or (t-p)>5:\n",
" h = 2;\n",
" else:\n",
" sum1 = sum1+Cin[t-p] * E[p];\n",
" Cout[t] = sum1;\n",
"\n",
"t = linspace(1,14,14)\n",
"Cout = transpose(Cout)\n",
"\n",
"# Results\n",
"plot(t,Cout)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
"[<matplotlib.lines.Line2D at 0x43ec990>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD9CAYAAABDaefJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1QFHeeBvBnFNQMGpBEwcygaCCBER2GkJC4MQwa40ki\n5268Ld2scmp2WTYpTbJblXNv6xaqXNas3mXJJethLjGxshdyZ11Fyhqs04qjUUQkoIkvWcCVOIM6\niSLG18hL3x+dQQcGZgam59c983z+4qWZecroQ+fbv+6fTpIkCUREFBZGiA5ARETBw1InIgojLHUi\nojDCUiciCiMsdSKiMMJSJyIKI36Vend3NywWCxYuXNjve3a7HbGxsbBYLLBYLFi3bl3QQxIRkX+i\n/DmovLwcJpMJV65c8fr93NxcVFVVBTUYEREFzueZutPphM1mw/PPP4+B7lPi/UtEROrgs9Rffvll\nbNiwASNGeD9Up9OhpqYGZrMZ+fn5OHHiRNBDEhGRfwYdv+zYsQMTJ06ExWKB3W73ekxWVhYcDgf0\nej2qq6uxaNEiNDU19TtOp9MFJTARUaQJaBoiDWLt2rWS0WiUkpOTpcTEREmv10vLli0b7Eek5ORk\n6eLFi/2+7uOtVO93v/ud6AjDouX8Ws4uScwvmtbzB9qdg45fysrK4HA4cPr0aVRWVmLOnDnYunWr\nxzEul6v3t0hdXR0kSUJ8fHygv4iIiCgI/Fr94uYeoVRUVAAAioqKsG3bNmzatAlRUVHQ6/WorKwM\nfkoiIvKLTpJCs3RFp9NpepWM3W6H1WoVHWPItJxfy9kBbee32YD//E87/vd/raKjDJmW//yBwLuT\npU5EA3rxRWDbNuDcOYBrHcQItDv5mAAiGlBNDdDeDpw8KToJ+YulTkReXbkCNDUBP/4xsGeP6DTk\nL5Y6EXl16BBgsQDz57PUtYSlTkReHTgAzJoF5OUBdjvQ0yM6EfmDpU5EXh04APzgB4DRCIwfDxw7\nJjoR+YOlTkT9dHfL45dZs+TP8/I4gtEKljoR9XPsGDBpEnDvvfLnLHXtYKkTUT/uebqb1Qrs2yef\nwZO6sdSJqB/3PN1t0iQgIQE4elRcJvIPS52I+qmp8Sx1gCMYrWCpE5GHs2flG48efNDz61YrS10L\nWOpE5ME9T+/7rBerFfj0U6CrS0gs8hNLnYg89L1I6jZxIpCUBDQ0hD4T+Y+lTkQevM3T3dx3l5J6\nsdSJqNf168Dx40B2tvfv82Kp+vlV6t3d3bBYLFi4cKHX769evRqpqakwm81obGwMakAiCp26OmDm\nTOCuu7x/PzdXHs90doY2F/nPr1IvLy+HyWTq3c7uTjabDS0tLWhubsbmzZtRXFwc9JBEFBoDzdPd\n7rkHmDYNqK8PXSYKjM9SdzqdsNlseP75573uvlFVVYXCwkIAQE5ODjo6OuByuYKflIgU1/emI284\nglE3nxtPv/zyy9iwYQO+/fZbr99va2tDUlJS7+dGoxFOpxMJCQn9ji0pKen92Gq1anrfQKJw09MD\nHDwIbNky+HF5ecC//zvwm9+EJleksdvtsA/javSgpb5jxw5MnDgRFotl0DfpewbvbUwDeJY6EanL\nyZPyeMXL+ZiHJ54AnnsO+O47YPTo0GSLJH1PeEtLSwP6+UHHLzU1NaiqqsLUqVOxdOlSfPLJJ1i+\nfLnHMQaDAQ6Ho/dzp9MJg8EQUAgiEs+f0QsAxMXJd5vW1SmfiQI3aKmXlZXB4XDg9OnTqKysxJw5\nc7B161aPYwoKCnq/Vltbi7i4OK+jFyJSN18XSe/Eubp6BbRO3T1WqaioQEVFBQAgPz8f06ZNQ0pK\nCoqKivDnP/85+CmJSHGD3XTUF0tdvXSStyUtSryRTud19QwRiedyAWlpwMWLwAg/TvWuXJEfx3vh\nAjBmjPL5Ilmg3ck7SokINTXAY4/5V+gAMG4ckJEhr5YhdWGpE1FA83Q3jmDUiaVORH6vfLkTS12d\nOFMninA3b8rr07/+GoiJ8f/nrl2T17R//TWg1yuXL9Jxpk5EAamvB0ymwAodkI/PzJTP8kk9WOpE\nEW4o83Q3jmDUh6VOFOGGMk93Y6mrD2fqRBFMkoAJE4CjR4GhPN3jxg3558+dk5c5UvBxpk5Efmtq\nAsaOHVqhA/JmGtnZwP79wc1FQ8dSJ4pgwxm9uHEEoy4sdaIINpyLpG4sdXVhqRNFsEAe4jWQnBzg\nyy+By5eDk4mGh6VOFKEuXgTOngVmzBje64weLRf7vn3ByUXDw1InilA1NXIZjxw5/NfiCEY9WOpE\nESoY83Q3lrp6sNSJIlQwVr64ZWcDLS1Ae3twXo+Gzmep37x5Ezk5OcjMzITJZMLatWv7HWO32xEb\nGwuLxQKLxYJ169YpEpaIguPWLaCxEXj00eC83qhR8lk/5+riRfk6YMyYMdizZw/0ej26urrw+OOP\nY//+/Xj88cc9jsvNzUVVVZViQYkoeBoagNTU4N4F6h7BLFoUvNekwPk1ftF//1zNW7duobu7G/Hx\n8f2O4SMAiLQjmKMXN87V1cHnmToA9PT0ICsrC6dOnUJxcTFMJpPH93U6HWpqamA2m2EwGLBx48Z+\nxwBASUlJ78dWqxVWq3VY4YloaA4cABYvDu5rPvQQ8NVXwDffyM+DoaGx2+2w2+1D/vmAHuh1+fJl\nzJ8/H+vXr/co5CtXrmDkyJHQ6/Worq7GmjVr0NTU5PlGfKAXkSpIkrxp9KFDwJQpwX3tp58GVqwI\n/i+MSKboA71iY2Px9NNPo76+3uPr48aN6x3RLFiwAJ2dnWjnZXAiVfrb34CoKGDy5OC/Nkcw4vks\n9QsXLqCjowMAcOPGDezatQsWi8XjGJfL1fubpK6uDpIkeZ27E5F47nm6Thf812api+dzpn7u3DkU\nFhaip6cHPT09WLZsGebOnYuKigoAQFFREbZt24ZNmzYhKioKer0elZWVigcnoqEJ5k1HfWVmys9W\nP38eSExU5j1ocNwkgyjCZGQA770n3zCkhL//e2DpUmDJEmVeP9JwkwwiGlBHh7xCxWxW7j04ghGL\npU4UQQ4eBB5+GIiOVu49WOpisdSJIoiS83S3GTPkZ8C0tSn7PuQdS50ogihxJ2lfI0YAubk8WxeF\npU4UITo7gfp64LHHlH8vjmDEYakTRYijR4HkZCAuTvn3YqmLw1InihChGL24mUzAtWvyShsKLZY6\nUYQIxUVSN50OsFp5ti4CS50oAkhSaM/UAY5gRGGpE0WAM2eA7m5g2rTQvae71HkjeWix1IkigJIP\n8RrIAw8AXV3yUyEpdFjqRBEglPN0N52OIxgRWOpEESDU83Q3lnro8SmNRGHu22+B++6Tb90fNSq0\n733qFDB7tvzIgFCOfsIJn9JIRB4OHQKyskJf6IB8YTYqCuizuyUpiKVOFOZEzNPdOFcPvUFL/ebN\nm8jJyUFmZiZMJhPWrl3r9bjVq1cjNTUVZrMZjY2NigQloqERNU93Y6mH1qClPmbMGOzZswdHjhzB\n559/jj179mD//v0ex9hsNrS0tKC5uRmbN29GcXGxooGJyH/d3fL4RdSZOiDfWWq3c716qPgcv+j1\negDArVu30N3d3W9D6aqqKhQWFgIAcnJy0NHRAZfLpUBUIgrUF18ABgNwzz3iMiQnA3o9cPKkuAyR\nxOfG0z09PcjKysKpU6dQXFwMk8nk8f22tjYkJSX1fm40GuF0OpGQkNDvtUpKSno/tlqtsFqtQ09O\nRD6JHr24uUcwfeqDvLDb7bDb7UP+eZ+lPmLECBw5cgSXL1/G/PnzYbfb+5Vx3+U2ugHWLt1Z6kSk\nvAMHgCefFJ1CLvXt24EXXhCdRP36nvCWlpYG9PN+r36JjY3F008/jfr6eo+vGwwGOByO3s+dTicM\nBkNAIYhIGWo6U7fbgZ4e0UnC36ClfuHCBXR0dAAAbty4gV27dsFisXgcU1BQgK1btwIAamtrERcX\n53X0QkSh5XQC16/Lz2ARzWgExo8Hjh0TnST8DTp+OXfuHAoLC9HT04Oenh4sW7YMc+fORUVFBQCg\nqKgI+fn5sNlsSElJQUxMDLZs2RKS4EQ0uJoaedWLWu7kdM/VZ84UnSS88TEBRGFqzRr58QCvvio6\niezDD4GPPgI+/lh0Em3hYwKICIB65uluViuwb5+8dp6Uw1InCkPXrsnrwrOzRSe5bdIkICFB3gCb\nlMNSJwpDdXWA2QyMGSM6iSc+MkB5LHWiMKS20YsbS115LHWiMCTyyYyDsVqB/fvlbe5IGSx1ojDT\n0wPU1qqz1CdMAJKSgIYG0UnCF0udKMycOAHce698UVKNOIJRFkudKMyodZ7uxlJXFkudKMyodZ7u\nlpsr3+3a2Sk6SXhiqROFGbWfqcfHA/ffDxw+LDpJeGKpE4WR8+eBS5eA9HTRSQbHEYxyWOpEYaSm\nBnjsMWCEyv9ls9SVo/L/9EQUCLXP092eeELeO/W770QnCT8sdaIwovZ5ultsLJCWJhc7BRdLnShM\n3LghbzT9yCOik/iHIxhl+Cx1h8OBvLw8TJ8+HRkZGXjjjTf6HWO32xEbGwuLxQKLxYJ169YpEpaI\nBlZfD0yfDuj1opP4h6WuDJ8bT0dHR+P1119HZmYmrl69ioceegjz5s1Dep/L67m5uaiqqlIsKBEN\nTiujF7fHHwf+4R/k/8O46y7RacKHzzP1xMREZGZmAgDGjh2L9PR0nD17tt9x3NWISCytXCR1GzcO\nmDEDOHhQdJLwEtBMvbW1FY2NjcjJyfH4uk6nQ01NDcxmM/Lz83HixImghiSiwfX0yMsZtXSmDnAE\nowSf4xe3q1evYvHixSgvL8fYsWM9vpeVlQWHwwG9Xo/q6mosWrQITU1N/V6jpKSk92Or1Qqr1Trk\n4ER0W1MTcPfd8p6kWpKXB5SWik6hLna7HXa7fcg/79fG052dnXjmmWewYMECvPTSSz5fdOrUqfjs\ns88QHx9/+4248TSRYt55Rz7j/eAD0UkCc+2a/DRJlwuIiRGdRp2CvvG0JElYtWoVTCbTgIXucrl6\n37Surg6SJHkUOhEpS2vzdLeYGCAzUx4dUXD4HL8cOHAAH3zwAWbOnAmLxQIAKCsrw5kzZwAARUVF\n2LZtGzZt2oSoqCjo9XpUVlYqm5qIPBw4AKxZIzrF0Ljn6vPmiU4SHvwavwTljTh+IVLEhQvyUw/b\n24GRI0WnCdwnnwD//M9cBTOQoI9fiEjdamqARx/VZqED8gPIvvgCuHJFdJLwwFIn0jit3XTU1113\nAdnZ8obUNHwsdSKN0+pF0jtxvXrwsNSJNOy774AjR4A+9wNqDks9eFjqRBrW0ACkpsq33GtZTg7w\n5ZfA5cuik2gfS51Iw+rq5IukWjd6tFzs+/aJTqJ9LHUiDaur087z033hCCY4WOpEGsZSp7548xGR\nRrW3A8nJwKVL2l2jfqfOTuCee4DWVoBPGbmNNx8RRYj6eiArKzwKHQCio+WlmXv3ik6ibSx1Io0K\np9GLG0cww8dSJ9Kow4eBhx8WnSK4WOrDx5k6kQZJEjBpEnDoEDBliug0wdPVBdx7L9DcDEyYIDqN\nOnCmThQBnE652CdPFp0kuKKi5A2ph7HxT8RjqRNpkHv0otOJThJ8HMEMD0udSIPC8SKpG0t9eHyW\nusPhQF5eHqZPn46MjAy88cYbXo9bvXo1UlNTYTab0djYGPSgRHRbOJe62SzvWXrunOgk2uSz1KOj\no/H666/j+PHjqK2txVtvvYWTJ096HGOz2dDS0oLm5mZs3rwZxcXFigUminQ9PcBnn8nPIA9HI0cC\nTzzBufpQ+Sz1xMREZGZmAgDGjh2L9PR0nD171uOYqqoqFBYWAgBycnLQ0dEBl8ulQFwi+utf5RUi\n994rOolyOIIZuoBm6q2trWhsbEROn4c3t7W1ISkpqfdzo9EIp9MZnIRE5CGcRy9uLPWhi/L3wKtX\nr2Lx4sUoLy/H2LFj+32/7zpKnZfL8iUlJb0fW61WWK1W/5MSEYDwvOmor4wMoKNDXrppNIpOE1p2\nux32Ycye/Lr5qLOzE8888wwWLFiAl156qd/3f/GLX8BqtWLJkiUAgLS0NOzduxcJCQm334g3HxEF\nxSOPAP/2b/J67nC2eDGwaBHw05+KTiJW0G8+kiQJq1atgslk8lroAFBQUICtW7cCAGpraxEXF+dR\n6EQUHN99Bxw7BlgsopMojyOYofE5fjlw4AA++OADzJw5E5bv/yaVlZXhzJkzAICioiLk5+fDZrMh\nJSUFMTEx2LJli7KpiSLU55/L29fFxIhOojyrFfjXfxWdQnv47BciDXnrLXmj6bffFp1EeZIEJCbK\nF4bD6fk2geKzX4jCWCSsfHHT6eSzdY5gAsNSJ9KQSFj5cifO1QPH8QuRRly+DBgM8vZ10dGi04TG\nX/8KzJsHfPVVeD68zB8cvxCFqc8+AzIzI6fQAeCBB+RnrP/tb6KTaAdLnUgjIm30Ashn5xzBBIal\nTqQRkXSR9E4s9cCw1Ik0ItJLnZfk/MNSJ9KAc+eA69eBadNEJwm9adPkbe6amkQn0QaWOpEGhPP2\ndb5wrh4YljqRBkTq6MWNpe4/ljqRBkTiypc75eXJOyFxru4bS51I5SSJpT5livwQsxMnRCdRP5Y6\nkcq1tADjxskPt4pkHMH4h6VOpHKRfpbuxlL3D0udSOUi/SKpW14esHcv0NMjOom6sdSJVI6lLjMY\ngPh44IsvRCdRN5+lvnLlSiQkJGDGjBlev2+32xEbGwuLxQKLxYJ169YFPSRRpOrsBI4eBR56SHQS\ndeAIxjefpb5ixQrs3Llz0GNyc3PR2NiIxsZG/Pa3vw1aOKJId+wYkJwsXygllro/fJb67NmzMX78\n+EGP4XPSiZTB0YsnqxXYtw/o7hadRL18bjzti06nQ01NDcxmMwwGAzZu3AiTyeT12JKSkt6PrVYr\nrFbrcN+eKKxx5YunxERg0iR5JJWVJTqNMux2O+x2+5B/3q+dj1pbW7Fw4UJ84eUKxZUrVzBy5Ejo\n9XpUV1djzZo1aPLy5B3ufEQUuJkzgXffBbKzRSdRjxdekB/y9atfiU4SGiHf+WjcuHHQ6/UAgAUL\nFqCzsxPt7e3DfVmiiHftGnDqlFzsdBvn6oMbdqm7XK7e3yJ1dXWQJAnx8fHDDkYU6RoagIwMYNQo\n0UnUJTcX2L9f3uaO+vM5U1+6dCn27t2LCxcuICkpCaWlpejs7AQAFBUVYdu2bdi0aROioqKg1+tR\nWVmpeGiiSMCLpN5NmAAkJcm/9Pjn059fM/WgvBFn6kQBWbIEePppYNky0UnUZ/Vq+WakV18VnUR5\nIZ+pE5Ey6uq48mUgnKsPjGfqRCr0zTdAairQ3g6M4KlXP+3t8k1ZFy8C0dGi0yiLZ+pEYaC+Xl7G\nyEL3Lj4euP9+eR0/eeJfGSIV4ujFN45gvGOpE6kQV774xlL3jjN1IpWRJCAhAWhslFd4kHeXLwNG\nI3DhAjB6tOg0yuFMnUjjvvoKiIpiofsSGwukpQGHDolOoi4sdSKV4ejFfxzB9MdSJ1KZw4dZ6v5i\nqffHUidSGa588d/jj8vLP2/cEJ1EPVjqRCrS3S0/04SP2vXPuHHAjBnAwYOik6gHS51IRU6eBO67\nD/Cx2RjdgSMYTyx1IhXh6CVwLHVPLHUiFeHKl8D94AfAkSPypiLEUidSFa58CZxeD1gswIEDopOo\nA0udSCVu3JBn6pmZopNoD0cwt/ks9ZUrVyIhIQEzZswY8JjVq1cjNTUVZrMZjY2NQQ1IFCmOHAHS\n04ExY0Qn0R6W+m0+S33FihXYuXPngN+32WxoaWlBc3MzNm/ejOLi4qAGJIoUHL0M3WOPAceOAVeu\niE4ins9Snz17NsYPsr6qqqoKhYWFAICcnBx0dHTA5XIFLyFRhODKl6EbM0b+s/v0U9FJxPO58bQv\nbW1tSEpK6v3caDTC6XQiISGh37ElJSW9H1utVlit1uG+PVHYqKsD/umfRKfQrrw8wG4H8vNFJxke\nu90Ou90+5J8fdqkD6PdYSJ1O5/W4O0udiG67dAk4f16eqdPQ5OUBr7wiOsXw9T3hLS0tDejnh736\nxWAwwOFw9H7udDph4DNDiQJSXy8vyxs5UnQS7XrkEeDLL+XnrEeyYZd6QUEBtm7dCgCora1FXFyc\n19ELEQ2MNx0N3+jRwKOPAvv2iU4ils/xy9KlS7F3715cuHABSUlJKC0tRWdnJwCgqKgI+fn5sNls\nSElJQUxMDLZs2aJ4aKJwc/gw8NxzolNon9UqL21cuFB0EnG4nR2RYJIkP8Tr4EEgOVl0Gm2rqQFe\neEHeCjBccDs7Io1pa5MfuTtliugk2vfww8CpU0B7u+gk4rDUiQRz33Q0wKIxCkB0NDBrFrB3r+gk\n4rDUiQTjTUfBFemPDGCpEwnGlS/BFemlzgulRAL19ADx8UBLC3DvvaLThIeuLvnPsrkZmDBBdJrh\n44VSIg1papJLnYUePFFR8obUw7jTXtNY6kQCcfSijEgewbDUiQTi43aVwVInIiG48kUZZjPgcgHn\nzolOEnosdSJBbt2SN3bIyhKdJPyMHAk88URkztVZ6kSCfP45kJICxMSIThKeInUEw1InEoSjF2Wx\n1IkopLjyRVkZGUBHB+B0ik4SWix1IkG48kVZI0YAubnA7t2ik4QW7yglEuDbb+XH7V66JD+EipTx\nf/8HrFwp/wKdNEl0mqHhHaVEGvDZZ/KyOxa6sp56CvjFL4BnnwW++050mtDwq9R37tyJtLQ0pKam\n4rXXXuv3fbvdjtjYWFgsFlgsFqxbty7oQYnCCUcvofOb3wCJicDq1aKThIbP7ey6u7vx4osvYvfu\n3TAYDHj44YdRUFCA9D7bnufm5qKqqkqxoEThpK4O+NGPRKeIDCNGAO+/L+9fWlEBFBWJTqQsn2fq\ndXV1SElJQXJyMqKjo7FkyRJs376933GclxP5jytfQmvcOGD7duBf/gXYv190GmX5PFNva2tDUlJS\n7+dGoxGHDh3yOEan06GmpgZmsxkGgwEbN26EyWTq91olJSW9H1utVlit1qEnJ9Ko8+eBq1eB++8X\nnSSypKTIZ+w//rH8S9VoFJ3IO7vdDvswboX1Weo6P/bYysrKgsPhgF6vR3V1NRYtWoSmpqZ+x91Z\n6kSR6vBh+aYjbl8Xen/3d/Js/dln5S3vxowRnai/vie8paWlAf28z/GLwWCAw+Ho/dzhcMDY51fc\nuHHjoNfrAQALFixAZ2cn2iN551eiQXD0Itarr8qbfBcXA+E4NfZZ6tnZ2WhubkZraytu3bqFjz76\nCAUFBR7HuFyu3pl6XV0dJElCfHy8MomJNI4rX8TS6YAtW+RlpW+9JTpN8Pkcv0RFReHNN9/E/Pnz\n0d3djVWrViE9PR0VFRUAgKKiImzbtg2bNm1CVFQU9Ho9KisrFQ9OpEWSJJ+pv/ee6CSRLSYG+Phj\nYNYsYMYM+c7TcME7SolCqKUFmDMHOHNGdBICgF27gOXLgUOHgMmTRafxjneUEqkYRy/qMm8e8Otf\nAz/8IXDjhug0wcFSJwohPm5XfV55BUhLA37+8/C4cMpSJwohrnxRH50OePtteReq8nLRaYaPM3Wi\nEOnsBMaPB86eBe6+W3Qa6uurr+RHCXzwATB3rug0t3GmTqRSx4/LF+NY6Oo0ZQrwX/8FPPcc0Noq\nOs3QsdSJQoSjF/XLywPWrgUWLQKuXxedZmhY6kQhwpUv2rB6tfys+1WrtHnhlKVOFCJc+aINOh3w\nH/8h31OwcaPoNIHjhVKiELh2DZg4EWhvB0aPFp2G/OFwADk58t2/Tz0lLgcvlBKpUGOjvLs9C107\nkpKAykpg2TLg1CnRafzHUicKAY5etOmJJ4Df/U6+cHr1qug0/mGpE4UAV75oV3GxPIZZsUIbF05Z\n6kQhwJUv2qXTyY/odTiA9etFp/GNF0qJFHbhgrx13aVL8ibIpE1tbfIv5rffBvLzQ/e+vFBKpDKH\nDwPZ2Sx0rTMYgP/5H+Af/xHwslunavj8a7Zz506kpaUhNTUVr732mtdjVq9ejdTUVJjNZjQ2NgY9\npBoMZyNYNdByfi1nB4D//m+7pkcvWv/zD2b+WbOAdevkC6fffhu0lw2qQUu9u7sbL774Inbu3IkT\nJ07gww8/xMmTJz2OsdlsaGlpQXNzMzZv3ozi4mJFA4vCv9jiaDk7ABw4YNf0yhet//kHO//Pfy6v\niiksBHp6gvrSQTFoqdfV1SElJQXJycmIjo7GkiVLsH37do9jqqqqUFhYCADIyclBR0cHXC6XcomJ\nNESSbs9iKXy88QbwzTfyWbvaDLpHaVtbG5KSkno/NxqNOHTokM9jnE4nEhISghx1YBUVwI4dyr5H\nU5O8Ua1WaTm/lrN3dcmzdINBdBIKplGjgG3b5HsPDh4Eonzu9hw6g0bR6XR+vUjfK7MD/Zy/r6dW\nTU2loiMMi5bzazk7AIwYoe38paXMPxCnU7GXHpJBS91gMMDhcPR+7nA4YDQaBz3G6XTC4OW0hMsZ\niYiUN+hMPTs7G83NzWhtbcWtW7fw0UcfoaCgwOOYgoICbN26FQBQW1uLuLi4kI5eiIjotkHP1KOi\novDmm29i/vz56O7uxqpVq5Ceno6KigoAQFFREfLz82Gz2ZCSkoKYmBhs2bIlJMGJiMgLKQSqq6ul\nBx98UEpJSZHWr18fircMmjNnzkhWq1UymUzS9OnTpfLyctGRAtbV1SVlZmZKzzzzjOgoAbt06ZL0\n7LPPSmlpaVJ6erp08OBB0ZECUlZWJplMJikjI0NaunSpdPPmTdGRBrVixQpp4sSJUkZGRu/XLl68\nKD355JNSamqqNG/ePOnSpUsCEw7OW/5f//rXUlpamjRz5kzphz/8odTR0SEw4cC8ZXfbuHGjpNPp\npIsXL/p8HcXvcfNnrbuaRUdH4/XXX8fx48dRW1uLt956S1P5AaC8vBwmk0mTF6rXrFmD/Px8nDx5\nEp9//jnS09NFR/Jba2sr3n77bTQ0NOCLL75Ad3c3KisrRcca1IoVK7Bz506Pr61fvx7z5s1DU1MT\n5s6di/XOlrWuAAADvUlEQVQqfgCKt/xPPfUUjh8/jqNHj+KBBx7AH/7wB0HpBuctOyBfy9y1axem\nTJni1+soXur+rHVXs8TERGRmZgIAxo4di/T0dJw9e1ZwKv85nU7YbDY8//zzmrtYffnyZXz66adY\nuXIlAHkcGBsbKziV/+6++25ER0fj+vXr6OrqwvXr170uIlCT2bNnY/z48R5fu/NelMLCQnz88cci\novnFW/558+ZhxPfPaMjJyYFTbctVvuctOwC88sor+OMf/+j36yhe6t7Wsbe1tSn9topobW1FY2Mj\ncnJyREfx28svv4wNGzb0/qXWktOnT2PChAlYsWIFsrKy8LOf/QzXNbQbcHx8PH71q19h8uTJuO++\n+xAXF4cnn3xSdKyAuVyu3sUPCQkJmr658N1330V+KJ/GNUzbt2+H0WjEzJkz/f4Zxf+la/F/+b25\nevUqFi9ejPLycowdO1Z0HL/s2LEDEydOhMVi0dxZOgB0dXWhoaEBv/zlL9HQ0ICYmBhV/69/X6dO\nncKf/vQntLa24uzZs7h69Sr+8pe/iI41LDqdTrP/pn//+99j1KhR+MlPfiI6il+uX7+OsrIyjzX2\n/vw7VrzU/VnrrnadnZ149tln8dOf/hSLFi0SHcdvNTU1qKqqwtSpU7F06VJ88sknWL58uehYfjMa\njTAajXj4+wenLF68GA0NDYJT+a++vh6zZs3CPffcg6ioKPzoRz9CTU2N6FgBS0hIwPnz5wEA586d\nw8SJEwUnCtx7770Hm82mqV+qp06dQmtrK8xmM6ZOnQqn04mHHnoIX3/99aA/p3ip+7PWXc0kScKq\nVatgMpnw0ksviY4TkLKyMjgcDpw+fRqVlZWYM2dO7z0FWpCYmIikpCQ0ff+c0927d2P69OmCU/kv\nLS0NtbW1uHHjBiRJwu7du2EymUTHClhBQQHef/99AMD777+vqRMbQH7S7IYNG7B9+3aMGTNGdBy/\nzZgxAy6XC6dPn8bp06dhNBrR0NDg+5dqkFfleGWz2aQHHnhAuv/++6WysrJQvGXQfPrpp5JOp5PM\nZrOUmZkpZWZmStXV1aJjBcxut0sLFy4UHSNgR44ckbKzs1W/HG0gr732Wu+SxuXLl0u3bt0SHWlQ\nS5YskSZNmiRFR0dLRqNRevfdd6WLFy9Kc+fO1cSSxr7533nnHSklJUWaPHly77/f4uJi0TG9cmcf\nNWpU75/9naZOnerXksaQ7XxERETK096SCCIiGhBLnYgojLDUiYjCCEudiCiMsNSJiMIIS52IKIz8\nP+TL9axw2ETbAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x4149950>"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4 pageno : 275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math \n",
"\n",
"# Variables\n",
"k = 0.307; # min**-1\n",
"t = 15.; \n",
"\n",
"# Calculations and Results\n",
"fr_unconverted = math.exp(-k*t);\n",
"print \" The fraction of reactant unconverted in a plug flow reactor is %.2f\"%(fr_unconverted)\n",
"\n",
"#For the real reactor\n",
"T = [5,10,15,20,25,30]; #given time\n",
"E = [0.03,0.05,0.05,0.04,0.02,0.01]; #given\n",
"dt = 5;\n",
"sum1 = 0;\n",
"for i in range(6):\n",
" sum1 = sum1+math.exp(-k*T[i])*E[i]*dt;\n",
"\n",
"print \" The fraction of reactant unconverted in a real reactor is %.3f\"%(sum1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The fraction of reactant unconverted in a plug flow reactor is 0.01\n",
" The fraction of reactant unconverted in a real reactor is 0.047\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5 pageno : 277"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"from scipy.integrate import quad \n",
"\n",
"# Variables\n",
"k = 0.5 #litre/mol.min\n",
"CAo = 2. #mol/litre\n",
"to = 1.\n",
"t1 = 3.\n",
"E = 0.5\n",
"\n",
"# Calculations\n",
"#Using eqn 13\n",
"def f2(t): \n",
"\t return 1./(1+t)\n",
"\n",
"XA_avg = 1-(E* quad(f2,to,t1)[0])\n",
"# Results\n",
"print \" Average concentration of A remaining in the droplet is %.3f\"%(XA_avg)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Average concentration of A remaining in the droplet is 0.653\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|