summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics_by_P._Ahuja/ch3_2.ipynb
blob: 6e43a54d6bfef3a7f7ec6f3aef27e6c1a2296d9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
{
 "metadata": {
  "name": "ch3_2",
  "signature": "sha256:8255c3a74c7b52da7fb922c8e6e009ed3e07e5e50a88f1302c38a2c832cbdc1f"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 : The First Law and Its Applications"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.1 Page number - 80 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "from scipy.optimize import fsolve \n",
      "import math \n",
      "\n",
      "\n",
      "# Variables\n",
      "V_vessel = 4.*10**(-3);\t\t\t#[m**(-3)] - Volume of vessel\n",
      "T = 200+273.15;\t\t\t#[K] - Temperature\n",
      "R = 8.314;\t\t\t#[J/mol*K] - Universal fas constant\n",
      "P = 1.5*10**(6);\t\t\t#[Pa] - Pressure\n",
      "Q = 40.*1000;\t\t\t#[J] - Heat input\n",
      "\t\t\t# From steam table at 200 C,Psat=1.55549 MPa,therefore the steam is superheated.\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# (1)\n",
      "\t\t\t# Using steam table,at 1.5 MPa and 200 C,\n",
      "V_1 = 0.1325;\t\t\t#[m**(3)/mol] - Specific volume\n",
      "U_1 = 2598.1;\t\t\t#[kJ/kg] - Specific internal energy\n",
      "\t\t\t# From first law under constant pressure,\n",
      "\t\t\t# Q - m*P*(V2 - V1) = m*(U2 - U1)\n",
      "m = V_vessel/V_1;\t\t\t#[kg] - Mass of system\n",
      "\t\t\t# Putting the values,the above equation becomes\n",
      "\t\t\t# 45283*(V2 - 0.1325) + 30.1887*(U2 - 2598.1) = 40000\n",
      "\t\t\t# From steam table at 700 C LHS is 33917.0 and at 800 C,it is 40925.3.\n",
      "\t\t\t# Therefore the final temperature lies between 700 and 800 C\n",
      "print \" 1.From steam table the final temperature lies between 700 and 800 C\";\n",
      "\n",
      "\t\t\t# Alternate method\n",
      "\t\t\t# Here we use first law at constant pressure,\n",
      "\t\t\t# Q = m*(H_2 - H_1)\n",
      "H_1 = 2796.8;\t\t\t#[kJ/kg]\n",
      "\t\t\t# Substituting the values,\n",
      "\t\t\t# 40 = 0.0301887*(H_2 - 2796.8)\n",
      "H_2 = (40/0.0301887) + 2796.9;\t\t\t#[kJ/kg]\n",
      "\t\t\t# Threfore,final enthalpy is (H2) 4121.8 [kJ/kg] and pressure is 1.5 [MPa].\n",
      "\t\t\t# From steam table at 1.5 [MPa]and 700 C,enthalpy is 3920.3 [kj/kg] and at 1.5 [MPa]and 800 C,enthalpy is 4152.6 [kj/kg]\n",
      "print \"\\tAlternate method\";\n",
      "print \"\\tBy linear interpolation we get the temperature at which enthlpy is 4121.8 kJ/kg to be 786.74 C\";\n",
      "\n",
      "\t\t\t# (2)\n",
      "\t\t\t# Assuming ideal behaviour.\n",
      "n = (P*V_vessel)/(R*T);\t\t\t#[mol] - No of moles\n",
      "M = 18.015;\t\t\t# Molecular weight of water\n",
      "m_2 = n*M;\t\t\t#[g] - mass of moles\n",
      "Cp_1 = 7.7 + 0.04594*10**(-2)*T + 0.2521*10**(-5)*T**(2) - 0.8587*10**(-9)*T**(3);\t\t\t#[cal/mol*K] - Heat capacity at constant presure\n",
      "R0 = 1.987;\t\t\t#[cal/mol*K] - universal gas constant\n",
      "Cv_1 = Cp_1 - R0;\t\t\t#[cal/mol*K] - Heat capacity at constant volume\n",
      "Cv_1 = Cv_1*4.184/M;\t\t\t#[J/g*K]\n",
      "T1 = T;\n",
      "\t\t\t# From 1st law energy balance for constant pressure, we have Q-W= m*(delta_U)\n",
      "\t\t\t# Q = P*(V2 - V1)*m = m*Cv*(T2 - T1)\n",
      "\t\t\t# Q = P*((T2/T1)-1)*V1*m = m*Cv*(T2-T1)\n",
      "\t\t\t# But, (V1*Cv)=initial total volume of system = V_vessel\n",
      "\t\t\t# Q-P((T2/T1)-1)*V_vessel = m_2*Cv_0*(T2-T1);\n",
      "def f(T2): \n",
      "\t return Q-P*((T2/T1)-1)*V_vessel-m_2*Cv_1*(T2-T1)\n",
      "T2_1 = fsolve(f,1)\n",
      "\t\t\t#The heat capacity should be evaluted at mean temperature\n",
      "T_mean = (T1 + T2_1)/2;\n",
      "Cp_2 = 7.7 + 0.04594*10**(-2)*T_mean+0.2521*10**(-5)*T_mean**(2) - 0.8587*10**(-9)*T_mean**(3);\t\t\t#[cal/mol*K] - Heat capacity at constant presure\n",
      "Cv_2 = Cp_2-R0;\t\t\t#[cal/mol*K] - Heat capacity at constant volume\n",
      "Cv_2 = Cv_2*4.184/M;\t\t\t#[J/g*K]\n",
      "\t\t\t#Now again solving the equation Q=P*((T2/T1)-1)*V1*m = m*Cv*(T2-T1),for Cv=Cv_2\n",
      "def f1(T2): \n",
      "\t return Q-P*((T2/T1)-1)*V_vessel-m_2*Cv_2*(T2-T1)\n",
      "T2_2 = fsolve(f1,1)\n",
      "print \" 2).The temperature assuming ideal behaviour is %f K\"%(T2_2);\n",
      "\n",
      "\t\t\t# Alternate method\n",
      "\t\t\t# From 1st law at constant pressure, we have Q = m*Cp(T2-T1)\n",
      "T2_3 = Q/(m_2*(Cp_1*4.184/M))+T1;\n",
      "\t\t\t#We can calculate the mean temperature as done above\n",
      "T_mean1 = (T1 + T2_3)/2;\t\t\t#[J/g*K]\n",
      "\t\t\t#The heat capacity should be evaluted at mean temperature\n",
      "Cp_3 = 7.7 + 0.04594*10**(-2)*T_mean1 + 0.2521*10**(-5)*T_mean1**(2)-0.8587*10**(-9)*T_mean1**(3);\t\t\t#[cal/mol*K] - Heat capacity at constant presure\n",
      "Cp_3 = Cp_3*4.184/M;\t\t\t#[J/g*K]\n",
      "\t\t\t# Again solving the equation Q = m*Cp(T2-T1), for Cp=Cp_3\n",
      "T2_4 = Q/(m_2*Cp_3) + T1;\n",
      "print \"\\tAlternate method\";\n",
      "print \"\\tThe temperature assuming ideal behaviour alternate method) is %f K\"%(T2_4);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 1.From steam table the final temperature lies between 700 and 800 C\n",
        "\tAlternate method\n",
        "\tBy linear interpolation we get the temperature at which enthlpy is 4121.8 kJ/kg to be 786.74 C\n",
        " 2).The temperature assuming ideal behaviour is 1141.732355 K\n",
        "\tAlternate method\n",
        "\tThe temperature assuming ideal behaviour alternate method) is 1141.738180 K\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py:227: RuntimeWarning: The iteration is not making good progress, as measured by the \n",
        "  improvement from the last ten iterations.\n",
        "  warnings.warn(msg, RuntimeWarning)\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.2 Page number - 83"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "import math\n",
      "\n",
      "# Variables\n",
      "V_tank = 1;\t\t\t#[m**(3)] - Volume of the tank\n",
      "V_liq = 0.05;\t\t\t#[m**(3)] - Volume of saturated water\n",
      "V_vap = 0.95;\t\t\t#[m**(3)] - Volume of saturated vapour\n",
      "P = 1;\t\t\t#[bar] - Pressure\n",
      "V_liq_sat = 0.001043;\t\t\t#[m**(3)/kg] - Specific volume of saturated water\n",
      "V_vap_sat = 1.6940;\t\t\t#[m**(3)/kg] - Specific volume of saturated vapour\n",
      "U_liq_sat = 417.4;\t\t\t#[kJ/kg] - Saturated liquid internal energy\n",
      "U_vap_sat = 2506.1;\t\t\t#[kJ/kg] - Saturated vapour internal energy\n",
      "\n",
      "# Calculations\n",
      "m = (V_liq/V_liq_sat) + (V_vap/V_vap_sat);\t\t\t#[kg] - Total mass of water\n",
      "U_1 = (V_liq/V_liq_sat)*U_liq_sat + (V_vap/V_vap_sat)*U_vap_sat;\t\t\t#[kJ] - Total internal energy\n",
      "\n",
      "\t\t\t# At final state,which is saturated vapour\n",
      "V = V_tank/m;\t\t\t#[m**(3)/kg] - Molar volume\n",
      "\t\t\t# From saturated steam table at 8 MPa,as reported in the book V_vap = 0.02352[m**(3)/kg] and U_vap = 2569.8[kJ/kg]\n",
      "\t\t\t# At 9 MPa, Vv = 0.02048[m**(3)/kg] and Uv = 2557.8[kJ/kg]\n",
      "\t\t\t# Therefore final state pressure of the system (from interpolation) is 8.954 [MPa] and internal energy of saturated vapour is 2558.35 [kJ/kg]\n",
      "U_2 = m*2558.35;\t\t\t#[kJ] - Final total internal energy\n",
      "del_Ut = U_2 - U_1;\t\t\t#[kJ] \n",
      "\t\t\t#we have, del_U = Q - W\n",
      "\t\t\t#Here work done is zero because volume is rigid.\n",
      "Q = del_Ut;\t\t\t#[kJ]\n",
      "Q = del_Ut*10**(-3);\t\t\t#[MJ]\n",
      "\n",
      "# Results\n",
      "print \" The amount of heat to be added is %f MJ\"%( Q);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The amount of heat to be added is 102.663530 MJ\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.3 Page number - 83"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "# Variables\n",
      "M_vap_sat = 0.22;\t\t\t#[kg] - mass of saturated vapour\n",
      "M_liq_sat = 1.78;\t\t\t#[kg] - mass of saturated liquid\n",
      "P = 700;\t\t\t#[kPa] - Pressure\n",
      "\n",
      "#At P=700 kPa,the systen is saturated,from steam table as reported in the book\n",
      "T_sat1 = 164.97;\t\t\t#[C]\n",
      "V_liq_1 = 0.001108;\t\t\t#[m**(3)/kg] \n",
      "V_vap_1 = 0.2729;\t\t\t#[m**(3)/kg]\n",
      "\n",
      "# Calculations and Results\n",
      "Vt_1 = V_liq_1*M_liq_sat + V_vap_1*M_vap_sat;\t\t\t#[m**(3)] - total volume\n",
      "\n",
      "\t\t\t#At final state,P = 8 MPa\n",
      "T_sat2 = 295.06;\t\t\t#[C]\n",
      "V_liq_2 = 0.001384;\t\t\t#[m**(3)/kg] \n",
      "V_vap_2=0.02352;\t\t\t#[m**(3)/kg]\n",
      "Vt_2 = Vt_1;\t\t\t# Since the volume is rigid.\n",
      "\t\t\t# Since the volume of 2 kg of vapour is 0.062 [m**(3)]\n",
      "V = Vt_2/2;\t\t\t#[m**(3)/kg] - specific volume\n",
      "\n",
      "\t\t\t# (a)\n",
      "\t\t\t# From steam table at 8 [MPa]and 350 [C],V=0.02995[m**(3)/kg]; \n",
      "V_1 = 0.02995;\t\t\t#[m**(3)/kg]\n",
      "\t\t\t# And at 8 [MPa]and 400 [C],\n",
      "V_2 = 0.03432;\t\t\t#[m**(3)/kg]\n",
      "\t\t\t# By interpolation,\n",
      "T = ((V-V_1)/(V_2 - V_1))*(400-350)+350;\n",
      "print \" a).The final temperature is %f c\"%(T);\n",
      "\n",
      "\t\t\t# (b)\n",
      "\t\t\t# From steam table \n",
      "U_1 = 2747.7;\t\t\t#[kJ/kg]\n",
      "H_1 = 2987.3;\t\t\t#[kJ/kg]\n",
      "\t\t\t# And at 8 [MPa]and 400 C,\n",
      "U_2 = 2863.8;\t\t\t#[kJ/kg]\n",
      "H_2 = 3138.3;\t\t\t#[kJ/kg]\n",
      "\t\t\t# Therefore at T = 362.01 C\n",
      "U = U_1+((U_2 - U_1)/(400 - 350))*(T - 350);\n",
      "print \" b).The internal energy is %f kJ/kg\"%(U);\n",
      "\n",
      "\t\t\t#(c)\n",
      "H = H_1+((H_2 - H_1)/(400 - 350))*(T - 350);\n",
      "print \" b).The enthalpy is %f kJ/kg\"%(H);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " a).The final temperature is 362.072311 c\n",
        " b).The internal energy is 2775.731907 kJ/kg\n",
        " b).The enthalpy is 3023.758380 kJ/kg\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.4 Page number - 85"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "from scipy.optimize import fsolve \n",
      "import math \n",
      "from scipy.integrate import quad \n",
      "\n",
      "# Variables\n",
      "T = 300;\t\t\t#[K] - Temperature\n",
      "P1 = 1;\t\t\t#[bar] - Initial pressure\n",
      "P1 = P1*10**(5);\t\t\t#[N/m**(2)]\n",
      "P2 = 8;\t\t\t#[bar] - Final pressure\n",
      "P2 = P2*10**(5);\t\t\t#[N/m**(2)]\n",
      "R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
      "Tc = 126.2;\t\t\t#[K] - Critical temperature\n",
      "Pc = 34;\t\t\t#[bar] - Critical pressure\n",
      "Pc = Pc*10**(5);\t\t\t#[N/m**(2)]\n",
      "w = 0.038;\t\t\t#  Acentric factor\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# w = integral(Pdv)\n",
      "\t\t\t# Z = 1 + (B/V)\n",
      "\t\t\t# (P*V)/(R*T) = 1 + (B/V)\n",
      "\t\t\t# P = (R*T)/V + (B*R*T)/V**(2)\n",
      "\n",
      "def f29(V): \n",
      "\t return (R*T/V) + (B*R*T)/V**(2)\n",
      "\n",
      "\t\t\t# w =  quad(f29,V1,V2)[0]\n",
      "\n",
      "\t\t\t# Under isothermal conditions,\n",
      "\t\t\t# w = R*T*math.log(V2/V1) - B*R*T*((1/V2) - (1/V1));\n",
      "\n",
      "Tr = T/Tc;\n",
      "B_0 = 0.083 - (0.422/(Tr)**(1.6));\n",
      "B_1 = 0.139 - (0.172/(Tr)**(4.2));\n",
      "B = ((B_0+(w*B_1))*(R*Tc))/Pc;\t\t\t#[m**(3)/mol]\n",
      "\n",
      "\t\t\t# Now we have to calculate molar volume i.e V1 and V2 at given conditions\n",
      "\t\t\t# At state 1,\n",
      "def f(V): \n",
      "\t return V**(2)-(R*T/P1)*V-(B*R*T)/P1\n",
      "V_1 = fsolve(f,-1)\n",
      "V_2 = fsolve(f,1)\n",
      "\t\t\t# We will take root near to (R*T)/P, i.e V_2\n",
      "V1 = V_2;\n",
      "\n",
      "\t\t\t# At state 2,\n",
      "def f1(V): \n",
      "\t return V**(2)-(R*T/P2)*V-(B*R*T)/P2\n",
      "V_3=fsolve(f1,-1)\n",
      "V_4=fsolve(f1,1)\n",
      "V2 = V_4;\n",
      "\t\t\t# The work done is thus,\n",
      "w = R*T*math.log(V2/V1) - B*R*T*((1/V2) - (1/V1));\t\t\t#[J]\n",
      "w = w*10**(-3);\t\t\t#[kJ]\n",
      "\n",
      "print \" The work done is %f kJ/mol\"%(w);\n",
      "print \" Negative sign indicates that work is done on the gas\";\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The work done is -5.186547 kJ/mol\n",
        " Negative sign indicates that work is done on the gas\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.5 Page number - 86"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "# Variables\n",
      "\n",
      "T = 300;\t\t\t#[K] - Temperature\n",
      "P1 = 1;\t\t\t#[bar] - Initial pressure\n",
      "P1 = P1*10**(5);\t\t\t#[N/m**(2)]\n",
      "P2 = 8;\t\t\t#[bar] - Final pressure\n",
      "P2 = P2*10**(5);\t\t\t#[N/m**(2)]\n",
      "R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
      "y1 = 0.21;\t\t\t# Mole fraction of component 1 (oxygen)\n",
      "y2 = 0.79;\t\t\t# Mole fraction of component 1 (nitroen)\n",
      "\n",
      "# For component 1 (Oxygen)\n",
      "Tc_1 = 154.6;\t\t\t#[K]\n",
      "Pc_1 = 50.43*10**(5);\t\t\t#[N/m**(2)]\n",
      "Vc_1 = 73.4;\t\t\t#[cm**(3)/mol]\n",
      "Zc_1 = 0.288;\n",
      "w_1 = 0.022;\n",
      "\n",
      "\t\t\t#For component 2 (Nitrogen)\n",
      "Tc_2 = 126.2;\t\t\t#[K]\n",
      "Pc_2 = 34*10**(5);\t\t\t#[N/m**(2)]\n",
      "Vc_2 = 89.2;\t\t\t#[cm**(3)/mol]\n",
      "Zc_2 = 0.289;\n",
      "w_2 = 0.038;\n",
      "\n",
      "# Calculations\n",
      "\t\t\t#For component 1\n",
      "Tr_1 = T/Tc_1;\t\t\t#Reduced temperature\n",
      "\t\t\t#At reduced temperature\n",
      "B1_0 = 0.083 - (0.422/(Tr_1)**(1.6));\n",
      "B1_1 = 0.139 - (0.172/(Tr_1)**(4.2));\n",
      "\t\t\t# We know,(B*Pc)/(R*Tc) = B_0+(w*B_1)\n",
      "B_11 = ((B1_0+(w_1*B1_1))*(R*Tc_1))/Pc_1;\t\t\t#[m**(3)/mol]\n",
      "\n",
      "\t\t\t# Similarly for component 2\n",
      "Tr_2 = T/Tc_2;\t\t\t#Reduced temperature\n",
      "\t\t\t# At reduced temperature Tr_2,\n",
      "B2_0 = 0.083 - (0.422/(Tr_2)**(1.6));\n",
      "B2_1 = 0.139 - (0.172/(Tr_2)**(4.2));\n",
      "B_22 = ((B2_0 + (w_2*B2_1))*(R*Tc_2))/Pc_2;\t\t\t#[m**(3)/mol]\n",
      "\n",
      "\t\t\t#For cross coeffcient\n",
      "Tc_12 = (Tc_1*Tc_2)**(1/2);\t\t\t#[K]\n",
      "w_12 = (w_1 + w_2)/2;\n",
      "Zc_12 = (Zc_1+Zc_2)/2;\n",
      "Vc_12 = (((Vc_1)**(1/3)+(Vc_2)**(1/3))/2)**(3);\t\t\t#[cm**(3)/mol]\n",
      "Vc_12 = Vc_12*10**(-6);\t\t\t#[m**(3)/mol]\n",
      "Pc_12 = (Zc_12*R*Tc_12)/Vc_12;\t\t\t#[N/m**(2)]\n",
      "\n",
      "\t\t\t# Now we have,(B_12*Pc_12)/(R*Tc_12) = B_0 + (w_12*B_1)\n",
      "\t\t\t# where B_0 and B_1 are to be evaluated at Tr_12\n",
      "Tr_12 = T/Tc_12;\n",
      "\t\t\t# At reduced temperature Tr_12\n",
      "B_0 = 0.083 - (0.422/(Tr_12)**(1.6));\n",
      "B_1 = 0.139 - (0.172/(Tr_12)**(4.2));\n",
      "B_12 = ((B_0+(w_12*B_1))*R*Tc_12)/Pc_12;\t\t\t#[m**(3)/mol]\n",
      "\n",
      "\t\t\t# For the mixture\n",
      "B = y1**(2)*B_11 + 2*y1*y2*B_12+y2**(2)*B_22;\t\t\t#[m**(3)/mol]\n",
      "\t\t\t# Now we have to calculate molar volume i.eV1 and V2 at given conditions\n",
      "\n",
      "\t\t\t# At state 1,\n",
      "def f(V): \n",
      "\t return V**(2)-(R*T/P1)*V-(B*R*T)/P1\n",
      "V_1=fsolve(f,-1)\n",
      "V_2=fsolve(f,1)\n",
      "\t\t\t# We will take root near to (R*T)/P, i.e V_2\n",
      "V1 = V_2;\t\t\t#[m**(3)/mol]\n",
      "\n",
      "\t\t\t# At state 2,\n",
      "def f1(V): \n",
      "\t return V**(2)-(R*T/P2)*V-(B*R*T)/P2\n",
      "V_3=fsolve(f1,-1)\n",
      "V_4=fsolve(f1,1)\n",
      "V2 = V_4;\t\t\t#[m**(3)/mol]\n",
      "\n",
      "\t\t\t# Work done per mole of air is given by, w=integral(Pdv)\n",
      "\t\t\t# Z = 1 + (B/V)\n",
      "\t\t\t# (P*V)/(R*T) = 1 +( B/V)\n",
      "\t\t\t# P = (R*T)/V+(B*R*T)/V**(2)\n",
      "\n",
      "def f43(V): \n",
      "\t return (R*T/V)+(B*R*T)/V**(2)\n",
      "\n",
      "\t\t\t# w =  quad(f43,V1,V2)[0]\n",
      "\n",
      "\t\t\t# Under isothermal conditions,\n",
      "w = R*T*math.log(V2/V1)-B*R*T*((1/V2)-(1/V1));\n",
      "w = w*10**(-3);\t\t\t#[kJ/mol]\n",
      "\n",
      "# Results\n",
      "print \" The work done is %f kJ/mol\"%(w);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The work done is -5.186545 kJ/mol\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.6 Page number - 88"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "# Variables\n",
      "T = 125+273.15;\t\t\t#[K] - Temperature\n",
      "P1 = 1;\t\t\t#[bar] - Initial pressure\n",
      "P1 = P1*10**(5);\t\t\t#[N/m**(2)]\n",
      "P2 = 60;\t\t\t#[bar] - Final pressure\n",
      "P2 = P2*10**(5);\t\t\t#[N/m**(2)]\n",
      "R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
      "Tc = 416.3;\t\t\t#[K] - Critical temperature\n",
      "Pc = 66.80*10**(5);\t\t\t#[N/m**(2)] - Critical pressure\n",
      "\n",
      "\t\t\t# (1)\n",
      "\t\t\t# Virial equation of state, Z = 1 + (B/V)+(C/V**(2))\n",
      "\t\t\t# (P*V)/(R*T) = 1 + (B/V)+(C/V**(2))\n",
      "\t\t\t# P = (R*T)/V+(B*R*T)/V**(2)+(C*R*T)/V**(3)\n",
      "\t\t\t# w = integral(PdV)=R*T*math.log(V2/V1)-(B*R*T)*(1/V2-1/V1)-(C*R*T/2)*(1/V2**(2)-1/V1**(2))\n",
      "\n",
      "B = -207.5;\t\t\t#[cm**(3)/mol] - Second virial coefficient\n",
      "B = -207.5*10**(-6);\t\t\t#[m**(3)/mol]\n",
      "C = 18200;\t\t\t#[cm**(6)/mol**(2)] - Third virial coefficient\n",
      "C = 18200*10**(-12);\t\t\t#[m**(6)/mol**(2)]\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# We need to calculate molar volume at state 1 and 2,\n",
      "\t\t\t# At state 1,P = P1,\n",
      "\t\t\t# V**(3)-(R*T/P)*V**(2)-(B*R*T/P)*V-(C*R*T/P)=0\n",
      "\t\t\t# Solving the cubic equation\n",
      "def f1(V): \n",
      "\t return V**(3)-(R*T/P1)*V**(2)-(B*R*T/P1)*V-(C*R*T/P1)\n",
      "V_1=fsolve(f1,-1)\n",
      "V_2=fsolve(f1,0)\n",
      "V_3=fsolve(f1,10)\n",
      "\t\t\t# The cubic equation has only 1 real root,other two roots are imaginary.\n",
      "V1 = V_3;\n",
      "\n",
      "\t\t\t# Similarly at state 2,P=P2\n",
      "\t\t\t# V**(3) - (R*T/P)*V**(2) - (B*R*T/P)*V - (C*R*T/P) = 0\n",
      "\t\t\t# Solving the cubic equation\n",
      "def f2(V): \n",
      "\t return V**(3)-(R*T/P2)*V**(2)-(B*R*T/P2)*V-(C*R*T/P2)\n",
      "V_4=fsolve(f2,-1)\n",
      "V_5=fsolve(f2,0)\n",
      "V_6=fsolve(f2,1)\n",
      "V2 = V_6;\n",
      "\t\t\t# Finally work done is given by,\n",
      "w1 = R*T*math.log(V2/V1)-(B*R*T)*(1/V2-1/V1)-(C*R*T/2)*(1/V2**(2)-1/V1**(2));\t\t\t#[J/mol]\n",
      "w1 = w1*10**(-3);\t\t\t#[kJ/mol]\n",
      "print \" 1).The work done using given virial equation of state is %f kJ/mol\"%(w1);\n",
      "\n",
      "\t\t\t# (2)\n",
      "\t\t\t# Virial equation of state, Z = 1+(B*P)/(R*T)+((C-B**(2))/(R*T)**(2))*P**(2)\n",
      "\t\t\t# (P*V)/(R*T)= 1+(B*P)/(R*T)+((C-B**(2))/(R*T)**(2))*P**(2)\n",
      "\t\t\t# V = (R*T)/P+B+((C-B**(2))/(R*T))*P\n",
      "\t\t\t# Differentiating both sides by P and integrating we get,\n",
      "\t\t\t# w = integral(PdV)=-(R*T)*math.log(P2/P1)+((C-B**(2))/(2*R*T))*(P2**(2)-P1**(2))\n",
      "w2 = -(R*T)*math.log(P2/P1) + ((C-B**(2))/(2*R*T))*(P2**(2)-P1**(2));\t\t\t#[J/mol]\n",
      "w2 = w2*10**(-3);\t\t\t#[kJ/mol]\n",
      "print \" 2).The work done using given virial equation of state is %f kJ/mol\"%(w2);\n",
      "\n",
      "\t\t\t# (3)\n",
      "\t\t\t# Van der Walls equation of state is given by,\n",
      "a = (27*(R**(2))*(Tc**(2)))/(64*Pc);\t\t\t#[Pa*m**(6)/mol**(2)]\n",
      "b = (R*Tc)/(8*Pc);\t\t\t#[m**(3)/mol]\n",
      "\t\t\t# P = ((R*T)/(V-b))-a/(V**(2));\t\t\t#[N/m**(2)]\n",
      "\t\t\t# w = integral(PdV)=R*T*math.log((V2-b)/(V1-a))+a*(1/V2-1/V1)\n",
      "\t\t\t# The cubic form of van der Walls equation of state is given by,\n",
      "\t\t\t# V**(3) - (b+(R*T)/P)*V**(2) + (a/P)*V - (a*b)/P = 0\n",
      "\t\t\t# Solving the cubic equation for P=P1\n",
      "def f3(V): \n",
      "\t return V**(3)-(b+(R*T)/P1)*V**(2)+(a/P1)*V-(a*b)/P1\n",
      "V2_1=fsolve(f3,1)\n",
      "V2_2=fsolve(f3,10)\n",
      "V2_3=fsolve(f3,100)\n",
      "\t\t\t# The above equation has 1 real and 2 imaginary roots. We consider only real root (V2_3).\n",
      "\n",
      "\t\t\t# Similarly at state 2,for P=P2,\n",
      "def f4(V): \n",
      "\t return V**(3)-(b+(R*T)/P2)*V**(2)+(a/P2)*V-(a*b)/P2\n",
      "V2_4=fsolve(f4,1)\n",
      "V2_5=fsolve(f4,10)\n",
      "V2_6=fsolve(f4,100)\n",
      "\t\t\t# The above equation has 1 real and 2 imaginary roots. We consider only real root (V2_6).\n",
      "\t\t\t# Finally work done is given by\n",
      "w3 = R*T*math.log((V2_6-b)/(V2_3-b))+a*(1/V2_6-1/V2_3);\t\t\t#[J/mol]\n",
      "w3 = w3*10**(-3);\t\t\t#[kJ/mol]\n",
      "print \" 3).The work done using  van der Walls equation of state is %f kJ/mol\"%(w3);\n",
      "\n",
      "\t\t\t# (4)\n",
      "\t\t\t# Redlich Kwong equation of state,\n",
      "a_1 = (0.42748*(R**(2))*(Tc**(2.5)))/Pc;\t\t\t#[Pa*m**(6)*K**(1/2)/mol]\n",
      "b_1 = (0.08664*R*Tc)/Pc;\t\t\t#[m**(3)/mol]\n",
      "\t\t\t# P = ((R*T)/(V-b_1))-(a_1/(T**(1/2)*V*(V+b_1)));\t\t\t#[N/m**(2)]\n",
      "\t\t\t# Work done is given by\n",
      "\n",
      "def f4(V): \n",
      "\t return (V2-b)/(V1-b)-a/T**(1./2)*integrate(1/V*(V+b))\n",
      "\n",
      "\t\t\t# w = R*T*math.log((V2-b)/(V1-b))-a/T**(1/2)* quad(f4,V1,V2)[0]\n",
      "\n",
      "\t\t\t# Using the factorization 1/(V*(V+b))=(1/b)*((1/V)-(1/V+b)),we get\n",
      "\t\t\t# w = R*T*math.log((V2-b)/(V1-b))-(a/(b*T**(1/2)))*(math.log(V2/V1)-math.log((V2+b)/(V1+b))\n",
      "\t\t\t# Now we have calculate V1 and V2,\n",
      "\t\t\t# The cubic form of Redlich Kwong equation of state is given by,\n",
      "\t\t\t# V**(3) - ((R*T)/P)*V**(2) - ((b_1**(2)) + ((b_1*R*T)/P) - (a/(T**(1/2)*P))*V - (a*b)/(T**(1/2)*P) = 0\n",
      "\t\t\t# Solving the cubic equation at state 1,\n",
      "def f5(V): \n",
      "\t return V**(3)-((R*T)/P1)*V**(2)-((b_1**(2))+((b_1*R*T)/P1)-(a_1/(T**(1./2)*P1)))*V-(a_1*b_1)/(T**(1./2)*P1)\n",
      "V3_1=fsolve(f5,1)\n",
      "V3_2=fsolve(f5,10)\n",
      "V3_3=fsolve(f5,100)\n",
      "\t\t\t# The above equation has 1 real and 2 imaginary roots. We consider only real root (V3_3).\n",
      "\n",
      "\t\t\t# Similarly at state 2,for P = P2,\n",
      "def f6(V): \n",
      "\t return V**(3)-((R*T)/P2)*V**(2)-((b_1**(2))+((b_1*R*T)/P2)-(a_1/(T**(1./2)*P2)))*V-(a_1*b_1)/(T**(1./2)*P2)\n",
      "V3_4=fsolve(f6,1)\n",
      "V3_5=fsolve(f6,10)\n",
      "V3_6=fsolve(f6,100)\n",
      "\t\t\t# The above equation has 1 real and 2 imaginary roots. We consider only real root (V3_6).\n",
      "\t\t\t# Finally work done is given by\n",
      "w4 = R*T*math.log((V3_6-b_1)/(V3_3-b_1))-(a_1/(b_1*T**(1./2)))*(math.log(V3_6/V3_3)-math.log((V3_6+b_1)/(V3_3+b_1)));\t\t\t#[J/mol]\n",
      "w4 = w4*10**(-3);\t\t\t#[kJ/mol]\n",
      "print \" 3).The work done using Redlich Kwong equation of state is %f kJ/mol\"%(w4);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 1).The work done using given virial equation of state is -13.848149 kJ/mol\n",
        " 2).The work done using given virial equation of state is -13.688301 kJ/mol\n",
        " 3).The work done using  van der Walls equation of state is -14.802420 kJ/mol\n",
        " 3).The work done using Redlich Kwong equation of state is -14.704965 kJ/mol\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py:227: RuntimeWarning: The iteration is not making good progress, as measured by the \n",
        "  improvement from the last five Jacobian evaluations.\n",
        "  warnings.warn(msg, RuntimeWarning)\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.8 Page number - 93"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "T = 20 + 273.15;\t\t\t#[K] - Temperature\n",
      "P_1 = 140.;\t\t\t#[kPa] - Initial pressure\n",
      "P_1 = P_1*10.**(3);\t\t\t#[Pa]\n",
      "P_2 = 560.;\t\t\t#[kPa] - Final pressure\n",
      "P_2 = P_2*10.**(3);\t\t\t#[Pa]\n",
      "R = 1.987;\t\t\t#[cal/mol*K] - Universal gas constant\n",
      "\n",
      "# Calculations\n",
      "\t\t\t# Cp_0 = 1.648+4.124*10**(-2)*T - 1.53*10**(-5)*T**(2) + 1.74*10**(-9)*T**(3)\n",
      "\t\t\t# Using adiabatic compression, P*V**(Y)=constant. For ideal gases\n",
      "\t\t\t# P*(R*T/P)**(Y) = constant\n",
      "\t\t\t# P**(1-Y)*T**(Y) = constant or,P1**(1-Y)*T1**(Y)=P2**(1-Y)*T2**(Y)\n",
      "\t\t\t# Now,at state 1, i.e at T=20[C]\n",
      "Cp_1 = 1.648+4.124*10**(-2)*T-1.53*10**(-5)*T**(2)+1.74*10**(-9)*T**(3);\t\t\t#[cal/mol*K] - Heat capacity at constant pressure\n",
      "Cv_1 = Cp_1 - R;\t\t\t#[cal/mol*K] - Heat capacity at constant volume\n",
      "Y1 = Cp_1/Cv_1;\t\t\t# Ratio of heat capacities\n",
      "\n",
      "\t\t\t# Now calculatung the temperature at state 2 (T2)\n",
      "\t\t\t# (T2/T1)=(P1/P2)**((1-Y1)/Y1)\n",
      "T_1 = T;\n",
      "T_2 = ((P_1/P_2)**((1-Y1)/Y1))*T_1;\t\t\t#[K]\n",
      "\n",
      "\t\t\t# Now calculating the mean temperature\n",
      "T_mean = (T_1 + T_2)/2;\t\t\t#[K]\n",
      "\t\t\t# At mean temperature\n",
      "Cp_2 = 1.648+4.124*10**(-2)*T_mean - 1.53*10**(-5)*T_mean**(2) + 1.74*10**(-9)*T_mean**(3);\t\t\t#[cal/mol*K] - Heat capacity at constant pressure\n",
      "Cv_2 = Cp_2 - R;\t\t\t#[cal/mol*K] - Heat capacity at constant volume\n",
      "Y2 = Cp_2/Cv_2;\n",
      "\n",
      "\t\t\t# Calculating exit temperature\n",
      "\t\t\t# Again using the realation,(T2/T1)=(P1/P2)**((1-Y1)/Y1)\n",
      "T_exit = ((P_1/P_2)**((1-Y2)/Y2))*T_1;\t\t\t#[K]\n",
      "\t\t\t# Since value of mean temperature has not changed much the molar heat capacity ratio can be assumed to be same.Therefore\n",
      "\t\t\t# w = -delta(U)=Cv_0*(T2-T1)\n",
      "w = Cv_2*(T_1 - T_exit);\t\t\t#[cal/mol]\n",
      "w = w*4.184;\t\t\t#[J/mol]\n",
      "\n",
      "# Results\n",
      "print \" The work done for adiabatic compression is %f J/mol\"%(w);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The work done for adiabatic compression is -3198.427072 J/mol\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.9 Page number - 93"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "m_ice = 1000;\t\t\t#[g] - Mass of ice\n",
      "m_water = 1000;\t\t\t#[g] - Mass of water\n",
      "T_ice = 273.15;\t\t\t#[K] - Temperature of ice\n",
      "T_water = 373.15;\t\t\t#[K] - Temperature of water\n",
      "L = 79.71;\t\t\t#[cal/g] - Latent heat of melting of ice.\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t#(1)\n",
      "Cp_1 = 1;\t\t\t#[cal/g-K] - Heat capacity at constant pressure\n",
      "\t\t\t# Let the final temperature be T\n",
      "\t\t\t# We assume that all of the ice melts.Energy taken up by ice is\n",
      "\t\t\t# E1 = L*m_ice + m_ice*Cp_1*(T - T_ice)\n",
      "\t\t\t# Energy given by hot water is,\n",
      "\t\t\t# E2 = m_water*Cp_1*(T_water - T)\n",
      "\t\t\t# No heat exchange with surrounding.Solving for T\n",
      "T_1 = (m_ice*Cp_1*T_ice + m_water*Cp_1*T_water - L*m_ice)/(m_ice*Cp_1 + m_water*Cp_1);\t\t\t#[K]\n",
      "T_1 = T_1 - 273.15;\t\t\t#[C]\n",
      "\n",
      "print \" 1).The final temperature taking Cp_water = 1 cal/g-K) is %f C\"%(T_1);\n",
      "\t\t\t#Since the final temperature is greater than 273.15 K,so our assumption that all of ice melts is correct\n",
      "\n",
      "\t\t\t# (2)\n",
      "\t\t\t# Cp_2 = 1.00874-0.7067*10**(-3)*T+15.93*10**(-6)*T**(2)-83.8*10**(-9)*T**(3);\n",
      "\n",
      "def f15(T): \n",
      "\t return Cp_2\n",
      "\n",
      "\t\t\t# From energy balance,we get L*m_ice + m_ice* quad(f15,0,T) + m_water*integrate(Cp_2)[0]\n",
      "\n",
      "\t\t\t# On putting the values and then simplifying we get\n",
      "\t\t\t# 2.01748*T - 0.0007067*T**(2) + 1.062*10**(-5)*T**(3) - 4.19*10**(-8)*T**(4) - 20.8455 = 0\n",
      "\t\t\t# Solving the above equation we get\n",
      "def f1(T): \n",
      "\t return  2.01748*T - 0.0007067*T**(2) + 1.062*10**(-5)*T**(3) - 4.19*10**(-8)*T**(4) - 20.8455\n",
      "T_0 = fsolve(f1,1)\n",
      "print \" 2).The final temperature using specific heat capacity equation is %f C\"%(T_0);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 1).The final temperature taking Cp_water = 1 cal/g-K) is 10.145000 C\n",
        " 2).The final temperature using specific heat capacity equation is 10.364452 C\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.11 Page number - 97"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "# Variables\n",
      "n = 1.5;\t\t\t# - ratio of heat capacities\n",
      "T_1 = 500.;\t\t\t#[K] - Initial temperature\n",
      "T_2 = 1000.;\t\t\t#[K] - Final temperature\n",
      "P_1 = 1.;\t\t\t#[bar] - Initial pressure\n",
      "P_1 = P_1*10.**(5);\t\t\t#[Pa]\n",
      "R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# The compression path is given by, P*V**(1.5) = constant\n",
      "\t\t\t# P*(R*T/P)**(1.5) = constant\n",
      "\t\t\t# P1**(-0.5)*T1**(1.5) = P2**(-0.5)*T2**(1.5)\n",
      "P_2 = P_1*(T_1/T_2)**(-3);\t\t\t#[Pa]\n",
      "P_2_final = P_2*10**(-5);\t\t\t#[bar] - Final pressure in bar\n",
      "print \" The final pressure is %f bar\"%(P_2_final);\n",
      "\n",
      "\t\t\t# From first law q - w = delta(U). \n",
      "\t\t\t# First w and delta(U) are calculated and thereafter heat exchange is determined.\n",
      "V_1 = R*T_1/P_1;\t\t\t#[m**(3)/mol] - Initial volume\n",
      "V_2 = R*T_2/P_2;\t\t\t#[m**(3)/mol] - Final volume\n",
      "w = ((P_1*V_1)/(n - 1))*(1 - (P_2/P_1)**(1 - 1/n));\t\t\t#[J/mol] - work done\n",
      "\n",
      "\t\t\t# Mean temperature is given by,\n",
      "T_mean = (T_1 + T_2)/2;\t\t\t#[K]\n",
      "\n",
      "\t\t\t#Now, heat capacity at T_mean is given by,\n",
      "Cp_0 = R*(3.3 + 0.63*10**(-3)*T_mean);\t\t\t#[J/mol*K]\n",
      "Cv_0 = Cp_0 - R;\t\t\t#[J/mol*K]\n",
      "\t\t\t#Therefore delta(U) is given by\n",
      "del_U = Cv_0*(T_2 - T_1);\t\t\t#[J/mol] - Change in internal energy\n",
      "q = w + del_U;\t\t\t#[J/mol] - heat change\n",
      "print \" The amount of heat supplied to the system is %f J/mol\"%(q);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The final pressure is 8.000000 bar\n",
        " The amount of heat supplied to the system is 3211.282500 J/mol\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.12 Page number - 99"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "P_1 = 150*10**(3);\t\t\t#[Pa] - Initial pressure\n",
      "V_1 = 0.001;\t\t\t#[m**(3)] - Initial volume\n",
      "P_2 = 1000*10**(3);\t\t\t#[Pa] - Final pressure\n",
      "V_2 = 0.003;\t\t\t#[m**(3)] - Final volume\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# At x = 0, Vt(total volume) = 0.001 m**(3), therefore x = (V_t - V_1)/A;  where A is area of cross section and x is length\n",
      "\t\t\t# Force exerted b sprig is given by, F = Ps*A = k*x = k*(V_t - V_1)/A\n",
      "\t\t\t# Ps = (k/A**(2))*(V_t - V_1)\n",
      "\t\t\t# Total pressure = Initial pressre + Pressre due to spring\n",
      "\t\t\t# P = P_1 + (k/A**(2))*(V_t - V_1)\n",
      "\t\t\t# Let (k/A**(2)) = t (say)\n",
      "\t\t\t# At state 2, i.e at P2 and V_t = V_2.\n",
      "def f(t): \n",
      "\t return P_2-P_1 - t*(V_2-V_1)\n",
      "t = fsolve(f,1000)\n",
      "\t\t\t# Therefore,pressure is related to total volume as P = P_1-t*(V_t - V_1)\n",
      "\n",
      "\t\t\t# (a)\n",
      "\t\t\t#slope = (k/A**(2))\n",
      "print \" a).The slope of the line on P-Vt diagram is %e N/m**5)\"%(t);\n",
      "\n",
      "\t\t\t# (b)\n",
      "\t\t\t# Work done by the gas is given by   w=integral(PdVt)\n",
      "\n",
      "def f30(V_t): \n",
      "\t return P_1+t*(V_t-V_1)\n",
      "\n",
      "w =  quad(f30,V_1,V_2)[0]\n",
      "\n",
      "w = w*10**(-3);\t\t\t#[kJ]\n",
      "print \" b).The work done by gas is %f kJ\"%(w);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " a).The slope of the line on P-Vt diagram is 4.250000e+08 N/m**5)\n",
        " b).The work done by gas is 1.150000 kJ\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.13 Page number - 99"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "V = 36;\t\t\t#[L] - Vol of gas on each side\n",
      "P_1 = 1;\t\t\t#[atm] - pressure on left side of the piston\n",
      "P_1 = P_1*101325;\t\t\t#[Pa]\n",
      "T = 273.15;\t\t\t#[K]\n",
      "P_2 = 3.375;\t\t\t#[atm] - Pressure on right side of the piston\n",
      "P_2 = P_2*101325;\t\t\t#[Pa]\n",
      "Y = 1.44;\t\t\t# Ratio of heat capacities\n",
      "R = 8.314;\t\t\t#[J/mol*K] - Universal gas constnt\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# (a)\n",
      "\t\t\t# For total system, del(U_total) = Q. \n",
      "\t\t\t\n",
      "\t\t\t# T_2/T_1 = (P_2/P_1)**((Y - 1)/Y)\n",
      "T_right = T*(P_2/P_1)**((Y - 1)/Y);\t\t\t#[K]\n",
      "\n",
      "Cv_0 = R/(Y-1);\t\t\t#[J/mol*K] - Heat capacity at constant volume.\n",
      "\t\t\t# Now work done on the gas on right hand side is given by\n",
      "\t\t\t# W = (P_1*V_1 - P_2*V_2)/(Y - 1) = R*(T_2 - T_1)/(Y - 1) =  Cv_0*(T_1 - T_2)\n",
      "W_left = Cv_0*(T - T_right);\t\t\t#[J/mol]\n",
      "\t\t\t# Negative sign for the work done on LHS gas implies work is done on the gas\n",
      "\n",
      "\t\t\t# For right hand side of the gas\n",
      "\t\t\t# P*Vt = n*R*T\n",
      "n = P_1*(V*10**(-3))/(R*T);\t\t\t# number of moles\n",
      "W_right = (-W_left)*n;\t\t\t#[J] - We used negative sign for 'W_left' because it is negative in magnitude.\n",
      "W_right = W_right/1000;\t\t\t#[kJ]\n",
      "print \" a).Total work done on gas on the right hand side is %f kJ\"%(W_right);\n",
      "\n",
      "\t\t\t#(b)\n",
      "print \" b).The final temperature of the gas on right side is %f K\"%(T_right);\n",
      "\n",
      "\t\t\t# (c)\n",
      "            # We have (P_left*V_left)/T_left = (P_right*V_right)/T_right.\n",
      "\t\t\t# Since P_left = P_right, (V_left/T_left) = (V_right/T-right) and also P*V**(Y) = constant.\n",
      "V_right = V*(P_1/P_2)**(1/Y);\t\t\t#[L] - The total volume on right side \n",
      "\n",
      "\t\t\t# The total volume on right side can also be calculated using P2*V2 = n*R*T2.\n",
      "\t\t\t# Since total volume = 72 [L], therefore volume of left side is\n",
      "V_left = 2*V - V_right;\t\t\t#[L]\n",
      "T_left = T_right*(V_left/V_right);\n",
      "print \" c).Final temperature of the gas on the left side is %f K\"%(T_left);\n",
      "\n",
      "\t\t\t#(d)\n",
      "\t\t\t#The first law applied to the total system (left side and right side) gives.\n",
      "\t\t\t#Q - W = del(U_left) + del(U_right)\n",
      "\t\t\t#There is no net work done by the total system as the cylinder is closed at both ends.\n",
      "Q = n*Cv_0*(T_left-T) + n*Cv_0*(T_right-T);\t\t\t#[J]\n",
      "Q = Q/1000;\t\t\t#[kJ]\n",
      "print \" d).Amount of heat added to the gas on the left side is %f kJ\"%(Q);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " a).Total work done on gas on the right hand side is 3.731958 kJ\n",
        " b).The final temperature of the gas on right side is 396.112176 K\n",
        " c).Final temperature of the gas on the left side is 1447.650324 K\n",
        " d).Amount of heat added to the gas on the left side is 39.378580 kJ\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.14 Page number - 105"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "P_2 = 0.2;\t\t\t#[bar]\n",
      "P_2 = P_2*10**(5);\t\t\t#[Pa]\n",
      "int_dia_2 = 2.4*10**(-2);\t\t\t#[m] - internal diameter at state 2.\n",
      "Q = 5*10**(-3);\t\t\t#[cubic metre/s] - Flow rate at point 2.\n",
      "den = 1000;\t\t\t#[kg/cubic metre] - density\n",
      "delta_z = 1;\t\t\t#[m] - Difference in height\n",
      "g = 9.81;\t\t\t#[m/s**(2)] - Acceleration due to gravity\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# (1)\n",
      "\n",
      "\t\t\t# (delta(P)/den) = (P2-P1)/den = P2/den\n",
      "Vel_2 = Q/(3.14*(int_dia_2/2)**(2));\t\t\t#[m/s] - Velocity of water at state 2.\n",
      "\t\t\t# Velocity at state 1 i negligible as compared to velocity at state 2,because the diameter of reservoir is very large as compared to diameter of pipe at state 2\n",
      "\n",
      "\t\t\t# From bernaulli equation we get,\n",
      "\t\t\t# -w = (delta(P)/den) + delta(v**(2))/2 + g*delta_z\n",
      "w = -((P_2/den )+ (Vel_2**(2)/2) + (g*delta_z));\t\t\t#[J/kg]\n",
      "\t\t\t# w multiplied by m = (den*Q), will give the fluid power.\n",
      "m = den*Q;\t\t\t#[kg/s]\n",
      "W_net = m*w;\t\t\t#[Watt]\n",
      "print \" 1).The fluid power is %f Watt\"%(W_net);\n",
      "\n",
      "\t\t\t#(2)\n",
      "\t\t\t# Total discharge head developed by the pump is given by\n",
      "\t\t\t# h = (delta(P)/den*g) + (Vel_2**(2)/2*g) + delta_z\n",
      "h = (P_2/(den*g)) + (Vel_2**(2)/(2*g)) + delta_z;\t\t\t#[m]\n",
      "print \" 2).Total discharge head developed by the pump is given by h = %f m\"%(h);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 1).The fluid power is -454.750210 Watt\n",
        " 2).Total discharge head developed by the pump is given by h = 9.271156 m\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.15 Page number - 106"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "T_1 = 1000.;\t\t\t#[K] - Temperature at entry\n",
      "P_1 = 0.6;\t\t\t#[MPa] - Pressure at entry\n",
      "P_2 = 0.2;\t\t\t#[MPa] - Exit pressure\n",
      "Vel_1 = 50.;\t\t\t#[m/s] - Entry velocity \n",
      "Y = 1.4;\t\t\t# Ratio of heat capacities\n",
      "Mol_wt = 28.;\t\t\t#[g/mol] - Molecular weight of air\n",
      "Cp = 29.099;\t\t\t#[J/mol-K] - Specific heat capacity at constant pressure\n",
      "Cp = (Cp/Mol_wt)*1000;\t\t\t#[J/kg-K]\n",
      "\n",
      "# Calculations\n",
      "\t\t\t# We know that for a flow process \n",
      "\t\t\t# delta_H + delta_V**(2)/2 + delta_(g*z) = q - w\n",
      "\t\t\t# delta_H + delta_V**(2)/2 = 0\n",
      "\n",
      "\t\t\t# For a reversible process P*V**(Y) = constant and thus (T_2/T_1) = (P_2/P_1)**((Y-1)/Y)\n",
      "T_2 = T_1*(P_2/P_1)**((Y-1)/Y);\t\t\t#[K] - Exit temperature\n",
      "\n",
      "\t\t\t# delta_H + delta_V**(2)/2 = 0\n",
      "\t\t\t# Vel_2**(2)/2 - Vel_1**(2)/2 - (H_1 - H_2)= 0\n",
      "\t\t\t# Vel_2**(2)/2 - Vel_1**(2)/2 - Cp*(T_1 - T_2) = 0\n",
      "Vel_2_square = 2*(Vel_1**(2.)/2 - Cp*(T_2 - T_1));\t\t\t#[m**(2)/s**(2)]\n",
      "Vel_2 = (Vel_2_square)**(1./2);\t\t\t#[m/s]\n",
      "\n",
      "# Results\n",
      "print \" The discharge velocity is %f m/s\"%(Vel_2);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The discharge velocity is 749.965327 m/s\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.16 Page number - 107"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "P_entry = 10;\t\t\t#[bar] - Pressure at entry\n",
      "V_entry = 200;\t\t\t#[m/s] - Velocity at entry\n",
      "P_exit = 1;\t\t\t#[bar] - Vressure at exit\n",
      "V_exit = 800;\t\t\t#[m/s] - Velocity at exit\n",
      "g = 9.81;\t\t\t#[m/s**(2)] - Acceleration due to gravity\n",
      "\n",
      "# Calculations\n",
      "\t\t\t#Heat balance gives\n",
      "\t\t\t# delta_H + (delta_V**(2))/2 + g*delta_z = q - w\n",
      "\t\t\t#delta_H = q - w - (delta_V**(2))/2 \n",
      "\t\t\t#From nozzle no work is extracted,therefore\n",
      "delta_H = -(V_exit**(2)- V_entry**(2))/2;\t\t\t#[J/kg]\n",
      "delta_H = delta_H*10**(-3);\t\t\t#[kJ/kg]\n",
      "\n",
      "# Results\n",
      "print \" The change in enthalpy per kg of steam is %f kJ/kg\"%(delta_H);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The change in enthalpy per kg of steam is -300.000000 kJ/kg\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.17 Page number - 111"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "T_1 = 280;\t\t\t#[K] - Temperature at entry\n",
      "P_1 = 100;\t\t\t#[kPa] - Pressure at entry\n",
      "T_2 = 400;\t\t\t#[K] - Temperature at exit\n",
      "P_2 = 600;\t\t\t#[kPa] - Pressure at exit\n",
      "m = 0.02;\t\t\t#[kg/s] - Mass flow rate\n",
      "m = m*10**(3);\t\t\t#[g/s]\n",
      "heat_loss = 16;\t\t\t#[kJ/kg]\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t#Cp_0 = 28.11 + 0.1967*10**(-2)*T + 0.4802*10**(-5)*T**(2) - 1.966*10**(-9)*T**(3)\n",
      "\t\t\t#delta_H = q - w (neglecting kinetic and potential changes)\n",
      "\t\t\t#delta_H = integral(Cp_0*dT)\n",
      "\n",
      "def f22(T): \n",
      "\t return 28.11 + 0.1967*10**(-2)*T + 0.4802*10**(-5)*T**(2) - 1.966*10**(-9)*T**(3)\n",
      "\n",
      "delta_H =  quad(f22,T_1,T_2)[0]\n",
      "\n",
      "print \" Change in enthalpy is %f J/mol\"%(delta_H);\n",
      "\n",
      "\t\t\t#Molecular weight of air(21 vol% O2 and 79 vol% N2)=(0.21*32)+(0.79*28)=  28.84 g/mol\n",
      "Mol_wt = 28.84;\t\t\t#[g/mol]\n",
      "q = - (heat_loss*Mol_wt);\t\t\t#[J/mol]\n",
      "w = q - delta_H;\t\t\t#[J/mol]\n",
      "print \" The work done per mole of air is %f J/mol\"%(w);\n",
      "\t\t\t#the negative sign implies that work is done on the compressor.\n",
      "\n",
      "n = m/Mol_wt;\t\t\t#[mol/s] - Mole flow rate\n",
      "W_net = delta_H*n;\t\t\t#[W]\n",
      "W_net = -W_net*10**(-3);\t\t\t#[kW]\n",
      "print \" And the necessary power input to the compressor is %f kW\"%(W_net);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Change in enthalpy is 3511.197066 J/mol\n",
        " The work done per mole of air is -3972.637066 J/mol\n",
        " And the necessary power input to the compressor is -2.434949 kW\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.18 Page number - 112"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "T_1 = 300;\t\t\t#[K] - Temperature at entry\n",
      "P_1 = 100;\t\t\t#[kPa] - Pressure at entry\n",
      "P_2 = 900;\t\t\t#[kPa] - Pressure at exit\n",
      "R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t# (a)\n",
      "\t\t\t# Reversible adiabatic compression\n",
      "Y = 1.4;\t\t\t#Ratio of specific heat capacities\n",
      "\t\t\t# For ideal gas, P*V**(Y)= constant and it takes the form of (T_2/T_1) = (P_2/P_1)**((Y-1)/Y)\n",
      "T_2 = T_1*(P_2/P_1)**((Y - 1)/Y);\t\t\t#[K]\n",
      "\t\t\t# The work exchange for adiabatic process is given by\n",
      "\t\t\t# W_adia = -delta_H = -Cp*(T2-T1) = Cp*(T1-T2) = ((Y*R)/(Y-1))*(T1-T2)\n",
      "W_adia = ((Y*R)/(Y - 1))*(T_1 - T_2);\t\t\t#[J/mol] -work done\n",
      "\t\t\t# Molecular weight of air(21 vol% O2 and 79 vol% N2)=(0.21*32)+(0.79*28)=  28.84 g/mol\n",
      "Mol_wt = 28.84;\t\t\t#[g/mol]\n",
      "W_adia = W_adia/Mol_wt;\t\t\t#[J/g]\n",
      "print \" a).The compressor work done for reversible adiabatic compession is %f J/g\"%(W_adia);\n",
      "\n",
      "\t\t\t#(b)\n",
      "\t\t\t#Isothermal compression\n",
      "\t\t\t#W_iso = -integral(V*dP) = -integral((R*T/P)*dP) = R*T*ln(P_2/P_1)\n",
      "W_iso = -R*T_1*math.log(P_2/P_1);\t\t\t#[J/mol]\n",
      "W_iso = W_iso/Mol_wt;\t\t\t#[J/g]\n",
      "print \" b).The compressor work done for isothermal compession is %f J/g\"%(W_iso);\n",
      "\t\t\t#Note that in isothermal compression between the same states work done is less as compared to reversible adiabatic compression.\n",
      "\n",
      "\t\t\t#(c)\n",
      "\t\t\t#Ideal two-stage compression \n",
      "n = 1.3;\t\t\t#Polytropic exponent.\n",
      "\t\t\t#Minimum work done in two stage compression  is given by\n",
      "\t\t\t#W_comp = ((2*n*R*T_1)/(n-1))*[1-(P_x/P_1)**(n-1)/n]\n",
      "\t\t\t#where for minimum work, (P_x/P_1) = (P_x/P_2), and thus\n",
      "P_x = (P_1*P_2)**(1./2);\t\t\t#[kPa]\n",
      "\t\t\t#therefore, work done is given by,\n",
      "W_comp = ((2*n*R*T_1)/(n-1))*(1-(P_x/P_1)**((n-1)/n));\t\t\t#[J/mol]\n",
      "W_comp = W_comp/Mol_wt;\t\t\t#[J/g]\n",
      "print \" c).The compressor work done for ideal two-stage compession is %f J/g\"%(W_comp);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " a).The compressor work done for reversible adiabatic compession is -264.386412 J/g\n",
        " b).The compressor work done for isothermal compession is -190.024880 J/g\n",
        " c).The compressor work done for ideal two-stage compession is -216.284501 J/g\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.19 Page number - 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "T_1 = 600;\t\t\t#[C] - Temperature at entry\n",
      "P_1 = 15;\t\t\t#[MPa] - Pressure at entry\n",
      "T_2 = 400;\t\t\t#[K] - Temperature at exit\n",
      "P_2 = 100;\t\t\t#[kPa] - Pressure at exit\n",
      "A_in = 0.045;\t\t\t#[metre square] - flow  in area\n",
      "A_out = 0.31;\t\t\t#[metre square] - flow out area\n",
      "m = 30;\t\t\t#[kg/s] - mass flow rate.\n",
      "\n",
      "# Calculations and Results\n",
      "\t\t\t#At 15 MPa and 600 C,it has been reported in the book that the properties of steam are,\n",
      "Vol_1 = 0.02491;\t\t\t#[m**(3)/kg] - Specific volume\n",
      "H_1 = 3582.3;\t\t\t#[kJ/kg] - Enthalpy\n",
      "\t\t\t# m = den*vel*A = (Vel*A)/Vol, substituting the values\n",
      "vel_1 = (m*Vol_1)/A_in;\t\t\t#[m/s] - Velocity at point 1.\n",
      "print \" The inlet velocity is %f m/s\"%(vel_1);\n",
      "\n",
      "\t\t\t#At 100 MPa (saturated vapour),it has been reported in the book that the properties of steam are, T_sat = 99.63 C, and\n",
      "Vol_vap_2 = 1.6940;\t\t\t#[m**(3)/kg] - specific volume of saturated vapour.\n",
      "H_vap_2 = 2675.5;\t\t\t#[kJ/kg] - Enthalpy os saturated vapour.\n",
      "vel_2 = (m*Vol_vap_2)/A_out;\t\t\t#[m/s] - Velocity at point 2.\n",
      "print \" The exit velocity is %f m/s\"%(vel_2);\n",
      "\n",
      "\t\t\t#From first law we get, q - w =delta_H + delta_V**(2)/2\n",
      "\t\t\t#q = 0, therefore, -w = delta_H + delta_V**(2)/2\n",
      "delta_H = H_vap_2 - H_1;\t\t\t#[kJ/kg] - change in enthalpy.\n",
      "delta_V_square = (vel_2**(2) - vel_1**(2))/2;\t\t\t#[J/kg]\n",
      "delta_V_square = delta_V_square*10**(-3);\t\t\t#[kJ/kg]\n",
      "w = -(delta_H + delta_V_square);\t\t\t#[J/kg] \n",
      "W_net = w*m;\t\t\t#[kW]\n",
      "W_net = W_net*10**(-3);\t\t\t#[MW] - power produced.\n",
      "print \" The power that can be produced by the turbine is %f MW\"%(W_net);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The inlet velocity is 16.606667 m/s\n",
        " The exit velocity is 163.935484 m/s\n",
        " The power that can be produced by the turbine is 26.805014 MW\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.20 Page number - 117"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "R = 8.314;\t\t\t#[J/mol-K] - Universal gas constant\n",
      "Cp_0 = 2.5*R;\t\t\t#[J/mol-K] -  Specific heat capacity at constant pressure\n",
      "Cv_0 = 1.5*R;\t\t\t#[J/mol-K] -  Specific heat capacity at constant volume\n",
      "T_L = 300;\t\t\t#[K] - Temperature at which port properties are constant.\n",
      "\n",
      "# Calculations\n",
      "Y = Cp_0/Cv_0;\t\t\t# Ratio of heat capacities.\n",
      "\t\t\t#From part(1) we obtained the relation,\n",
      "\t\t\t# T_2 = 1/(((P_2-P_1)/(Y*T_L*P_2))+(P_1/(P_2*T_1)))\n",
      "\t\t\t# Not that when P_2 >> P_1 ,T_2 approaches Y*T_L and thus\n",
      "T_2 = Y*T_L;\t\t\t#[K]\n",
      "\n",
      "# Results\n",
      "print \" b).The final temperature is %f K\"%(T_2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " b).The final temperature is 500.000000 K\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.21 Page number - 119"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "T_1 = 40 + 273.15;\t\t\t#[K] - Initial temperature.\n",
      "P_1 = 1;\t\t\t#[bar] - Initial pressure.\n",
      "P_1 = P_1*10**(5);\t\t\t#[Pa]\n",
      "Vol_1 = 0.01;\t\t\t#[cubic metre] - Initial volume of the cylinder.\n",
      "T_2 = 100 + 273.15;\t\t\t#[K] - Final temperature.\n",
      "P_2 = 100;\t\t\t#[kPa] - Final pressure.\n",
      "P_2 = P_2*10**(5);\t\t\t#[Pa]\n",
      "Vol_2 = 0.02;\t\t\t#[cubic metre] - Final volume of the cylinder.\n",
      "Cp = 1.005;\t\t\t#[J/g-K] - Specific heat capacity at constant pressure.\n",
      "Cv = 0.718;\t\t\t#[J/g-K] - Specific heat capacity at constant volume.\n",
      "Mol_wt = 28.84;\t\t\t#[g/mol] - Molecular weight of air.\n",
      "R = 8.314;\t\t\t#[J/mol-K] - universal gas constant\n",
      "\n",
      "# Calculations\n",
      "delta_Vol = Vol_2 - Vol_1;\t\t\t# [cubic metre] - Change in volume.\n",
      "\t\t\t# Assuming ideal gas P*V = R*T\n",
      "V_1 = (R*T_1)/P_1;\t\t\t# [m**(3)/mol] - Initial specific volume.\n",
      "\t\t\t# Therefore,the total number of moles initially in the system is,\n",
      "n_1 = (Vol_1/V_1);\t\t\t# [mol]\n",
      "m_1 = n_1*Mol_wt;\t\t\t# [g] - Initial mass of the system.\n",
      "Y = Cp/Cv;\t\t\t#Ratio of heat capacities\n",
      "\n",
      "\t\t\t# The energy balance equation is given by\n",
      "\t\t\t# -P*delta_Vol + H_liq*(m_2 - m_1) = m_2*Cv*(P*V2)/R - m_1*Cv*T_1\n",
      "\t\t\t# m_2*Cv*(P*V2)/R = (Cv*P_1*Vol_2)/R\n",
      "\t\t\t# Cv/R = 1/(Y-1)\n",
      "\t\t\t# Since pressure of the gas in system is assumed constant,therefore it remains at 1 bar and thus P = P_1,\n",
      "H_liq = Cp*T_2;\t\t\t# [J/g] - Enthalpy of liquid\n",
      "m_2 = (P_1*delta_Vol + ((P_1*Vol_2)/(Y-1)) + H_liq*m_1 - m_1*Cv*T_1)/H_liq;\t\t\t#[g]\n",
      "\n",
      "\t\t\t#The mass entering the assembly during the filling process is given by\n",
      "m = m_2 - m_1;\t\t\t#[g]\n",
      "n_2 = m_2/Mol_wt;\t\t\t#[mol] - Number of moles in the final state.\n",
      "V_2 = Vol_2/n_2;\t\t\t#[m**(3)/mol] - Final specific volume.\n",
      "\t\t\t# Therfore,final temperature is given by,\n",
      "T_2 = (P_1*V_2)/R;\t\t\t#[K] - Final temperature.\n",
      "\n",
      "# Results\n",
      "print \" The final equilibrium temperature is %f K\"%(T_2);\n",
      "print \" The mass entering through the valve is %f g\"%(m);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The final equilibrium temperature is 339.343160 K\n",
        " The mass entering through the valve is 9.367211 g\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example - 3.22 Page number - 122"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "V_total = 5;\t\t\t#[L] - Volume of pressure cooker.\n",
      "V_total = V_total*10**(-3);\t\t\t#m**(3)\n",
      "P_gauze = 15;\t\t\t#[psi] - Operating pressure (gauze)of pressure cooker.\n",
      "P_gauze = (P_gauze/14.5)*10**(5);\t\t\t#[N/m**(2)]\n",
      "P_atm = 0.966*10**(5);\t\t\t#[N/m**(2)] - Atmospheric pressure.\n",
      "m_1 = 1;\t\t\t#[kg] - Initial mass.\n",
      "t = 30*60;\t\t\t#[s] - Total time.\n",
      "J = 500;\t\t\t#[W] - Rate of heat supply\n",
      "\n",
      "# Calculations\n",
      "P_abs = P_gauze + P_atm;\t\t\t#[N/m**(2)] - Absolute pressure.\n",
      "\t\t\t#The energy balance equqtion gives,\n",
      "\t\t\t# Q = m_e*H_e +(m_2*U_2 - m_1*U_1), where 'm_e' is the mass exit  from the system and 'H_e' is enthalpy at exit conditions.\n",
      "\n",
      "\t\t\t#It has been reported in the book that from steam table at P_abs,\n",
      "T_sat = 120.23;\t\t\t#[K]- Saturated temperature\n",
      "V_liq = 0.001061;\t\t\t#[m**(3)/kg] - specific volume of liquid.\n",
      "V_vap = 0.8857;\t\t\t#[m**(3)/kg] - specific volume of vapour.\n",
      "U_liq = 504.49;\t\t\t#[kJ/kg] - specific internal energy of liquid.\n",
      "U_vap = 2529.5;\t\t\t#[kJ/kg] - specific internal energy of vapour.\n",
      "H_liq = 504.70;\t\t\t#[kJ/kg] - specific enthalpy of liquid.\n",
      "H_vap = 2706.7;\t\t\t#[kJ/kg] - specific internal energy of vapour.\n",
      "\n",
      "\t\t\t#We know that total volume occupied by 1 kg of fluid is \n",
      "\t\t\t#V_total = (1-x)*V_liq + x*V_vap\n",
      "x1 = (V_liq - V_total)/(V_liq - V_vap);\t\t\t#[g]\n",
      "\n",
      "\t\t\t#Internal energy at this state is\n",
      "U_1 = (1-x1)*U_liq + x1*U_vap;\t\t\t#[kJ/kg] - specific internal energy\n",
      "U_1_net = m_1*U_1;\t\t\t#[kJ] - Internal energy\n",
      "\n",
      "\t\t\t#The amount of heat suplied is given by,\n",
      "J_net = J*t;\t\t\t#[J] - Net heat supplied.\n",
      "J_net = J_net*10**(-3);\t\t\t#[kJ]\n",
      "\n",
      "\t\t\t#Let the dryness factor at the end of the process be x\n",
      "\t\t\t#Let the total mass of H2O (liquid + vapour) at the end of the process be 'm' kg.\n",
      "\t\t\t# V_total/m = (1-x)*(V_liq) + x*V_vap ......equqtion(1)\n",
      "\n",
      "\n",
      "\t\t\t#The energy balance equqtion gives,\n",
      "\t\t\t# Q = m_e*H_e +(m_2*U_2 - m_1*U_1), where 'm_e' is the mass exit  from the system and 'H_e' is enthalpy at exit conditions.\n",
      "\n",
      "    \t\t# The second equation on simplification becomes\n",
      "\t\t\t# x = ((0.005/m) - 0.001061)/0.884639\n",
      "\n",
      "\t\t\t# Putting the expression of x in first equation and then simplifying, we get\n",
      "\t\t\t# - 1293.2 = -2202.21*m + 11.445 - 2.429*m\n",
      "m = (11.445+1293.2)/(2202.21+2.429);\t\t\t#[kg]\n",
      "\n",
      "\t\t\t# Therefore x can be calculated as\n",
      "x = ((0.005/m) - 0.001061)/0.884639;\n",
      "\n",
      "\t\t\t# Therfore total water (liquid + vapour) present in the pressure cooker at the end of the process is m kg.\n",
      "m_vapour = x*m;\t\t\t#[kg] - Mass of vapour\n",
      "m_liquid = (1-x)*m;\t\t\t#[kg] - Mass of vapour\n",
      "\n",
      "# Results\n",
      "print \" Total water liquid + vapour) present in the pressure cooker at the end of the process is %f kg\"%(m);\n",
      "print \" The mass of vapour is %f kg\"%(m_vapour);\n",
      "print \" The mass of liquid is %f kg\"%(m_liquid);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Total water liquid + vapour) present in the pressure cooker at the end of the process is 0.591773 kg\n",
        " The mass of vapour is 0.004942 kg\n",
        " The mass of liquid is 0.586830 kg\n"
       ]
      }
     ],
     "prompt_number": 20
    }
   ],
   "metadata": {}
  }
 ]
}