1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
{
"metadata": {
"name": "",
"signature": "sha256:e134d729844fc5fc379f513b7f1e5b167020e513591a6ab49b7a3de0e1f6059e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 15 : Fuel Cells"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.1 Page No : 321"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"del_F = -56.29;#Smath.radians(numpy.arcmath.tan(ard free energy change in Kcal/Kgmole\n",
"del_H = -68.317;#Smath.radians(numpy.arcmath.tan(ard heat of reaction in Kcal/kgmole\n",
"F = 23.06;#Electro-chemical equivalent in Kcal/volt\n",
"J = 2.0;#Valance for H2\n",
"\n",
"#To Calculate the emf of the cell, cell efficiency and heat to be removed to maintain isothermal conditions\n",
"#Basis: 1 Kgmole of H2\n",
"#From equation 15.4 (page no 355)\n",
"E = -del_F/(F*J);\n",
"print '1.The emf of the cell is %f volt.'%(E);\n",
"n = del_F/del_H*100;\n",
"print ' 2.The cell efficiency is %f percent.'%(n);\n",
"Q = del_H-del_F;\n",
"print ' 3.The heat to be removed is %f Kcal to maintain the temperature at 25 degree celsius.'%(Q);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.The emf of the cell is 1.220512 volt.\n",
" 2.The cell efficiency is 82.395304 percent.\n",
" 3.The heat to be removed is -12.027000 Kcal to maintain the temperature at 25 degree celsius.\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|