1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 13 : Dilute solution laws"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 13.1 Page No : 478"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"weight = 10. \t\t\t #weight of NaCl in grams\n",
"volume = 1. \t \t\t #volume of water in litres\n",
"weight_water = 1000. \t\t\t # weight of water in grams (Weight = Volume*Density, density of water = 1g/cc = 1g/ml = 1000g/l)\n",
"molwt_NaCl = 58.5 \t\t\t #molecular weight of NaCl in grams\n",
"molwt_water = 18. \t\t\t #molecular weight of water in grams\n",
"hf = 6.002; \t\t\t #enthalpy change of fusion in kJ/mol at 0 degree celsius\n",
"P = 101.325; \t\t\t #pressure in kPa\n",
"T = 273.15; \t\t\t # freezing point temperature of water at the given pressure in K\n",
"R = 8.314; \t\t\t #universal gas constant in J/molK;\n",
"\n",
"# Calculations\n",
"x2 = (weight/molwt_NaCl)/((weight/molwt_NaCl)+(weight_water/molwt_water))\n",
"delt = (R*T**2*x2)/(hf*10**3)\n",
"\n",
"# Results\n",
"print ' The depression in freezing point of water when 10g of NaCl solute is added = %0.2f K'%(delt);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The depression in freezing point of water when 10g of NaCl solute is added = 0.32 K\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 13.2 Page No : 480"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"weight = 10.; \t\t \t #weight of NaCl in grams\n",
"volume = 1.; \t\t\t #volume of water in litres\n",
"weight_water = 1000.; \t\t\t # weight of water in grams (Weight = Volume*Density, density of water = 1g/cc = 1g/ml = 1000g/l)\n",
"molwt_NaCl = 58.5; \t\t\t #molecular weight of NaCl in grams\n",
"molwt_water = 18; \t\t\t #molecular weight of water in grams\n",
"lat_ht = 2256.94; \t\t\t #latent heat of vaporization in kJ/kg at 100 degree celsius (obtained from steam tables)\n",
"P = 101.325; \t\t\t #pressure in kPa\n",
"T = 373.15; \t\t\t #boiling point temperature of water at the given pressure in K\n",
"R = 8.314; \t\t\t #universal gas constant in J/molK\n",
"\n",
"# Calculations\n",
"x2 = 0.0031\n",
"hv = (lat_ht*molwt_water)/1000\n",
"delt = (R*T**2*x2)/(hv*10**3)\n",
"\n",
"# Results\n",
"print ' The elevation in boiling point of water when 10g of NaCl solute is added = %0.2f K'%(delt);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The elevation in boiling point of water when 10g of NaCl solute is added = 0.09 K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 13.3 Page No : 481"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"weight = 10.; \t\t\t #weight of NaCl in grams\n",
"weight_water = 1000.; \t\t\t # weight of water in grams\n",
"molwt_NaCl = 58.5; \t\t\t #molecular weight of NaCl in grams\n",
"molwt_water = 18.; \t\t\t #molecular weight of water in grams\n",
"T = 300.; \t\t\t #prevailing temperature of water in K\n",
"R = 8.314; \t\t\t #universal gas constant in (Pa m**3)/(mol K);\n",
"v = 18*10**-6;\t\t\t #molar volume in m**3/mol\n",
"\n",
"# Calculations\n",
"x2 = 0.0031\n",
"pi = ((R*T*x2)/v)*10**-3\n",
"\n",
"# Results\n",
"print ' The osmotic pressure of a solution conatining 10g of NaCl in 1000g of water at 300K = %0.2f kPa'%(pi);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The osmotic pressure of a solution conatining 10g of NaCl in 1000g of water at 300K = 429.56 kPa\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 13.4 Page No : 483"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"\n",
"# Variables\n",
"temp = 20. \t\t\t # prevailing tempearture in degree celsius\n",
"melt_temp = 80.05; \t\t\t # melting point of naphthalene in degree celsius\n",
"hf = 18.574 \t\t\t # enthalpy of fusion in kJ/mol\n",
"R = 8.314 \t\t\t # universal gas constant in J/molK\n",
"\n",
"# Calculations\n",
"t = temp+273.15\n",
"melt_t = melt_temp+273.15\n",
"x2 = math.exp(((hf*10**3)/R)*((1./melt_t)-(1./t)))\n",
"\n",
"# Results\n",
"print ' The ideal solubility of naphthalene at 20 degree celsius = %0.4f'%(x2);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The ideal solubility of naphthalene at 20 degree celsius = 0.2737\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 13.5 Page No : 483"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"t = 295.43; \t\t\t #prevailing temperature in K\n",
"sat_p = 6.05; \t\t\t #Sasturation pressure of carbon dioxide at the prevailing temperature in MPa\n",
"p = 0.1; \t\t\t #pressure at which solubility has to be determined in MPa\n",
"\n",
"# Calculations\n",
"x2 = p/sat_p\n",
"\n",
"# Results\n",
"print ' The solubility of carbon dioxide expressed in mole fraction of carbon dioxide in solution\\\n",
" at 0.1MPa = %0.4f'%(x2);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The solubility of carbon dioxide expressed in mole fraction of carbon dioxide in solution at 0.1MPa = 0.0165\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|