summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch8_1.ipynb
blob: 1c35275d51968c68db651a911c49fa3f4307b795 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
{
 "metadata": {
  "name": "",
  "signature": "sha256:234a7cd4eb239b4fead8bceff4c3350a039b4673e5cc1a175a4862ee9b56966f"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8  : Third Law of Thermodynamics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1  Page No : 138"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "\n",
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy\n",
      "\n",
      "#Given\n",
      "C_ps = 0.1;#Molal heat capacity of copper at 20 K\n",
      "Ti = 0.0;#Initial temperature in K\n",
      "Tf = 20.0;#melting point in K\n",
      "Tb = 300.0;#boiling point in K\n",
      "\n",
      "#To calculate the absolute entropy of copper at 300 K\n",
      "#From equation 8.4(page no 164)\n",
      "a = C_ps/(Tf**3);# a is the charateristic consmath.tant\n",
      "C_p = [0.1,0.80,1.94,3.0,3.9,5.0];\n",
      "#T1 = math.log(T);\n",
      "T1 = [1.301,1.6021,1.7782,1.9031,2.000,2.1761];\n",
      "plt.plot(T1,C_p)\n",
      "plt.title(\"C_p vs T1\")\n",
      "plt.xlabel(\"T1\")\n",
      "plt.ylabel(\"Cp\")\n",
      "plt.show()\n",
      "# Area under the curve is given as\n",
      "A = 7.82;\n",
      "#From equation 8.5(page no 164)\n",
      "S = (a*((Tf**3)/3))+A;\n",
      "print \"The absolute entropy of copper is %f Kcal/Kgmole\"%(S);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEZCAYAAACU3p4jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmZJREFUeJzt3XmUVOWd//F3iwgiQUFmJMEFlTijKLiBRkXKFXQ8RsVx\nNMZEnRgnEyOucclP7dETHcdo1ImaxEQQRZwouBtQlhIQQTAICqLBYKKiEhUF2Wnq98dTbXWXvVQv\nt+6tqvfrnD59u6q67/dcuj889b3PfS5IkiRJkiRJkiRJkiRJkiRJkiSpXH0HmAusApYBzwKHxlrR\nV/2RUN8qYAOwvs7XdwMdgUeBpcBmYEg8ZUpScl0CfAScBGwNdAD+Bbg5zqKaMRK4Pu+xjsCFhP+o\nlgGHF7soSUqybQkj5OGt+N5qwoj6YWAl8ArQv5HX3gPckvfYE8BF2e0rgPeyP2cxcGQz+x4J3NDE\n8+9i4EtSPcOAjcAWrfjeakJr5RTCu4JLgb8AWzbw2sHA3+p83R1YA/QC/in7XK/sczsDuzWzbwNf\nidGaPx4pDtsDHxN63q0xFxgP1AC3AZ2Bgxt43QwgQwh+gFOBmcCH2e/tBPQjtGX+RviPQyoJBr5K\nxSdAT1r/O/tene1M9uuvN/C6DKH1c0b26+8AY7LbSwitnWrCuYSxjfwMKZEMfJWKlwizXU5u5ffv\nVGd7C2BHwgnThowljOx3AQYB4/KeG5x9LkOyTxhL9Rj4KhWfA9cCdwHfBroQ2irHUVjoHkD4z2JL\nwih9HTCrkde+Smgf/Q6YQDhBC7AH4SRtJ8J/PusIbZ6mVDXyeCdCWyl/W5KU9R1gDvAF8AHwFA33\n4uu6DniE+rN09m3me/4fIczrzgraB5id/RmfAE+SO4HbmIamZQK8QzgfUVPn887N/CypTRobfbSn\ndwh/IDWEWRaDirBPqa7rgL7AWXEXIsWpoWlp7S0DpIBPi7AvqSHFGNhIiVeMwAf/4BS9PwKHNfD4\njYRBR6a45UiV6S/APMI86PNirkWSFKHaecr/QJj9MLiJ10qSIlKMls4H2c9/Bx4jnLSdDjBgwIDM\n/Pnzi1CCJJWVtwkTEVok6nn4XYCvZbe3AY4FXqt9cv78+WQymcR9XHfddbHXUAofHiePk8eq7R+L\nF2fo3z/D6adn+Pzzwr4H2L01gRx14O9AGM2/Spi//DTwXMT7lKSS8NBDcNhh8OMfh+1u3aLdX9Qt\nnaU0f4GLJFWUtWthxAhIp+H552HfIqWkSys0IJVKxV1CSfA4FcbjVLhKOFZvvgkHHQSrVsErrxQv\n7CH++fGZbD9KksremDFw0UXw85/DeedBVSsTuCp8Y4u/u1gXXklSxarbwpk0CQYMiKcOWzqSFKHF\ni0ML54svQgsnrrAHA1+SIjNmDAweDBdcELa/9rXmvydKtnQkqZ2tXQsXXgjTpsXbwsnnCF+S2lFt\nC2f1apg7NzlhDwa+JLWb2hbOT36SjBZOPls6ktRGSW3h5HOEL0ltkOQWTj4DX5JaKektnHy2dCSp\nhdasCS2c6dNh8mTo3z/uigrjCF+SWqC2hbN2bWjhlErYg4EvSQV78MHQwhkxImwnvYWTz5aOJDWj\ntoUzY0ZptXDyOcKXpCbUbeHMmVO6YQ8GviQ1qtRbOPls6UhSnnJp4eRzhC9JddS2cNatK/0WTj4D\nX5KyHnggtHAuuihsl3oLJ58tHUkVb82acLXsiy/ClCmwzz5xVxQNR/iSKtobb4QWzoYN4UKqcg17\nMPAlVbDRo+Hww0MLZ/Ro6No17oqiZUtHUsWpbeHMnFneLZx8jvAlVZRFi2DQoNDCmTOncsIeDHxJ\nFWT0aBgyBC65pDJaOPls6Ugqe2vWwAUXwEsvVVYLJ58jfEllrbaFs3Fj5bVw8hn4kspWpbdw8tnS\nkVR2bOE0zBG+pLJS28LZtMkWTj4DX1LZqG3hXHop3H+/LZx8tnQklbzVq0MLZ9YsmDoV9t477oqS\nyRG+pJJW28KpqQktHMO+cQa+pJJ1//2hhXPZZbZwCmFLR1LJsYXTOsUY4XcA5gFPFWFfkspcbQtn\n82ZbOC1VjMAfASwCMkXYl6QyVtvCufxyWzitEXVLZ0fgeODnwCUR70tSmapt4cyeDek09OsXd0Wl\nKeoR/i+By4HNEe9HUpnKb+EY9q0X5Qj/BGA5oX+fauxF1dXVX26nUilSqUZfKqnCjBoV2je33AJn\nnx13NfFJp9Ok0+k2/5yqtpfSqBuBs4BNQGegGzAO+F6d12QyGVv7kupbvRp+/GN4+WV45BFH9fmq\nqqqgFfkdZUvnamAnYFfgdGAK9cNekr5i4cLQwgFbOO2tmBdeOZSX1KRRoyCVCm2cUaNgm21iLqjM\nRNnSKYQtHUlkMjBiBEyeDH/4g6P65rS2peOVtpJid8MN8OKLYf36bt3irqZ8GfiSYnXvveEiqpkz\nDfuo2dKRFJsnn4Tzz4dp0+Cb34y7mtLR2paOgS8pFjNnwre/Dc8+CwMHxl1NaUnitExJatDixXDK\nKfDAA4Z9MRn4kopq2TIYNgxuvjl8VvEY+JKK5rPPQsj/x3/A978fdzWVxx6+pKJYvz6E/T77wB13\nQFXc6VPCPGkrKbE2b4bTTw/bY8dChw7x1lPqvPBKUiJlMnDRRbB8OUyYYNjHycCXFKn/+Z9w05Jp\n06Bz57irqWwGvqTIjB4N99wTlk3Ybru4q5E9fEmRmDAh3LRk6lTYc8+4qykv9vAlJcacOXDWWfDE\nE4Z9kjgPX1K7WrIETjwRfv97OOSQuKtRXQa+pHbz0UcwdChcf30IfSWLgS+pXaxaBccfD9/7Hpx3\nXtzVqCGetJXUZhs2wAknwK67wq9/7VW0UfNKW0mx2Lw5jOpXrYJx42BLp4JEzlk6kmJx5ZWwdCk8\n/7xhn3T+80hqtdtvh6efhhkzoEuXuKtRcwx8Sa3y8MNw663hKtoePeKuRoWwhy+pxaZMCatfTp4c\nljtWcXmLQ0lF8eqrIewfecSwLzUGvqSCvfNOmH55990wZEjc1ailDHxJBfn443AV7RVXwKmnxl2N\nWsMevqRmrV4NRx0FRx4JN94YdzXywitJkdi0CU46CXr2hJEjvYo2CTxpK6ndZTJw/vlQUwP33mvY\nlzrn4Utq1LXXwmuvhWmYHTvGXY3aysCX1KB77gkXV82cCV27xl2N2kPcb9Ds4UsJNH48XHBBWDJh\nt93irkb5PGkrqV1Mnw7Dh4d70u6/f9zVqCGetJXUZgsXhjn2Y8YY9uXIwJcEwLvvwnHHwW23wTHH\nxF2NohB14HcGZgOvAouAmyLen6RWWLEChg2DESPgzDPjrkZRKUYPvwuwhjAjaAZwWfYz2MOXYrd2\nLRx7LAwcGEb3Sr4k9/DXZD9vBXQAPi3CPiUVoKYmjOh33BF+8Yu4q1HUihH4WxBaOh8BUwmtHUkx\ny2TC1MuVK2HUKNjCM3plrxj/xJuBfYEdgcOBVBH2KakZN9wAs2aFOfedOsVdjYqhmFfafg48AxwI\npGsfrK6u/vIFqVSKVCpVxJKkynTzzWHq5QsvQLducVej5qTTadLpdJt/TtQnbXsCm4DPgK2BicB/\nAZOzz3vSViqy224Lyyak09C7d9zVqDVae9I26hH+14H7Ca2jLYAHyIW9pCK780646y7DvlK5tIJU\nIe6+G265JYT9LrvEXY3aIqkjfEkJ8Nvfhr791KmGfSUz8KUyd999YUbO1KmufFnpDHypjI0eDddc\nE8K+b9+4q1HcDHypTD30EFx5JUyeDHvsEXc1SgIDXypDf/gDXHopTJoEe+4ZdzVKCgNfKjPjx8OF\nF8LEidCvX9zVKEkMfKmMPPkk/OhH4W5VAwbEXY2SxsCXysQzz8APfgDPPgv77Rd3NUoi18eTysDE\niXDOOfDUU3DggXFXo6Qy8KUSN2kSnHUWPP44HHRQ3NUoyWzpSCUsnYYzzggnag85JO5qlHSO8KUS\nNX06nHYaPPIIDB4cdzUqBQa+VIJmzoThw8PFVd5CQoUy8KUSM3s2nHQSPPAAHH103NWolBTSw68C\nTgEOAzLAdODx7LakIpo7F048MdyDdujQuKtRqSlkPeV7gN2BsdnXnwb8BfjPdti/6+FLBZo3D4YN\ng3vvDaGvytXa9fAL+YbFwF6Em5FDaAMtAv65pTtrgIEvFWDBAjj22HATk1NOibsaxa21gV9ID38J\nsHOdr3fOPiapCBYuDO2bO+807NU2hfTwuwFvAC8T+vaDgDnAU9mvfXMpReSNN8LI/tZbwxRMqS2a\nekvwTWAHoEPe6wYDHxBG+RnghTbs35aO1Ii33oIjj4SbbgpX0kq1orin7e3AVcCCvMc/BW4ETmjp\nziQVZskSOOoouP56w17tp6ke/g58NezJPtYnkmoksXRpCPtrroFzz427GpWTpgJ/uyae69zehUiC\nv/41tHGuuAJ++MO4q1G5aSrw5wIN/cqdB7wSTTlS5Xr33RD2F18M/9keV7lIeZpq+vcCHgM2kAv4\nA4BOwMmEE7dt5UlbCXj//bAmzo9+BJdcEnc1SrqoLryqAo4A9ibMyFkITGnpTppg4KviffhhCPtz\nzgmtHKk5UV5pGyUDXxVt+fIQ9meeCT/7WdzVqFREeaWtpAh8/HGYjXPaaYa9isMRvhSDTz4JYX/C\nCXDDDVAV91+iSootHalErFgRwv6YY+C//9uwV8sZ+FIJ+PzzEPSHHRbWxzHs1RoGvpRwK1eGVS8H\nDoQ77jDs1XoGvpRgX3wRbl7Svz/cdZdhr7Yx8KWEWr0ajj8e9tgDfvMb2MK5cWojA19KoDVrwkyc\nXXaB3//esFf7MPClhFm3Ltx7tlcvGDkSOnSIuyKVi6ReeLUTMJWwJMPrwIUR709KhPXr4eSToWdP\nw17JEfUIv1f241WgK2ERtpMIt0wER/gqQxs2wPDhsPXW8NBDsGUhNxKVWiCpI/wPCWEP8AUh6L8R\n8T6l2GzcCP/2b9CxI4wZY9grWYr569gH2A+YXcR9SkWzcSOccQbU1MCjj4bQl5KkWIHfFXgUGEEY\n6UtlZdOmcO/ZtWth/HjYaqu4K5K+qhiB3xEYBzwIPJ7/ZHV19ZfbqVSKVCpVhJKk9lNTA2efHdbI\neeIJ6NQp7opUbtLpNOl0us0/J+qTtlXA/cAnwMUNPO9JW5W0TZvgvPPC7QmfeiqcqJWiltR5+IcB\n04AFhDtmAVwFTMhuG/gqWcuXh579llvCY49Bly5xV6RKkdTAb46Br5I0a1a4cclZZ8H11zvPXsXV\n2sB30pjUAplMWPzs+uvhd78LV9JKpcLAlwq0ejWcfz689hrMnAl9+8ZdkdQyLuUkFeCtt+Dgg0Pr\n5qWXDHuVJgNfasZjj4U7VF1wAYwa5clZlS5bOlIjNm2Cn/0MHn4Ynn4aBg2KuyKpbQx8qQEffZSb\ncvnKK2HVS6nU2dKR8sycCQceCIceCn/8o2Gv8uEIX8rKZOBXv4IbboD77gt3qpLKiYEvEW4y/sMf\nwhtvhIuqdtst7oqk9mdLRxXvzTfDlMtOnUI7x7BXuTLwVdHGjQtTLkeMCG0cFz9TObOlo4q0aRNc\ndRU88kg4MXvggXFXJEXPwFfF+fDDcBvCrbcOUy633z7uiqTisKWjijJjRhjNp1LwzDOGvSqLI3xV\nhEwG7rgDbroJRo6E44+PuyKp+Ax8lb0vvoAf/CAsgDZrFuy6a9wVSfGwpaOytnhxWAOna9cw5dKw\nVyUz8FW2Hn0UBg+GSy8NNyvp3DnuiqR42dJR2dm4Ea68EsaPhwkT4IAD4q5ISgYDX2Xlgw/ClMuu\nXcOUyx494q5ISg5bOiob06eHKZdHHRXWrzfspfoc4avkZTLwy1/CzTfD/ffDsGFxVyQlk4GvkrZq\nFZx7LixdCrNnQ58+cVckJZctHZWsRYvClMvu3cMVtIa91DQDXyXp//4PhgyBn/4Ufvtbp1xKhbCl\no5KycSNcfjk8+SQ89xzst1/cFUmlw8BXyVi2DE47DbbbLky57N497oqk0mJLRyXhhRfClMthw8Lo\n3rCXWs4RvhItk4Fbb4Vf/AJGj4Zjj427Iql0GfhKrJUrw5TLv/41TLncZZe4K5JKmy0dJdLChTBw\nIPTsGaZcGvZS2xn4SpyxY8Mdqa6+Gn79a+jUKe6KpPJgS0eJsWEDXHYZPPssTJoEAwbEXZFUXgx8\nJcL778O//mto4cydG6ZeSmpftnQUu6lTQ7/+hBPg8ccNeykqjvAVm0wGbrkFbrsNHnwQjj467oqk\n8hZ14N8H/AuwHNgn4n2phHz+OZx9drh6ds4c2GmnuCuSyl/ULZ2RgKuTq57XXgstnK9/HaZNM+yl\nYok68KcDKyLeh0rImDFw5JFwzTVw991OuZSKyR6+imLDBrjkEpg4ESZPhv79465IqjyxB351dfWX\n26lUilQqFVstisZ778Gpp0KvXqFf7ywcqWXS6TTpdLrNP6eq7aU0qw/wFA2ftM1kMpkilKC4TJ4M\n3/0ujBgRblayhROBpTarqqqCVuR37CN8lafNm8NNxe+8M0y5POqouCuSFHXgjwWGANsD7wLXEmbu\nqIx99hl8//uwfHlo4ey4Y9wVSYLitHSaYkunzCxYAMOHhxuV3HorbLVV3BVJ5ae1LR07qmo3DzwQ\nWjfV1fC//2vYS0ljD19ttn49XHxxWOFyyhTYx2uqpUQy8NUmf/tbWOWyd+/Qr99227grktQYWzpq\nlRUrwuybQYNCz37cOMNeSjpH+CpITU1Yp37ixPCxYAEMHgwPPxzuTiUp+Zylo0YtWwbPPQcTJoT+\nfK9eYfbN0KEh7Dt3jrtCqTK1dpaOga8vrV8fbhg+cWII+ffeC2vUDx0aPpxPLyWDga8Wy2RgyZJc\nwE+bBnvtlRvFDxwIW9r0kxLHwFdBVq0KUydrQ37dulzAH300bL993BVKao6BrwZt3gzz54dwnzgR\nXnkFDjooF/J77w1Vcf8WSGoRA19f+vvfw8nW2hk1226bC/hUCrbZJu4KJbWFgV/BNm6EWbNyo/gl\nS0Kw14b8rrvGXaGk9mTgV5h33smN4KdMgd13z82m+da3XMdGKmcGfplbswZeeCE3iv/0Uzj22DCK\nP+YY2GGHuCuUVCwGfpnJZGDRolzAv/QS7L9/bhS/337ePUqqVAZ+GVixIlzRWhvyHTuGcB82DI48\nErp1i7tCSUlg4JegmpqwwmTtnPiFC8OSBbWj+D32cMqkpK8y8EvEsmW5gJ80Cb7xjdwo/rDDXJ9G\nUvMM/IRavx6mT8+F/Pvvh5OsQ4eGk66uTyOppQz8hMhk4M9/zvXhp0+Hfv1yo/iBA6FDh7irlFTK\nDPwYrVxZf32aDRvqr0/To0fcFUoqJwZ+EW3eDK++mhvF/+lPcPDBuVF8v36ebJUUHQM/YsuX59an\nee456N49N5tmyBDXp5FUPAZ+O9u4MVzsVDuKf/ttOOKIXKumT5+4K5RUqQz8drB0aW59mqlToW/f\n+uvTdOwYd4WSZOC3yurV9den+eyz+uvT/OM/xlaaJDXKwC9oZ/D667nZNLNnh/Vpats0++7r+jSS\nks/Ab8Snn9Zfn6ZTp9xsmiOOcH0aSaXHwM+qqYGXX86N4hctgsMPz4V8375OmZRU2io68N9/Pxfw\nkydD797116fp1KkdKpWkhKiowF+3rv76NB98UH99mt69I6hUkhKirAM/k4G33soF/IwZsPfeuVH8\ngQe6Po2kylF2gb9yZWjP1Ib8pk3116fp3r3IlUpSQpR84G/eDPPm5WbTzJsXLnaqHcXvtZcnWyUJ\nSjjwR4/OfLk+TY8euVH8kCHQpUvM1UlSAiU18IcBtwMdgN8BN+c9nzn55MyXyxe4Po0kNa+1gR/l\ndaUdgF8RQn8v4Axgz/wXjR8P55+frLBPp9Nxl1ASPE6F8TgVzmMVrSgDfxCwBHgH2Ag8DHw7wv21\nG3/pCuNxKozHqXAeq2hFGfi9gXfrfP1e9jFJUgyiDPzkrHssSYr0pO3BQDWhhw9wFbCZ+iduXwUG\nRFiDJJWjt4G+cRdR15aEovoAWxHC/SsnbSVJ5eE44E3CydurYq5FkiRJUjm7D/gIeK2Z1w0ENgGn\nRF5RMhVynFLAPOB1IB19SYnU3HHqCUwgtDZfB84uTlmJtBMwFVhIOBYXNvK6O4E/A/OB/YpTWqIU\ncpzOJByfBcCLQP+iVVdiBhN+iZoKsg7AFOBpYHgxikqg5o7TdoRfyB2zX/csRlEJ1NxxqgZuym73\nBD4hnOeqRL2AfbPbXQlt3/zze8cDz2a3DwJmFae0RCnkOH0L2Da7PYxmjlMl38F1OrCimdf8BHgU\n+Hv05SRWc8fpO8A4wnUWAB9HXlEyNXecPgBqb6jZjRD4m6IuKqE+JLzTAfgCeAP4Rt5rTgTuz27P\nJgwsdihKdclRyHF6Cfg8uz2b3MCrQZUc+M3pTbgy+J7s115X0LBvAj0Ibz3nAmfFW05i3Qv0A5YR\n3oKPiLecxOhDeGc0O+/xhi7cbDLMylwfGj5Odf07uXdFDarUt5SFuB24khD0VcS/smhSdQT2B44C\nuhBGHLMIvVflXE0YraWA3YHnCdegrIqxprh1JbyDHkEYwebL/5ur1EFXc8cJ4AjgXODQpn6Qgd+4\nAwjr/0DouR5HWBPoydgqSqZ3CW2ctdmPaYQgM/DrOwT4eXb7bWAp8E+Ed0WVqCOhFfgg8HgDz79P\nOGlZa8fsY5WmueME4UTtvYQefnNt6orWh+Zn6QCMpHJn6UDTx+mfgUmEE9xdsq/bqzhlJU4fGj9O\ntwHXZbd3ILQoehShpiSqAkYDv2ziNXVP2h5MZZ60LeQ47Uy4zungQn5gJY/wxwJDCKP3dwl/jB2z\nz/0mrqISqLnjtJgw3XABYemMe4FFxS8zds0dpxsJA4f5hHNnPwU+LX6ZiXAo8F3C78y87GNXE8IL\nwvF6lhD6S4DVwDlFrjEJCjlO1wLdyZ1r3EhYqViSJEmSJEmSJEmSJEmSJEnRcbkACbYnXDwGYYXC\nGnIL5v0JOAFYDuxT/NIkSVG5DrikzteFLKMtlQRXy5S+qu4730KW0ZZKgoEvSRXCwJekCmHgS1KF\nMPAlqUIY+NJX1b2z0lhgJrAHYdnjSlymV5IkSZIkSZIkSZIkSZIkSZIkSZKk8vT/AUC/VwATKuqI\nAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x102f267d0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The absolute entropy of copper is 7.853333 Kcal/Kgmole\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}