1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
{
"metadata": {
"name": "",
"signature": "sha256:3e5d8c28d726b79a2c86b3cf54d87d3c39d0c9ab36d48d833fe93313ec8fd001"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 : Thermodynamic Potentials and Maxwell Relation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1 Page No : 119"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Given\n",
"T = 293.0;#Consmath.tant temperature in K\n",
"w_NH3 = 20/100.0;#weight of NH3 in an aqueous solution in Kg\n",
"w_H2O = 80/100.0;#weight of H2O in an aqueous solution in Kg\n",
"V = 40.0;#feed rate in Kg/min\n",
"M_NH3 = 17.0;#Molecular weight of NH3\n",
"M_H2O = 18.0;#Molecular weight of H20\n",
"R = 1.98;#gas consmath.tant in Kcl/Kg mole K\n",
"V_s = 62.0;#Rate of heating steam in Kg/min\n",
"P1_H2O = 11.6;#Vapour pressure of water in feed in mm Hg\n",
"P2_H2O = 17.5;#Vapour pressure of pure water in mm Hg\n",
"P1_NH3 = 227.0;#Vapour pressure of NH3 in feed in mm Hg\n",
"P2_NH3 = 6350.0;#Vapor pressure of pure NH3 in mm Hg\n",
"#From steam tables:\n",
"Hs = 666.4;#Enthalpy of steam at 160 deg celsius & 2Kgf/cm**2 in Kcal /Kg \n",
"Ss = 1.75;#Entropy of steam at 160 deg celsius & 2Kgf/cm**2V in Kcal/Kg K\n",
"Hl = 20.03;#Enthalpy of liquid water at 20 deg celsius in Kcal/Kg\n",
"Sl = 0.0612;#Entropy of liquid water at 20 deg celsius in Kcal/Kg K\n",
"\n",
"#To Calculate the efficiency of the separation process \n",
"#Material Balance:\n",
"n_NH3 = (V*w_NH3)/M_NH3;#Kg moles of NH3 in feed(tops)\n",
"n_H2O = (V*w_H2O)/M_H2O;#Kg moles of H20 in feed(bottoms)\n",
"#del_F = del_F_NH3 +del_F_H2O;\n",
"del_F = (R*T*n_NH3*math.log(P2_NH3/P1_NH3))+(R*T*n_H2O*math.log(P2_H2O/P1_H2O));#Theoretical minimum work done in Kcal\n",
"#The available energy of the steam can be calculated from equation 4.14(page no 110)\n",
"del_B = -V_s*((Hl-Hs)-T*(Sl-Ss));#Available energy of the steam in Kcal\n",
"E = (del_F/del_B)*100;\n",
"print \"The efficiency of the separation process is %f percent\"%(E);\n",
"#end\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The efficiency of the separation process is 14.192424 percent\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|