1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Thermodynamic property relations"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.10 Page No : 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"T2 = 150. \t\t\t #temperature at which water it is desired to boil water in degree celsius\n",
"P1 = 0.10133\t\t\t #ambient pressure in MPa\n",
"T1 = 100.\t \t\t #temperature at which water boils corresponding at pressure P1 in degree celsius\n",
"del_hv = 2256.94\t\t #enthalpy of vaporization in kJ/kg\n",
"R = 8.314;\t\t \t #universal gas constant in J/molK\n",
"M = 18*10**-3;\t\t\t #molar mass of water in kg/mol\n",
"\n",
"# Calculations\n",
"T1 = T1+273.15\n",
"T2 = T2+273.15\n",
"P2 = P1*(math.exp(((del_hv*10**3*M)*((1./T1)-(1./T2)))/(R)))\n",
"\n",
"# Results\n",
"print \" The approximate pressure at which the boiler is to be operated = %0.3f MPa\"%(P2);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The approximate pressure at which the boiler is to be operated = 0.476 MPa\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.11 Page No : 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"m = 60. \t\t\t #mass of the person who wants to skate in kg\n",
"T = -2.\t\t\t #temperature of the ice in degree celsius\n",
"A = 15.\t\t\t #area of contact between the skate edges and ice in mm**2\n",
"vs = 1.091*10**-3;\t\t\t #specific volume of ice in m**3/kg (at Tref)\n",
"vf = 1.0*10**-3;\t\t\t #specific volume of water in m**3/kg (at Tref)\n",
"del_hf = 6.002;\t\t \t #enthalpy of melting of ice in kJ/mol\n",
"g = 9.81;\t\t\t #accleration due to gravity in m/s**2\n",
"Tref = 0. \t\t\t #reference temperature at which the specific enthalpy of ice and water are taken in degree celsius\n",
"\n",
"# Calculations\n",
"Tref = Tref+273.15\n",
"del_P = ((m*g)/(A*10**-6))*10**-6\n",
"del_v = (vf-vs)*(18*10**-3);\t\n",
"del_T = (del_P*10**6)/((del_hf*10**3)/(Tref*del_v));\t\t\t \n",
"\n",
"# Results\n",
"print \" The temperature of ice originally = %d degree celsius \"%(T);\n",
"print \" The reduction in melting point of ice due to the additional pressure,computed using the Clayperon equation = %0.2f degree celsius \"%(del_T);\n",
"if del_T<T :\n",
" print \" The ice can melt due to the additional pressure and therefore it will be possible to skate \"\n",
"else:\n",
" print \" The ice will not melt and therefore it will be difficult to skate \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The temperature of ice originally = -2 degree celsius \n",
" The reduction in melting point of ice due to the additional pressure,computed using the Clayperon equation = -2.93 degree celsius \n",
" The ice can melt due to the additional pressure and therefore it will be possible to skate \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.12 Page No : 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"T1 = 100.\t \t\t #temperature of water in degree celsius\n",
"del_hv1 = 2256.94;\t\t\t #enthalpy of vaporization at T1 in kJ/kg\n",
"T2 = 150. \t\t\t #temperature at which the enthalpy of vaporization is to be determined in degree celsius\n",
"Cp_f = 4.26\t \t\t #isobaric heat capacity of liquid in kJ/kgK\n",
"Cp_g = 1.388\t\t\t #isobaric heat capacity of vapour in kJ/kgK\n",
"\n",
"# Calculations\n",
"del_hv2 = ((Cp_g-Cp_f)*(T2-T1))+del_hv1\n",
"\n",
"# Results\n",
"print \" The enthalpy of vaporization at 150 degree celsius = %0.2f kJ/kg\"%(del_hv2);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The enthalpy of vaporization at 150 degree celsius = 2113.34 kJ/kg\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.13 Page No : 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"T1 = 100. \t\t\t #temperature of water in degree celsius\n",
"del_hv1 = 2256.94 \t\t\t #enthalpy of vaporization at T1 in kJ/kg\n",
"T2 = 150. \t\t \t #temperature at which the enthalpy of vaporization is to be determined in degree celsius\n",
"del_hv_kirchoff = 2113.34\t\t\t #enthalpy of vaporization predicted by the Kirchhoff relation taken from Example 7.12 for comparison, in kJ/kg\n",
"del_hv_steam_tables = 2113.25\t\t\t #enthalpy of vaporization taken from the steam tables corresponding to T2,for comparison, in kJ/kg\n",
"Tc = 647.3 \t\t\t #critical temperature of water in K\n",
"\n",
"# Calculations\n",
"T1 = T1+273.15\n",
"T2 = T2+273.15\n",
"Tr1 = T1/Tc\n",
"Tr2 = T2/Tc\n",
"del_hv2 = del_hv1*(((1-Tr2)/(1-Tr1))**0.38)\n",
"\n",
"# Results\n",
"print \" The enthalpy of vaporization at 150 degree celsius using \";\n",
"print \" Watson correlation \\t = %f kJ/kg\"%(del_hv2);\n",
"print \" Kirchhoffs relation \\t = %f kJ/kg\"%(del_hv_kirchoff);\n",
"print \" From steam tables \\t = %f kJ/kg\"%(del_hv_steam_tables);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The enthalpy of vaporization at 150 degree celsius using \n",
" Watson correlation \t = 2090.687877 kJ/kg\n",
" Kirchhoffs relation \t = 2113.340000 kJ/kg\n",
" From steam tables \t = 2113.250000 kJ/kg\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.14 Page No : 262"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"T = 373.15 \t\t\t #normal boiling point of water in K (temperature at which the enthalpy of vaporization is to be determined)\n",
"Pc = 221.2\t \t\t #critical pressure of water in bar\n",
"Tc = 647.3\t\t \t #critical temperature of water in K\n",
"R = 8.314\t\t\t #universal gas constant in J/molK\n",
"del_hvn_steam_tables = 2256.94\t\t\t #enthalpy of vaporization at the normal boiling point taken from the steam tables, for comparison, in kJ/kg\n",
"\n",
"# Calculations\n",
"Tbr = T/Tc\t\t\t\n",
"del_hvn = ((1.093*R*Tc*(Tbr*((math.log(Pc)-1.013)/(0.930-Tbr))))*10**-3)/(18*10**-3);\n",
"err = abs((del_hvn-del_hvn_steam_tables)/del_hvn_steam_tables)*100\n",
"\n",
"# Results\n",
"print \" The enthalpy of vaporization at the normal boiling point \";\n",
"print \" Using Riedels correlation \\t = %f kJ/kg\"%(del_hvn);\n",
"print \" From the steam tables \\t \\t = %f kJ/kg\"%(del_hvn_steam_tables);\n",
"print \" Error \\t \\t \\t \\t = %f %% \"%(err);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The enthalpy of vaporization at the normal boiling point \n",
" Using Riedels correlation \t = 2337.179008 kJ/kg\n",
" From the steam tables \t \t = 2256.940000 kJ/kg\n",
" Error \t \t \t \t = 3.555212 % \n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|