1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
|
{
"metadata": {
"name": "",
"signature": "sha256:1e67847320cea04698ca89c9f40ead4304c8c00593843ef51265231f33b2b44d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 : Thermodynamics of Chemical Reactions"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1 Page No : 282"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"H_f_C2H4 = 12500.0;#Smath.radians(numpy.arcmath.tan(ard heat of formation of ethylene at 25 deg cel in Kcal/Kgmole\n",
"H_f_C2H4O = -11667.0;#Smath.radians(numpy.arcmath.tan(ard heat of formation of ethylene oxide at 25 deg cel in Kcal/Kgmole\n",
"\n",
"#To Calculate the smath.radians(numpy.arcmath.tan(ard heats of reaction at 25 deg celsius\n",
"#The reaction is: C2H4 + (1/2)O2 - C2H4O\n",
"del_H_rxn = H_f_C2H4O-H_f_C2H4;#Since, Smath.radians(numpy.arcmath.tan(ard heat of formation of O2 is zero\n",
"print 'The standard heats of reaction at 25 deg celsius is %d Kcal/Kgmole'%(del_H_rxn);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The standard heats of reaction at 25 deg celsius is -24167 Kcal/Kgmole\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2 Page No : 284"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"T1 = 25+273.0;#Initial temperature in K\n",
"T2 = 450+273.0;#Final temperature in K\n",
"#Specific heat of sulphur dioxide is given by the relation:\n",
"#Cp = 7.116+9.512*10**-3*T+(3.511*10**-6)*T**2\n",
"\n",
"#To Calculate the sensible heat required\n",
"#Basis: 1 Kgmole of sulphur dioxide\n",
"Q = 7.116*(T2-T1)+(9.512*10**-3*(T2**2-T1**2)/2)+((3.51*10**-6)*(T2**3-T1**3)/3);\n",
"print 'Sensible heat required is %d Kcal/Kgmole'%(Q);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Sensible heat required is 5499 Kcal/Kgmole\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.3 Page No : 289"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"H_C2H4 = 12500;#Smath.radians(numpy.arcmath.tan(ard heat of formation of ethylene at 25 de cel\n",
"H_C2H4O = -12190;#Smath.radians(numpy.arcmath.tan(ard heat of formation of ethylene oxide at 25 deg cel\n",
"H_CO2 = -94052;#Smath.radians(numpy.arcmath.tan(ard heat of formation of CO2 at 25 deg cel\n",
"H_H2O = -57798;#Smath.radians(numpy.arcmath.tan(ard heat of formation of H2O at 25 deg cel\n",
"T1 = 200;#temperature at which mixture entered in deg cel\n",
"Ti = 25;#intermediate temperature in deg cel\n",
"T2 = 260;#product temperature in deg cel\n",
"Cp_air_a = 7;#Mean specific heat for 25 to 200 deg cel in Kcal/Kgmole\n",
"Cp_C2H4_a = 18;#Mean specific heat for 25 to 200 deg cel in Kcal/Kgmole\n",
"#Mean specific heat for 25 to 260 deg cel in Kcal/Kgmole are given as:\n",
"Cp_C2H4_b = 19;\n",
"Cp_C2H4O_b = 21;\n",
"Cp_O2_b = 7.30;\n",
"Cp_N2_b = 7.00;\n",
"Cp_CO2_b = 10.00;\n",
"Cp_H2O_b = 8.25;\n",
"#Basis: 1 Kgmole of ethylene as feed\n",
"n_air = 9;#Kgmoles\n",
"n_C2H4 =1;#Kgmoles\n",
"n_C2H4_1 = 0.6#ethylene consumed while converting in C2H4O in Kgmoles (Rxn 1)\n",
"n_C2H4_2 = 0.3;#ethylene burnt completely to CO2 in Kgmoles (Rxn 2)\n",
"\n",
"#To Calculate the heat must be removed if the product temperature should not exceed 260 deg cel\n",
"n_O2 = n_air*0.21;#Kgmoles of O2 fed\n",
"n_N2 = n_air-n_O2;#Kgmoles of N2 fed\n",
"#Rxn 1: (0.6)C2H4 + (0.3)O2 - (0.6)C2H4O;...(i) 60% of C2H4 is converted to C2H4O\n",
"n_O2_1 = n_C2H4_1/2;#Kgmoles of oxygen consumed\n",
"n_C2H4O_1 = n_C2H4_1;#C2H4O formed in Kgmoles\n",
"#Rxn 2: (0.3)C2H4 + (0.9)O2 - (0.6)CO2+ (0.6)H20;...(ii) 30%conversion\n",
"n_O2_2 = 3*n_C2H4_2;#Kgmoles of O2 reacted\n",
"n_CO2_2 = 2*n_C2H4_2;#Kgmoles of CO2 formed\n",
"n_H2O_2 = 2*n_C2H4_2;#Kgmoles of H2O formed\n",
"n_C2H4_r = n_C2H4 - n_C2H4_1 - n_C2H4_2;#unreacted ethylene in Kgmoles\n",
"n_O2_r = n_O2 - n_O2_1-n_O2_2;#unreacted O2 in Kgmoles\n",
"#The overall rxn is given by (i)&(ii),\n",
"#(0.9)C2H4 + (1.2)O2 - (0.6)C2H4O + (0.6)CO2 + (0.6)H2O...(iii)\n",
"del_H = (0.6*H_C2H4O)+(0.6*H_CO2)+(0.6*H_H2O)-(0.9*H_C2H4);#math.since,smath.radians(numpy.arcmath.tan(ard enthalpy of O2 is zero; Smath.radians(numpy.arcmath.tan(ard heat of rxn in Kcal/Kgmole\n",
"Q1 = (n_C2H4*Cp_C2H4_a + n_air*Cp_air_a)*(Ti-T1);#Sensible heat in feed in Kcal\n",
"Q2 = (n_C2H4_r*Cp_C2H4_b + n_C2H4O_1*Cp_C2H4O_b + n_CO2_2*Cp_CO2_b + n_H2O_2*Cp_H2O_b + n_O2_r*Cp_O2_b + n_N2*Cp_N2_b)*(T2-Ti);#Sensible heat in product in Kcal\n",
"Q = Q1+Q2+del_H;\n",
"print 'The heat to be removed is %f Kcal so that the product temperature is 260 deg celsius'%(-Q);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat to be removed is 104988.605000 Kcal so that the product temperature is 260 deg celsius\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.4 Page No : 293"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"import math\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy\n",
"\n",
"#Given\n",
"#Basis: 1Kgmole of C0\n",
"#CO + (1/2)O2 - CO2\n",
"#Whem mixture entered,their compositions are given as:\n",
"n_CO = 1.0;#Kgmole\n",
"del_H = -67636.0;#Smath.radians(numpy.arcmath.tan(ard heat of reaction in Kcal/Kgmole at 25 deg cel\n",
"T1 = 95.0;#Temperature at which mixture entered in deg celsius\n",
"T2 = 25.0;#Intermediate temperature in deg celsius\n",
"#Mean specific heat values for the temperature between 25 and 95 deg celsius in Kcal/Kgmole are given as (from figure 14.4)(page no 303)\n",
"Cpm_CO = 6.95;\n",
"Cpm_O2 = 7.1;\n",
"Cpm_N2 = 6.95;\n",
"\n",
"#To Calculate the theoretical flame temperature when both air and CO2 enter at 95 deg celsius\n",
"n_O2 = 1.0;#Kgmole, as 100% excess air is given\n",
"n_N2 = n_O2*(0.79/0.21);#Kgmole\n",
"#After the rxn:\n",
"n_CO2 = n_CO;#Kgmole\n",
"n_O2_r = n_O2-(n_CO/2);#remaining Kgmole of O2\n",
"#In equation 14.18 (page no 307) say: H_2-H_R = Ha, H_P-H_3 = Hb, Hc = del_H+Ha & Ht = Hc+Hb\n",
"Ha = (n_CO*Cpm_CO + n_O2*Cpm_O2 + n_N2*Cpm_N2)*(T2-T1);#in Kcal/Kgmole\n",
"Hc = del_H+Ha;#in Kcal/Kgmole\n",
"#For calculating Hb let us assume the temperature as\n",
"T = [530, 1000, 1650];#in deg celsius\n",
"Cpm_CO2 = [10.85, 12, 12.75];#Mean specific heat of CO2 at the coresspondig temperature (from figure 14.4)\n",
"Cpm_O2 = [7.55, 7.8, 8.3];#Mean specific heat of O2 at the coresspondig temperature (from figure 14.4)\n",
"Cpm_N2 = [7.15, 7.5, 7.85];#Mean specific heat of N2 at the coresspondig temperature (from figure 14.4)\n",
"Hb = []\n",
"Ht = []\n",
"for i in range(0,3):\n",
" Hb.append((n_CO2*Cpm_CO2[i]+n_O2_r*Cpm_O2[i]+n_N2*Cpm_N2[i])*(T[i]-T2));#in Kcal/Kgmole\n",
" Ht.append(Hc+Hb[i]);#in Kcal/Kgmole\n",
"\n",
"plt.plot(T,Ht)\n",
"plt.title(\"\")\n",
"plt.xlabel(\"Temperature, deg celsius\")\n",
"plt.ylabel(\"Ht in Kcal/Kgmole\")\n",
"plt.show()\n",
"Tf = numpy.interp(0,Ht,T) \n",
"print 'The adiabatic temperature is read as %d degree celsius'%(Tf);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEPCAYAAAAAicBfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcU9X5x/HPKIpYtoKobAJFtFr9FQFZ3IgLglr3BRAV\nFLVKi9r6axH9KSDVurRYrGsVFGUVQRAXNnGKojgIiBRUQIGyaK0gi6jAQH5/PCfmMmaGwCRz7k2+\n79crr9ycJDfPDMM8c8557jkgIiIiIiIiIiIiIiIiIiIiIiIiIiIiInlgKPAfYGGgrRYwDVgCTAVq\nBp7rCywFPgbODLS3dOdYCgwOtFcGxrj22UCjzIYvIiJRdzJwHLsmogeAP7rjPsB97vho4ANgP6Ax\nsAwocM8VAa3d8WtAJ3fcC3jMHXcGRmc0ehERyQmN2TURfQwc4o4PdY/BekN9Aq+bDLQF6gIfBdq7\nAE8EXtPGHVcC/pupoEVEJDP28R1ACodgw3W4+0RSqgesDrxuNVA/Rfsa1467X+WOi4GN2NCfiIiE\nRBgTUVDc3UREJEdV8h1ACv/BhuS+wIbdvnTta4CGgdc1wHpCa9xxyfbEew4D1mJfaw1gfckPbNq0\nafzTTz/N3FcgIpL7PgUOz8SJwtgjehno7o67AxMC7V2A/YEmQDOsSOELYBM2F1QAXAlMTHGuS4A3\nUn3gp59+Sjwej+StX79+3mNQ/P7jUPzRvEU5fqBppn7p++4RjQLaAwdhczl3YVVyLwA9gRXAZe61\ni137Ymy+pxfJYbtewLNAFaxqbrJrHwI8j5Vvr8MSmYiIhIjvRNS1lPYzSmm/191Kmgscm6J9K8lE\nJiIiIRTGoTnZA7FYzHcI5aL4/VL8fkU9/kwp2P1L8kLcjXmKiEgaCgoKIEM5RD0iERHxSolIRES8\nUiISERGvlIhERMQrJSIREfFKiUhERLxSIhIREa+UiERExCslIhER8UqJSEREvFIiEhERr5SIRERC\nLh6H6dN9R5E9vreBEBGRMmzZAtddB4sXw8yZUL2674gyTz0iEZGQWrIE2rSBypXh3XdzMwmBEpGI\nSCiNHw8nnQQ33wxDh0KVKr4jyh4NzYmIhEhxMfTtC2PHwmuvQatWviPKPiUiEZGQ+OIL6NIFDjgA\n5s6F2rV9R1QxNDQnIhICs2ZZ76d9e3j11fxJQqAekYiIV/E4DB4Mf/4zPPMMnH2274gqnhKRiIgn\nmzfDtdfCsmUwezY0aeI7Ij80NCci4sFHH1lpdrVqNiyXr0kIlIhERCrc2LFwyilw663w9NNWnJDP\nNDQnIlJBtm+HPn1gwgSYMgVatPAdUTgoEYmIVIDPP4fLLrPVEd5/H2rV8h1ReGhoTkQky2bOtNLs\nM8+ESZOUhEpSj0hEJEvicRg0CB58EIYNg44dfUcUTvmSiDoBfwP2BZ4G7vcbjojkuk2b4JprYOVK\neO89aNTId0ThlQ9Dc/sCj2DJ6GigK3CU14hEJKctWgStW8NBB8HbbysJ7U4+JKLWwDJgBbAdGA2c\n7zMgEcldo0ZBLGYLlz7xhG3hIGXLh6G5+sCqwOPVQBtPsYhIjtq2Df73f22duGnToHlz3xFFRz4k\norjvAEQkt61ZY6XZtWvbqtk1a/qOKFryIRGtARoGHjfEekW76N+//w/HsViMWCyW7bhEJAe8+SZ0\n6wa//S3cdhvsk6MTHoWFhRQWFmbl3AVZOWu4VAI+AU4H1gJFWMHCR4HXxONxdZxEJH3xODzwADz0\nEAwfDmec4TuiilVQUAAZyiH50CMqBn4LTMEq6IawaxISEdkjGzdCjx6wdi3MmQMNG+72LVKGfOgR\npUM9IhFJy8KFcPHF0KGDXayar1VxmewR5ehopohI5g0fDqedBnfdBY8+mr9JKNPyYWhORKRctm6F\n3//eyrJnzIBjj/UdUW5RIhIRKcOqVXDppVC3rs0H1ajhO6Lco6E5EZFSvPGGLdVz0UUwfrySULao\nRyQiUsLOnXDfffDIIzByJJx6qu+IcpsSkYhIwIYNcNVV8NVXNhRXv77viHKfhuZERJwFC2wDuyZN\noLBQSaiiKBGJiGAb151xBgwcCIMHw/77+44of2hoTkTy2tatcPPNtmZcYSH84he+I8o/6hGJSN5a\nuRJOOik5H6Qk5IcSkYjkpalToU0b6NIFxo6F6tV9R5S/NDQnInll50645x7bPXXMGGjf3ndEokQk\nInlj/Xq48krYtMmG4urV8x2RgIbmRCRPzJtnpdlHHmnrxSkJhYcSkYjkvKFDoWNHWy1h0CDYbz/f\nEUmQhuZEJGd9/z307g1vvw0zZ8JRR/mOSFJRj0hEctLy5XDiiTYfVFSkJBRmSkQiknNefx3atrXC\nhNGjoVo13xFJWTQ0JyI5Y8cOuPtuGDIExo2zi1Ul/JSIRCQnrFsH3brZvND778Ohh/qOSNKloTkR\nibz337fS7GOPhenTlYSiRj0iEYmseByeegr+7/9spYSLLvIdkewNJSIRiaTvvoNevWyFhLfesgtV\nJZo0NCcikfPZZ3DCCbaFw+zZSkJRp0QkIpHyyivQrh307AkjRkDVqr4jkvLS0JyIRMKOHdCvn+2k\nOmGCJSPJDUpEIhJ6//0vXH65JaO5c+Hgg31HJJmU7tDcgYBGYUWkwhUVWWl2q1a2mZ2SUO5JJxGd\nB8wHprjHxwEvZy0iERGsNPvxx+FXv4LBg+HPf4ZKGsPJSekkov5AG+Br93g+8LNyfu6lwCJgB9Ci\nxHN9gaXAx8CZgfaWwEL33OBAe2VgjGufDTQKPNcdWOJuV5UzZhGpIN9+C927WyKaNQsuuMB3RJJN\n6SSi7cCGEm07y/m5C4ELgZkl2o8GOrv7TsBjQIF77nGgJ9DM3Tq59p7AOtf2EHC/a68F3AW0drd+\nQM1yxi0iWbZ0qS1YClaa3ayZ33gk+9JJRIuAblhhQzPg78A75fzcj7FeSknnA6Ow5LcCWIb1xuoC\n1YAi97rngMTfSOcBw9zxOOB0d9wRmIol0Q3ANJLJS0RCaOJE27rhxhutOu7AA31HJBUhnUTUG/gF\nsBVLEpuAW7IUTz1gdeDxaqB+ivY1rh13v8odFwMbgdplnEtEQqa4GPr2hZtugkmTLBEVFOz+fZIb\n0pn62wLc7m57YhqQaunB24FJe3iurOvfv/8Px7FYjFgs5i0WkXzy5ZfQtSvss48tXlqnju+IJJXC\nwkIKCwuzcu6yElFZySKODYmVpcOeh8MaoGHgcQOsJ7PGHZdsT7znMGAt9vXUwOaM1gCxwHsaAjNK\n++BgIhKRivHuu3DZZVaYMGAA7Luv74ikNCX/QB8wYEDGzl1WIvprGc/FMxZBshgBrCx8JDAIG0Zr\nhs0LxbEhwTbu8ZXAw4H3dMcq5i4B3nDtU4F7sQKFAiwx9slg3CKyl+JxePTR5CZ2557rOyLxqaxE\nVBg4rgwcgSWET7BigvK4EEskBwGvYiXhZwGLgRfcfTHQi2TS6wU8C1QBXgMmu/YhwPNY+fY6oItr\nXw8MBOa4xwP4cfWfiFSwLVvg+uth0SLrETVt6jsi8S2d6cAYVpW20j0+DOuB/DNLMfkQj8cz2ckT\nkVSWLLE9g44/Hh57DKpU8R2R7K0CqybJSElJOieZB3TFekJgPaPR/PhC1ChTIhLJsvHj4YYb4J57\n4NprVRUXdZlMROlUzVUimYTArv/RQhsikpZEafbYsfDaa7ZmnEhQOgllLvA0MBzLft2A97MZlIjk\nhi++gC5d4IADbNXs2rV9RyRhlM4FrTcCHwE3YRe3LnJtIiKlmjXLej/t28OrryoJSek0Sms0RySS\nIfF4crXsZ56Bs8/2HZFkQ0XPEZ0L3A00Drw+DlTPRAAikju++cYKEZYutQVLmzTxHZFEQTpDc3/D\nyrVrYwuPVkNJSERK+PhjaN0aqla1YTklIUlXOoloNTYvVN6tH0QkR40dCyefDLfeCk8/bcUJIulK\nZ2iuD/A68CawzbXFsWV4RCSPbd8OffrAhAkwZQq0yKWrC6XCpJOIBgKbgQOA/bMbjohExeef24Kl\n1avbqtm1avmOSKIqnURUl71bSVtEctTMmbZ1ww03wB132BYOInsrnR+f17DdTkUkz8Xj8Ne/Wk9o\n6FC4804lISm/dGrAvwEOxOaHEqtu51r5tq4jEtmNTZvgmmtg5Up48UVo1Mh3ROJTJq8jSudvmaru\ndQeg8m2RvLRokZVmH3QQvP22kpBkVjpzRKnqYDZi20IUZzYcEQmb0aOhd2/4y19sJ1WRTEunWzUb\naAl86B4fi11XVANbc25KdkKrUBqaEylh2zb4wx/glVdg3Dho3tx3RBImFT00txZojiWjlu74M6yS\n7oFMBCEi4bJmDZx6KixfbqtmKwlJNqWTiI7EekAJi4GfA5+S3MZbRHLEm2/aDqrnnGMXqtas6Tsi\nyXXpzBEtAh7HdmUtAC7DklFlklV0IhJx8Tg8+CAMGgTDh8MZZ/iOSPJFOuN7BwK9gBPd41nAY8D3\nwE+wVReiTnNEktc2boQePWDtWivNbtjQd0QSdpmcIyrrJB2AaaU8dz+2Bl2uUCKSvLVwIVx8MXTo\nYL2hypV9RyRRUFHFCo8CvyrRti/wLFawICIRN3w4nHYa3HUXPPqokpD4UdYcUUds1e39gfFAFWAs\nsIkfJygRiZBt2+B3v4OpU2HGDDj2WN8RST4rKxEtB87ArhM6GLgSmAPcUgFxiUiWrFoFl14Kdeva\nqtk1aviOSPJdWUNzLbEEdBtwD7ZB3vPYSgvadUQkgt54w5bquegiGD9eSUjCoayJpkKS1wkV8ONr\nhk7NRkCeqFhBctrOnXDfffDIIzBihF2sKlIemSxWKGtorhuwJhMfIiL+bNgAV10FX30Fc+ZA/fq+\nIxLZVVlDc08B7wH3ATHSu/hVREJkwQJo1QoaN4bCQiUhCaeyEtHZWAL6J3ARtvjpS8D1wGHl/NwH\ngY+ABVhFXnCkui+wFPgYODPQ3hJY6J4bHGivDIxx7bOB4AL13YEl7nZVOWMWiZRhw2x1hIED4eGH\nYf/9fUckktqeju/9DDgL6AQcArTey8/tALwB7MR6XGBFEUcDI4HjgfrAdKAZNj9VBPzW3b8GPAxM\nxlZ9OMbddwYuBLoAtbAqv5bu/HPd8YYU8WiOSHLG1q1w8822Ztz48fCLX/iOSHJRRa++HfQZdqHr\nucDJ5fjcaVgSAhv+a+COzwdGYWvYrQCWAW2AutiGfEXudc8BF7jj84Bh7ngccLo77ghMxRLPBveZ\nncoRs0jo/fvfcPLJyfkgJSGJgrIS0TfYOnKpbpuArRmK4RqshwNQDysTT1iN9YxKtq9x7bj7Ve64\nGNu0r3YZ5xLJSVOnWml2584wdixU1z7KEhFlFSBULee5pwGHpmi/HZjkju8AtmHDcV7179//h+NY\nLEYsFvMWi8ie2LkT7rkHnngCxoyB9u19RyS5qLCwkMLCwqyce08q4Q4GDgg8/vduXt9hN8/3wAoi\nTg+0rQGC6/42wHoya0gO3wXbE+85DNvArxJW+LDOtccC72kIzCgtmGAiEomK9evhyith0yYbiqtX\nz3dEkqtK/oE+YMCAjJ07nTmi87CKtOVYBd0KbA268ugE/AGbE/o+0P4yVmiwP9AEK1QoAr7AhgPb\nYJNjVwITA+/p7o4vwYogwOaHzgRqAj/FEmMubGsuAsD8+VaafeSRtl6ckpBEVTo9oj8B7bChtuOw\nFRWuLOfn/h1LNoltJt7Fqt4WAy+4+2LXlihn64Wt/F0Fm1Oa7NqHYEsPLcV6Ql1c+3pgIFY5BzCA\n1BVzIpEzdCj06WMrZl92me9oRMonndK7RNnzAmyNuR3Ah8D/ZDGuiqbybYmE77+H3r3h7betNPuo\no3xHJPmqopb4SfgaK51+CxgBfIlV1IlIBVq+HC65BA4/HIqKoFo13xGJZEY6c0TnA98Cv8OGw5Zh\n1xGJSAV5/XVo29YKE0aPVhKS3JJOt6oJVizwnXtcBVtVYUWWYvJBQ3MSSjt3wt13w9NPWwI66STf\nEYmYih6aexErVkjY6dpaZSIAEUlt3Tq44gr47jvbwO7QVFflieSAdIbm9sUuOk3YCuyXnXBEBCzx\ntGoFxxwD06crCUluSycRfYXNEyWc79pEJMPicfjHP+Dss+Gvf4UHH4RK2oBFclw643uHY9Vyicvl\nVmPXES3LVlAeaI5IvPvuO+jVy1ZIGDfOLlQVCauKWn07sUdQYgXso92tHbZagYhkyGefwQkn2BYO\ns2crCUl+KSsRvYHt6ZOQWHn7TGBCNoMSySevvALt2kHPnjBiBFQt73LDIhFT1ujzk8Cb2BptX7q2\ny4F7scVKRaQcduyAfv1sJ9UJEywZieSjshLRU9iCpDOwZNQZuAFb0XpFtgMTyWVffQWXXw7FxTB3\nLhx8sO+IRPzZXdXc88DdwAdYb+hklIREyqWoCFq2hBYtbDM7JSHJd2VVPCwMHDfGhue+dY/jaNFT\nkT0Sj9vmdf36WYn2BRfs/j0iYVVRKytoPTmRDPn2W7jhBvjgA5g1C5o18x2RSHiUlYhWVFQQIrls\n2TK46CJo3txKsw880HdEIuGSzsoKIrKXJk6064NuvNGq45SERH5Mi4eIZEFxMdx5J4wcCZMmQZs2\nviMSCS8lIpEM+/JL6NoV9tnHFi+tU8d3RCLhls7Q3EnANGApsNzdPstmUCJR9e67Vprdrh1Mnqwk\nJJKOdErvPgFuAeYBOwLtubQCt8q3pVzicXj0UdvEbsgQOFc1p5LjKnpjvA3A65n4MJFctGULXH89\nLFpkPaKmTX1HJBIt6QzNvQk8iK263SJwE8l7S5ZYIcL++ysJieytdLpVhdhKCiWdmtlQvNLQnOyx\nsWPhN7+Be+6Ba6+FgowMUohEQyaH5vRfxygRSdq+/RZuuQVmzIDRo21Lb5F8U1FzRFdii57eyq49\nogL3eFAmAhCJkoULoUsXOO44mDcPqlf3HZFI9JU1R5S4BrxaiVtVdy+SN+JxePxxOO006NMHhg9X\nEhLJFA3NGQ3NSanWr7c5oBUrbCjuiCN8RyTiXyaH5rTWnEgZ3nrLhuEaNbKqOCUhkczzlYgGAguw\nDffeABoGnuuLreLwMXBmoL0ltkfSUmBwoL0yMMa1zwYaBZ7rDixxt6sy+hVITtuxwy5OvfRSeOwx\neOghqFzZd1QiuSmdbtXP+PGSPqna9kQ1YLM77g38ErgWOBoYCRwP1AemA82w4ogi4Lfu/jXgYWAy\n0As4xt13Bi4EugC1gDlYAgOY6443pIhHQ3Pyg9WroVs3qFQJnn8e6tXzHZFI+FT00Ny4FG1jy/m5\nmwPHVUkuF3Q+MArYju2HtAxoA9TFkleRe91zQGJ/y/OAYYFYT3fHHYGpWOLZgK2X16mccUuOmzjR\n1orr2NG28VYSEsm+ssq3j8J6KDWAi0iWbVcHDsjAZ9+DlYh/B7R2bfWw4bWE1VjPaLs7Tljj2nH3\nq9xxMbARqO3OFXzP6sB7RHbx/ffwhz/AK6/AhAm2aKmIVIyyEtGR2HbhNdh12/DNwHVpnHsacGiK\n9tuBScAd7nYb8Dfg6jTOmTX9+/f/4TgWixGLxbzFIhXro4/s2qAjj4T586FmTd8RiYRPYWEhhYWF\nWTl3OuN77YB3s/Lp5jBszucYLCkB3OfuJwP9gJXYmndHufauwCnAje41/bGeVCXgc6AONk8UA25w\n73kSmIEVNpSkOaI8FI/D0KFw221w771apkdkT1TUygp/Dxx3LfGBceCmcnxuM6zKDWxeaL47fhkr\nVhiEDaM1w+aF4sAmbL6oCBvSezjwnu5YIroEq8IDmx+6F6jpYu8A9ClHzJJDNm6EX/8aFi+Gf/4T\njj7ad0Qi+ausRDQXSwAFwADgLpLJqLzdhz9jQ387gE+xng3AYuAFd1+MVcIlPqsX8CxQBetBTXbt\nQ7CliJYC67CeEMB6rEx8jns8gNQVc5JnZs+Gyy+Hs86C996DKlV8RySS39LtVs0HjstmIJ5paC4P\n7NwJDzxg1wQ9+SRccMHu3yMiqVX0xngikff553DllbBtG7z/PjRsuPv3iEjF0BI/kvNefx1atICT\nT7atG5SERMKlrB7RNyTnZ6qw60WoieuJREJr2zbo29c2sBszBk45xXdEIpJKWYmoaoVFIZJhS5dC\n167QoIFdG1S7tu+IRKQ0GpqTnPP883DCCXD11fDSS0pCImGnYgXJGZs3w29+A3PmwPTp8Mtf+o5I\nRNKhHpHkhLlzrSChcmWrilMSEokOJSKJtJ07YdAguzj1T3+Cp56Cn/zEd1Qisic0NCeR9eWX0KMH\nfP21rZDQpInviERkb6hHJJE0fbpt4d28OcycqSQkEmXqEUmkbN8Od90Fzz1nt9NP3/17RCTclIgk\nMpYvt2uDateGDz6AOnV8RyQimaChOYmEMWOgTRvo3BkmTVISEskl6hFJqG3ZAjffbHsGvf46tGzp\nOyIRyTT1iCS0PvwQWrWyNePmzVMSEslVSkQSOvE4PPqoFSLcfrsVJVSr5jsqEckWDc1JqKxbBz17\nwurV8M470KyZ74hEJNvUI5LQmDnTrg1q2lRJSCSfqEck3hUX2/I8Tz4JQ4facj0ikj+UiMSrVaug\nWzdbrHTePKhb13dEIlLRNDQn3rz0klXFnXMOTJmiJCSSr9Qjkgr33Xdw660weTJMnAht2/qOSER8\nUo9IKtTixbZCwvr1toW3kpCIKBFJhYjH4R//gPbt4ZZbYNQoqFHDd1QiEgYampOs27ABrr8ePvnE\nSrSPOsp3RCISJuoRSVa9845dG3TIIbZ5nZKQiJSkHpFkxY4dcN998PDDNiR3/vm+IxKRsFIikoxb\nuxauuMKS0dy50KCB74hEJMx8D83dCuwEagXa+gJLgY+BMwPtLYGF7rnBgfbKwBjXPhtoFHiuO7DE\n3a7KcOySwquvQosWEIvBjBlKQiKyez57RA2BDsDKQNvRQGd3Xx+YDjQD4sDjQE+gCHgN6ARMdm3r\n3Os6A/cDXbDkdheWwADmAi8DG7L4NeWtrVvhtttg/HgYOxZOPtl3RCISFT57RIOAP5ZoOx8YBWwH\nVgDLgDZAXaAaloQAngMucMfnAcPc8TjgdHfcEZiKJZ4NwDQseUmGLVkC7drBypV2bZCSkIjsCV+J\n6HxgNfBhifZ6rj1hNdYzKtm+xrXj7le542JgI1C7jHNJhsTjMGwYnHgiXHcdjBsHtWrt/n0iIkHZ\nHJqbBhyaov0ObB4oOP9TkMU4JAs2bYJevawHNGMGHHus74hEJKqymYg6lNJ+DNAEWOAeN8Dmb9pg\nPZ2Ggdc2wHoya9xxyXbcc4cBa7GvpwY2Z7QGiAXe0xCYUVqw/fv3/+E4FosRi8VKe2nemzMHuna1\nHVTnzIEDD/QdkYhkW2FhIYWFhVk5dxh6IsuxgoL1WJHCSKA1yWKFw7FihfeAm7B5oleBh7FihV7A\nscCNWJHCBSSLFd4HWmBf51x3nKpYIR6Px7PyxeWSnTth0CB44AHbyvvSS31HJCK+FBQUQIZySBiu\nIwpmgMXAC+6+GEsyied7Ac8CVbCqucmufQjwPFa+vQ5LQmCJbSAwxz0egCrm9tp//gPdu8PmzdYL\natRo9+8REUlHGHpEYaAeURmmToUePeCaa6B/f6gUhj9fRMSrXOsRSUht2wZ33gkjRsDw4XDaab4j\nEpFcpEQkKX32mRUk1KljlXF16viOSERyle8lfiSERo2yzesuvxwmTVISEpHsUo9IfrBlC/TuDbNm\nwZQptmaciEi2qUckAHzwAbRsaSXac+cqCYlIxVEiynPxuO0Z1KGDFSY8+yxUreo7KhHJJxqay2Nf\nfWUl2Z9/DrNnQ9OmviMSkXykHlGeKiy0Lbx//nObE1ISEhFf1CPKM8XFMGAADBkCzzwDHTv6jkhE\n8p0SUR5ZuRK6dbNFSufNg0NTrY0uIlLBNDSXJ8aNg+OPh/POg8mTlYREJDzUI8px330Hv/sdTJtm\nF6e2aeM7IhGRXalHlMP+9S/rBW3aZENxSkIiEkZKRDkoHocnnoBTT4Vbb7VFS2vU8B2ViEhqGprL\nMV9/DdddB8uWwVtvWXm2iEiYqUeUQ95+G5o3h/r17QJVJSERiQL1iHLAjh1w7722ffdTT8G55/qO\nSEQkfUpEEbdmDVxxhR3PnWu9IRGRKNHQXIRNmmQrZp9+OkyfriQkItGkHlEEff899OkDEyfahaon\nnug7IhGRvadEFDGffAJdutgipfPnw09/6jsiEZHy0dBcRMTjtkjpSSfBDTfA2LFKQiKSG9QjioCN\nG+HGG+HDD+HNN+GYY3xHJCKSOeoRhVxRkW3bXb26HSsJiUiuUY8opHbuhL/8xW6PPw4XX+w7IhGR\n7FAiCqEvvoCrroJvv4U5c6BRI98RiYhkj4bmQmbKFBuKa9vWtvNWEhKRXKceUUhs2wZ33AGjR8PI\nkRCL+Y5IRKRi+OoR9QdWA/Pd7azAc32BpcDHwJmB9pbAQvfc4EB7ZWCMa58NBPsQ3YEl7nZVJr+A\nTFq2zC5K/eQTuzZISUhE8omvRBQHBgHHudvrrv1ooLO77wQ8BhS45x4HegLN3K2Ta+8JrHNtDwH3\nu/ZawF1Aa3frB9TM1he0t0aMgHbtbE5o4kQ46KA9e39hYWFW4qooit8vxe9X1OPPFJ9zRAUp2s4H\nRgHbgRXAMqANUBeoBhS51z0HXOCOzwOGueNxwOnuuCMwFdjgbtNIJi/v4nG49loYONC28e7dGwpS\nfUd2I+o/yIrfL8XvV9TjzxSfiag3sAAYQrKnUg8bsktYDdRP0b7GtePuV7njYmAjULuMc4VCQQFc\neKGtmN28ue9oRET8yWYimobN6ZS8nYcNszUBmgOfA3/NYhyhdc458JOf+I5CREQaYwkK4DZ3S5iM\nDc0dCnwUaO+KJbPEa9q640rAf91xF+CJwHuexOafUlmGzVvppptuuumW3m0ZEVc3cPw7YKQ7Phr4\nANgf6zF9SnIu6T0sKRUAr5Gc7+lFMil1AUa741rAZ9iw308DxyIiIjwHfIjNEU0ADgk8dzuWaT/G\nCg4SEuU5qfF4AAAIGElEQVTby4CHA+2VgRdIlm83Djx3tWtfipVyi4iIiIiI5Kd9sYtnJ7nHtbCC\niiVYmXdw2K60i2p9qQm8iM2TLcaGKKMSf19gEdabHYn1YMMc+1DgPyTnLWHv4i3tAuxsSxX/g9jP\nzgJgPFAj8FwU4k+4FdiJ/XskRCX+3ti/wb9IXusI0Yi/NXbpzHxgDnB84LmwxR96vwdGAC+7xw8A\nf3THfYD73HFinmo/bJhvGf7X5BsGXOOOK2G/SKIQf2Nsbq6yezwGGyINc+wnYxdZB/8j7km8iTnN\nIuw/MOw6p5ltqeLvQPL7eB/Rix+gIVaYtJxkIopK/Kdif8js5x7XcfdRib+Q5DTJWcCb7jiM8Yda\nA2A69gOR6BF9THJu6lD3GCzD9wm8N1iV50MN7Jd5SVGIvxbwCVYsUgn73ncg/LE3Ztf/iHsab112\nrfIsWcGZbY1J3aMAuBAY7o6jFP9Y4H/YNRFFJf4XgNNSvC4q8Y8CLnPHXcnCz4/vv/QrykPAH7Bu\nfcIhWBcUd5/4RRO2C2GbYCXpzwDzgKeAnxCN+Ndj14j9G1hLcoWLKMQetKfxlnUBtm/XYH+hQnTi\nPx+L58MS7VGJvxlwClZMVQi0cu1Rif82kv+PH8QSEGQw/nxIRL8CvsTGN0tbRCdRF1+asp7LtkpA\nC2zdvRbAFna91grCG39T4BbsL6x6QFXgihKvCWvspdldvGF2B7CN5OUSUXAgVknbL9C2F4theVUJ\nGxVoi/1B/ILfcPbYEOAm4DDscpuhmf6AfEhEJ2CrOSzHupinAc9jf9ke6l5TF0tWYNm7YeD9DVyb\nL6vdbY57/CKWkL4g/PG3At7BFqUtxibK2xGN2IP25GdltWtvUKLd99fRAzgb6BZoi0L8TbE/ZBZg\n/4cbAHOxXmkU4geLabw7noONzBxEdOJvDbzkjl8kOfcTlfhDpz3JOaIHSI5v3saPJ3BTXVTry0zg\nCHfcH4s9CvH/EqsSquJiGAb8hvDH3pgfFyvsabylXYBdERqza/ydsMrFkmu7RyX+oFTFCmGP/9fA\nAHd8BDbEBdGJfx72uxNsUenEH8VhjT/02pOsmquFFTCkKskt7aJaX36J/eMHy2+jEv8fSZZvD8Mq\nbMIc+yhsPmsbtpju1exdvKVdgJ1tJeO/BiuhXUly/6/HAq8Pa/xbSX7/gz5j1/LtKMS/HzYKsxDr\nzcUCrw9r/MGf/1ZYYvkAeBerqksIW/wiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhJ9tUleB/M5dgX3\nfOxiu0oe40qlPbaCREXrAfzdw+fGSF4onko9bNFSkZTC9h9YpDTrSF5I1w/YDAzyFw77AjtKee5U\nLL539+B8lbBlkHLRWuBS30FIeOXDWnOSmwqwq7cLgfexJegT68EVYklqDrYc/fHYWllLgIHuNY2x\nq8GHY5sNjsWWImI3533InfdmbEHd2VivbBpwsDvvr7HFIecBJwHPAhcHYv/G3ceAt4CJ2FJI+2Cr\nGxdhq2hcn8b34Wpsq433sHUVE+pg64IVudsJgfZp7vOeAlaw60oFCZ2wVQA+wFaVAFv1faj7rHnY\nGo4ltSfZc53n3tOY5JIxPdi11/aKe88+2PdpIbbK9i1lfM0iIt71A/4XmEVy/bTO2CrBYBt3/dkd\n34T9RX4ItibWKmwl5MbY4pOJIbQh2A6glbCFWmuXct5HAnEEl/q5FvhLIL7fB557hl0T0WZ3H8OS\nUiP3+HpshWywzQTnuDhLUxdbuqc2tozM2ySXUxkJnOiOD8OSLS7+xLp5HfnxjqdgyerfgbgSX+e9\nJBdNrYklwAPZdWjuZZLf0wOxnmNjSk9Ek7AtElpiyyclBHeRlRynoTmJqsrAMdhf92C/8NYGnk+s\nKfgvd0vsJ/QZtmLwJiwpJYbPhmNJazLwC5K9gJLnHRM4bogt6X8oluSCGximu1hrEZZMwLZaPha4\nxD2uDhyO9VpSaYMlx3WB2BKL454BHBV4bTWsd3IicIFrmwJ8neK8bYF/BuLaEIjvXOyPALB/g4a7\nvpVZWK9xBLYuYrqrLn8K/AxLpK+ya1KSHKdEJFFVgC2mekIpz2919zsDx4nHiZ/74L5CBe7x7s67\nJXD8d6wXlBhe6l/Ke4pJDoPvgyWtVOcD+C3J5Lo7iXgTEl9D4rgNtnhlSbtLkiXPG3QRtohqUN3A\n8f3Y9+McLCl1ZNfvf/B7AXCAu9+ALe7bEbgB2xG0527ilByhOSKJqq3YEFJiK/H9sGXp98Rhgfdf\njs3XfLKb8wZ/QVcn2VvqEWjfjPVAElZgQ09g8yr7lRLPFKAXyUR5BDa8BcntyYOKsARYy50zWBAw\nFevhJfzS3c8iue3zmdgwZUnvYcNljd3jxNDdlBLnDK7CnNAUS+QPYEOLR5Z4fgXQHPs+NiS5t01t\nrPc5HrgT23NL8oQSkUTVDmwI635sQn0+qUumy9pR9RNsf6TF2JzE48D23Zw3eK7+WJHD+9h27onn\nJgEXuveeiBUFtHfna0uyWKHk+Z52sczD5lQex345l9xHKOFzF8O72PzQosBzN2HL9y9w7b927QOw\nBLTQfZ1fkJyzSvgvNl813sU8yrUPxBLeh9hw54DAexJfx83u3Auw3tjrJZ5/G9tTaDEwGCuIANtK\n+k3se/Y8P96FWEQk5zSm9M3XwuYcbMguE/bHkhtYgp2XofOK7DXNEUk+K62nFDavZvBch2EFFvtg\nPZbrMnhuEREREREREREREREREREREREREREREREJr/8HdKKaj2BtEY4AAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x10ee76150>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The adiabatic temperature is read as 1549 degree celsius\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.5 Page No : 294"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Given\n",
"T = 298.0;#Temperature in Kelvin\n",
"#standard enthalpy in Kcal/Kgmole of the following components at 298 K are given as\n",
"H_SO2 = -70960;\n",
"H_SO3 = -94450;\n",
"H_O2 = 0;\n",
"#standard entropy in Kcal/Kgmole K of the following components at 298 K are given as\n",
"S_SO2 = 2.48;\n",
"S_SO3 = -19.7\n",
"S_O2 = 0;\n",
"#Basis: 1 Kgmole of SO2\n",
"#SO2 +(1/2)O2 - SO3\n",
"\n",
"#To Calculate the standard free energy for the reaction\n",
"n_SO2 = 1;#Kgmole of SO2 fed\n",
"n_O2 = (1/2)*2;#Kgmole of O2 fed as 100% excess O2 is given\n",
"n_SO3 = n_SO2;#Kgmole of SO3 formed\n",
"#From equation 14.38 (page no 312)\n",
"del_F = (H_SO3-(T*S_SO3))-(H_SO2-(T*S_SO2))-(H_O2-(T*S_O2));\n",
"print 'The standard free energy for the reaction at 25 degree celsius is %f Kcal/Kgmole'%(del_F);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The standard free energy for the reaction at 25 degree celsius is -16880.360000 Kcal/Kgmole\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.6 Page No : 299"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"import math\n",
"import matplotlib.pyplot as plt\n",
"import numpy\n",
"\n",
"#Given\n",
"#SO2 + (1/2)O2 - SO3\n",
"#Basis: 1 Kgmole of SO2\n",
"n_SO2 = 1.0;# SO2 fed in Kgmole\n",
"#From table 14.1 (page no 301)\n",
"#alpha values for the following components are given as\n",
"a_SO2 = 7.116;\n",
"a_O2 = 6.148;\n",
"a_SO3 = 6.077;\n",
"#beta values for the following components are given as\n",
"b_SO2 = 9.512*10**-3;\n",
"b_O2 = 3.102*10**-3;\n",
"b_SO3 = 25.537*10**-3;\n",
"#standard enthalpy of the following components at 25 deg cel in Kcal/Kgmole are given as\n",
"H_SO2 = -70960.0;\n",
"H_O2 = 0.0;\n",
"H_SO3 = -94450;\n",
"#standard free energy of the following components at 25 deg cel in Kcal/Kgmole K are given as\n",
"F_SO2 = -71680.0;\n",
"F_O2 = 0.0;\n",
"F_SO3 = -88590.08;\n",
"n_O2 = n_SO2;#O2 fed in Kgmole; math.since 50 mole percent mixture of SO2 & O2 is fed\n",
"n_SO3 = n_SO2;#SO3 formed in Kgmole\n",
"n_O2_e = n_O2-(n_O2/2);#Kgmoles of O2 in exit gas\n",
"n_O2_r = n_O2/2;#Kgmoles of O2 reacted\n",
"R = 1.98;#gas consmath.tant in Kcal/Kgmole K\n",
"\n",
"#To show the variation of the standard heats of reaction with temperature and the equilibrium consmath.tant with temperature graphically in the given temperature range\n",
"#(i)Variation of the standard heats of reaction with temperature\n",
"del_H = (n_SO3*H_SO3)-(n_O2_r*H_O2)-(n_SO2*H_SO2);# in Kcal/Kgmole\n",
"del_F = (n_SO3*F_SO3)-(n_O2_r*F_O2)-(n_SO2*F_SO2);# in Kcal/Kgmole\n",
"#From equation 14.10 (page no 301)\n",
"del_a = (n_SO3*a_SO3)-(n_O2_r*a_O2)-(n_SO2*a_SO2);\n",
"del_b = (n_SO3*b_SO3)-(n_O2_r*b_O2)-(n_SO2*b_SO2);\n",
"#In equation 14.11 (page no 302), substituting del_H at\n",
"T = 298;#in deg cel\n",
"I = del_H - del_a*T - (del_b*(T**2)/2);# integrating consmath.tant\n",
"print 'iThe standard heat of reaction at any tempperature can be calculated by the relation:';\n",
"print ' del_Ht = %fT'%del_a,\n",
"print ' + %fT**2 '%(del_b/2),\n",
"print '%f'%I\n",
"\n",
"#(ii)Variation of the equilibrium consmath.tant with temperature\n",
"#K1 = lnKa (say)\n",
"K1 = -del_F/(R*T);\n",
"#From equation 14.42 (page no 316); M1 = M/R (say)\n",
"M1 = K1-(del_a/R)*math.log(T)-(del_b/(2*R))*T+(I/(T*R));\n",
"#Let us assume the temperature in the range 800K to 1500K as\n",
"Ta = [700, 800, 825, 850, 900, 1000, 1100, 1300, 1500];\n",
"Ka = []\n",
"for i in range(0,9):\n",
" Ka.append(math.e**((del_a/R)*math.log(Ta[i])+(del_b*Ta[i]/(2*R))-(I/(Ta[i]*R))+M1));\n",
"\n",
"\n",
"plt.plot(Ta,Ka);\n",
"plt.title(\"\" )\n",
"plt.xlabel(\"Temperatur in K\")\n",
"plt.ylabel(\"equilibrum constant K\")\n",
"plt.show()\n",
" \n",
"print 'ii)From the graph it can be seen that as temperature increases Ka decreases exponentially,(so the reaction is exothermic.';\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"iThe standard heat of reaction at any tempperature can be calculated by the relation:\n",
" del_Ht = -4.113000T + 0.007237T**2 -22907.000548\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VPW99/F3Em4iIEaRO4aiiLQIiIAmtY6eFi9VkHqs\ntk9bWo9dXY+tUtueFuxS8uhptbbaU+1TzjrVtmhPOdrWC7QPKlrHSwVRuXjBKEE5Em1iRVSwiITk\n+eP7285knEx2kn2bmc9rrVmzZ8+ePd9Ymm9+v+/vAiIiIiIiIiIiIiIiIiIiIiIiIiIiIhKzKmAD\nsNK9rgea3LkNwOlZ1y4GtgANwJzoQhQRkaT4FvBfwAr3eok7l2sysBHoC9QAjUBlBPGJiIhPYf9S\nHgOcAdwEVLhzFVnH2eYBy4F9wDYsacwKOT4REemGsJPGT4F/BdqyzrUDFwObgJuBoe78KKzbytME\njA45PhER6YYwk8aZwOtY3SK7ZbEUGA9MA/4GXFfgHu2hRSciIt3WJ8R71wJzse6pAcAQ4BbgS1nX\n3ESmQP4qMDbrvTHuXAcTJkxo37p1axjxioiUsq3AEXEH4ddJZJLDyKzzlwK/c8deIbwf1hLZSv7a\nR3sxWLJkSdwh+KI4g1UMcRZDjO3tijNoBNRzE2ZLI1sFmYCvBaa61y8DX3PnNwO3u+dW4CLUPSUi\nkihRJY20ewB8scB1P3QPERFJIM2DCEkqlYo7BF8UZ7CKIc5iiBEUZ1LlqxkkneueExERvyoqKiCA\n3/lqaYiIiG9KGiIi4puShoiI+KakISIivilpiIiIb0oaIiLiW1Emjaamrq8REZHgFWXSeOyxuCMQ\nESlPShoiIuJbUSaNv/417ghERMpTUS4jMnBgO6+/DgceGHcoIiLFoayXETnmGHjiibijEBEpP0WZ\nNOrq1EUlIhKHokwatbUqhouIxCGKpFEFbCCz3Ws1sBp4EbgPGJp17WJgC9AAzOnshnV1sGYNtLWF\nEq+IiHQiiqSxENvC1dsEYxGWNCYCD7jXYHuEn+eeTwN+0Vl8w4dDdTU0NIQYtYiIfEjYSWMMcAZw\nE5mq/VxgmTteBpztjucBy4F9wDagEZjV2Y1ra1XXEBGJWthJ46fAvwLZHUnDgRZ33OJeA4wCshcI\naQJGd3bjujrVNUREotYnxHufCbyO1TNSnVzTTqbbqrP3P6S+vp6WFlixAtLpVNnt0Ssi0pV0Ok06\nnQ78vmFO7vsh8EWgFRgADAHuAGZiSaQZGAk8CEwiU9u4xj3fAywBHs+5b3t7ezttbVbXePFFOOyw\nEH8KEZESUAyT+y4DxgLjgfOBv2BJZAWwwF2zALjLHa9w1/VznzkSWNfZzSsr4fjjbRSViIhEI8p5\nGl5X0zXAp7Aht6eQaVlsBm53z6uAiyjcdaVJfiIiESvKtafa2y2X/OUvcMUV8OijMUckIpJwQXVP\nFXXS2L0bRoyAHTugf/+YoxIRSbBiqGmEbtAgOOooWL8+7khERMpDUScN0CQ/EZEoFX3SUDFcRCQ6\nRV3TAHjlFZg5E5qboaIYfxoRkQiopuGMGwf9+sHWrXFHIiJS+oo+aYDWoRIRiUpJJA0Vw0VEolES\nSUMtDRGRaBRj6bhDIRxg3z5bvHD7dhg6tJNPiYiUMRXCs/TtayOotHihiEi4SiJpgNU11EUlIhKu\nkkkamuQnIhK+kqhpALz1FowdCzt3Qp8w9yMUESlCqmnkGDoUDj8cNm2KOxIRkdJVMkkDNPRWRCRs\nYSaNAdj+3hux3fiudufrgSZgg3ucnvWZxcAWoAGY090v1CQ/EZFwhV3TGAj8A+gDPAp8B/gnYBdw\nfc61k4HfATOB0cD9wESgLee6vDUNgMZGOPlkm68hIiIZxVLT+Id77gdUATvd63yBzwOWA/uAbUAj\nMKs7XzZhAuzdq6QhIhKWsJNGJdY91QI8CDznzl8MbAJuBrw53KOwbitPE9bi8K2iQkNvRUTCFPbg\n1DZgGnAQcC+QApYCV7r3rwKuA/6lk8/n7Yeqr6//4DiVSpFKpT547U3yO//8XsUtIlLU0uk06XQ6\n8PtGOU/jcmAP8JOsczXASmAKsMidu8Y93wMswYrp2TqtaYAljIsvhqeeCiBiEZESUQw1jUPJdD0d\nAHwKGy01Iuua+cAz7ngFcD5W/xgPHAms6+6XzpgBDQ2we3cPoxYRkU6F2T01EliGJaZK4FbgAeAW\nrMuqHXgZ+Jq7fjNwu3tuBS6ik+6pQvr3h2nTYN06OOWU3v4IIiKSrWSWEcn23e/C4MFw+eURRSQi\nknDF0D0VG614KyISjpJsabz+OkycCG++CZUlmRZFRLpHLY0CDjsMhg2DzZvjjkREpLT0NGn0DzSK\nEGiSn4hI8AoljSs6OX8QcF8IsQRKK96KiASvUNI4EfhhzrkRwEPAX0KLKCBa8VZEJHiFksZZwFQy\nq9Eeia1U+x/A/wk5rl47+mjYsQNaWuKORESkdBRKGu9hM7ZrsNVn7we+iyWNxKushBNOUBeViEiQ\nCiWNbwPfwNZ+moOtVjvenf9W+KH1norhIiLBKpQ0BrvHAOBGYD0wyD0Ghx9a72mSn4hIsEpycp/n\n3Xdh+HB44w0YMCDkqEREEkyT+3w48EAriGuZdBGRYJR00gANvRURCZKfpPERn+cSScVwEZHg+Eka\nf8xz7vdBBxIWrxjuswwiIiIFFNqE6WhgMrZsyGewAko7MAQbUVUUxoyBgQNhyxZb+VZERHquUEtj\nIjYr/CD3fKZ7Phb4qo97D8DmeGzEduO72p2vBlYDL2JrWA3N+sxiYAvQgM0NCYSG3oqIBMPP8Kta\noKe/cgcC/8BaNI8C3wHmAm8A1wLfAw4GFmGtmt8BM4HR2Az0iUBbzj19D7n1/PznsGkT/PKXPfwp\nRESKXFBDbv3sEd4IfB9bTsS7vh24wMdn/+Ge+wFVwE4saZzkzi8D0ljSmIctV7IP2Oa+dxaw1sf3\nFFRXB0uX9vYuIiLiJ2ncDTyMdSl5f/X7/VO/EptJPgFYCjwHDAe8ZQRb3GuAUXRMEE1Yi6PXpkyB\n7dttJ7/q6iDuKCJSnvwkjQOwbqSeaAOmYXWRe4GTc95vp3ACyvtefX39B8epVIpUKlUwiD59YNYs\nWLMGPv3pLmMWESl66XSadDod+H399G/9G7AG+HMvv+tyYA9wIZACmoGRwIPAJKyLCuAa93wPsAQr\npmfrdk0D4IorYP9++MEPuv1REZGiF+UyIt8EVmJLpe9yj3d8fO5QMiOjDgA+BWwAVgAL3PkFwF3u\neAVwPlb/GI/t37HOx/f4okl+IiK9F+aChVOwQnele9wK/Bgbcns7MA4reH8WeMt95jKswN4KLMS6\ntHL1qKXx9tswejTs3Al9+3b74yIiRS2olobfGxyM/eWfPanv4d5+eQ/1KGkAHHMM3HwzzJwZcEQi\nIgkXZffUV7EEcR+2zeu9QH1vvzgOmuQnItI7fpLGQmy+xDZs9NN04O0QYwqN6hoiIr3jJ2m8h416\nAuueagCOCi2iEHlJQ4sXioj0jJ+k0YTVNO7CJvitwFodRWf8eBt2+8orcUciIlKc/EzuO9s912NL\nfgzB5lAUnYqKTGvj8MPjjkZEpPj4aWncmnWcxloaN4cSTQRUDBcR6Tk/SeNjOa/7ADNCiCUSKoaL\niPRcoaRxGTb7ewqZmeC7gNex1kZRmj7dNmTatSvuSEREik+hpPFDYDDwE/fsParJrBNVdPr3t8Tx\neO6KViIi0iU/3VN/Aga54y8C1wNFXUZWF5WISM/4SRpLsc2UpgLfAl4CbgkzqLCpGC4i0jN+kkYr\nti/G2cD/BX6OdVMVrdpaWLvW5myIiIh/fpLGLqwo/gWsq6oKKOp1Yg89FEaMgOeeizsSEZHi4idp\nnAfsxZYsb8a2YP1JmEFFQXUNEZHuC3M/jbD0eGn0bDfdBA89BLfe2vW1IiLFLsql0c8BtmC79XVn\n5z6Asdh2rs8BzwKXuPP12JpWG9zj9KzPLHbf1wDM8fk93aaWhohI9/nJOluBM4Hne3D/Ee6xERu2\n+xRWUP8slnyuz7l+MvA7YCbWDXY/MBErxHsCaWm0tcGwYfDsszByZK9vJyKSaFG2NJrpWcLwPrvR\nHe929xntXucLfh6wHNiHraTbiO3lEbjKSjjhBA29FRHpDj9J40ngNuBzWFfVOcBnevBdNdgGTmvd\n64uBTdjih0PduVFYt5WniUySCZy6qEREusdP0jgI24RpDtZNdSZwVje/ZxDwB2wXwN3YhMHxwDTg\nb8B1BT4b2pZJmuQnItI9fvbT+HIvv6Mv8Efgt9hGTmCLHnpuAla641ex4rlnjDvXQX19/QfHqVSK\nVCrVo8BmzoRnnoE9e+CAA3p0CxGRREqn06TT6cDv66coMha4Afi4e/0w1mJo6vQTHe+/DNgBXJp1\nfiTWwsCdnwl8nkwhfBaZQvgRdGxtBFII98yaBdddByeeGNgtRUQSJ8pC+K+xpdBHucdKd86POmwm\n+cl0HF77I+BprKZxEpmEshm43T2vAi4ixO4pUF1DRKQ7/GSdTdhihV2di0qgLY0//AGWLYOVK7u+\nVkSkWEXZ0tiBLYlehdVAvgC80dsvTgqvGB5gHhIRKVl+ksYF2GS8ZqwOcS7wlTCDitKoUTBkCLzw\nQtyRiIgkn5/RU9vo/hDbouK1NiZNijsSEZFk89PSuIXM5DuAg4FfhRNOPFQMFxHxx0/SOAZ4K+v1\nTuDYcMKJhyb5iYj44ydpVADVWa+rsaJ4yZgyBV57DXbsiDsSEZFk85M0rgPWAFcB/+aOfxxmUFGr\nqoLZs9XaEBHpit+axmewpT+agfnuXElRF5WISNf8jJ4C20SppHfUrquDq66KOwoRkWQr2+1ec73z\njs3ZePNN6Ncv8NuLiMQqyhnhZWHIEDjiCNiwIe5IRESSqztJYwg2csp7lBzVNURECvOTNL6GFcCf\nwfb4fgrbza/kaJKfiEhhfvq3GoHjSc4ihaHUNABeftlaG6+9BhXFWO0REelElDWNl7DtXkteTY0l\ni23b4o5ERCSZ/Ay5XYRN6FsDvO/OtQOXhBVUXCoqMl1U48fHHY2ISPL4aWn8J7bt6lqsluHVNfwY\nCzyIzfF4lkyiqQZWAy8C99FxQcTFwBagAZjj83sCo2K4iEjn/PRvbQCm9/D+I9xjIzAISzZnY/tx\nvAFcC3wPWzl3EZk9wmeS2SN8ItCWdc/QahoA69bBV78KmzaF9hUiIpGLsqaxChtBNZLuD7ltxhIG\nwG7geSwZzAWWufPLsEQCMA9YDuzD9vFoBGb5/K5ATJsGW7faZD8REenIT03j81gNY1HO+e72+tdg\nLZbHgeFAizvf4l4DjMK6wTxNWJKJTL9+MGMGrF0LcyLvHBMRSTY/SaMmgO8ZBPwRWAjsynmv3T06\nE/nu3bW1VgxX0hAR6chP0lhA/l/cfle67YsljFuBu9y5FqzW0Yx1e73uzr+KFc89Y9y5Durr6z84\nTqVSpFIpn6H4U1cHP/tZoLcUEYlUOp0mnU4Hfl8/RZGfk0kaBwCnAOuBf/Z5/2XADuDSrPPXunM/\nwrq9htKxED6LTCH8CDomrVAL4WCbMY0fb4sX9vG7DrCISIIFVQjvyQ2GArcBp/q49uPAw8DTZH7x\nLwbWAbcD47CC92fJbCl7GXAB0Ip1Z92bc8/QkwbA0UfD8uVWGBcRKXZxJo1+2JyLib398h6KJGlc\neCFMnw5f/3roXyUiErooh9yuzHr8GXgBuLO3X5x0muQnIvJhfrLOSVnXtQL/A2wPLaKuRdLSeOEF\nOPVUrUMlIqUhqu6pPlgxOtXbLwpQJEmjvR2GDbOZ4aMjnSkiIhK8qLqnWoH9dFwbqixUVKiLSkQk\nl58Bpe9iGzCtdsdQoqvc5vJWvD333LgjERFJBj9J4w738PqEKohhlnYcamvh29+OOwoRkeTw27/V\nH5iEJYsGMvtqxCGSmgbAnj1w6KHw97/DwIGRfKWISCiiHHL7aWy12RuAG4GtwBm9/eJicMABMGUK\nPPFE3JGIiCSDn6RxPXAyNvT2JGwk1U9DjClRvLqGiIj4SxrvYC0Nz0vuXFnwVrwVEZHC/VvnuOdP\nAodja0UBnAu8AvzvEOMqJLKaBkBzM0yeDG+8AZV+UqyISAIFVdMoNHrqLDKjpF7HuqYA/g4M6O0X\nF4sRI+Dgg6GhwZKHiEg5K5Q0vhxVEEnnTfJT0hCRclcoaXwP2+/ixjzvlcXkPo9XDL/wwrgjERGJ\nV6Gksdk9P5XnvbKY3OeprYWfls14MRGRzvW6KBKDSAvhAPv3wyGHwJYttoihiEixiWJy38oCjxU+\n7/8rbD/wZ7LO1QNNwAb3OD3rvcXAFmzW+Ryf3xG6qiqYPRvWrIk7EhGReBXqnrougPv/GquJ3JJ1\nrh2bMHh9zrWTgfPcs7c/+ESgLYA4es2ra8ydG3ckIiLxKZQ00gHc/xGgJs/5fE2kecByYB+2b3gj\nMAtYG0AcvVZbC/X1cUchIhKvQt1Tv3fPz+R5PN3L770Y2ATcTGavjlFYt5WnCWtxJMLs2bBxI+zd\nG3ckIiLxKdTSWOiezwr4O5cCV7rjq7BusH/p5Nq8Fe/6rD/5U6kUqVQquOg6MXgwTJwI69fDCSeE\n/nUiIr2STqdJp9OB3zeK0VM1WPF8ShfvLXLnrnHP9wBLgMdzPhP56CnPN74B48drjw0RKT5RLo2+\nG9jlHnuxwnRvFiwcmXU8n8zIqhXA+UA/YDxwJLCuF98TOK14KyLlzs/OfYOyjiuBucDxPu+/HFuz\n6lBgO9ZySAHTsK6nl4GvuWs3Y4sibsb2Jr+IhE0irK2FSy+F9nbbQ1xEpNz09FffRuwXfxxi655q\nb4exY+Ghh2DChFhCEBHpkShWufWck3VcCcwA9vT2i4tRRUVmfw0lDREpR36SRvYS6a3YHIp5YQWU\ndHV1tuLtl74UdyQiItErxp752LqnAJ58Er7yFXjmma6vFRFJiqC6p/zc4EaspeFdm3sc9RLpsSaN\nffuguhq2b4ehQ7u+XkQkCaIccjsAOBZ4EVtMcDo2LPZJ8i+bXtL69oXjjoO1iVjcREQkWn6yzuPA\nx7E1oQD6Ao8Cs8MKqguxtjQAvv99W/n2yiu7vlZEJAmibGkMBYZkvR5MZr2osqRJfiJSrvyMnroG\nWE9m1duTsD0xytbxx8O6ddDaCn38/BcUESkRfpsqI7FlysG6q5rDCceX2LunAD76Ubj1Vjj22Lgj\nERHpWpTdU5XAJ4GpwN1YEXxWwU+UAXVRiUg58pM0fgGcAHzOvd7tzpW12lqb5CciUk78JI3Z2OKB\n77nXb2IjqMqaWhoiUo78JI33gaqs18NIyL7dcTriCHjvPZvkJyJSLvwkjRuBO4HDgB8CfwWuDjOo\nYuAtXqguKhEpJ34r6UcD/+SOHwCeDyccXxIxegrg2muhqQluuCHuSERECotyaXSwJBFnokikujpY\nuLDr60RESoWf7qne+BXQQmZLV4BqYDW2ltV9dJxdvhhb36oBmBNybL02YwY8/zzs3h13JCIi0Qg7\nafwaOC3n3CIsaUzEuroWufOTgfPc82nYsN6w4+uVAQNg6lR44om4IxERiUbYv5QfAXbmnJsLLHPH\ny4Cz3fE8bE/xfdhGT40UwSRCDb0VkXISx1/yw7EuK9zzcHc8CmjKuq4JGB1hXD2iEVQiUk7iXm6v\nncxWsp29/yH19fUfHKdSKVKpVKBBdUdtLVxwAbS1QWWiO9NEpJyk02nS6XTg941iu9caYCUwxb1u\nAFLYoocjgQeBSWRqG9e453uAJdgCidkSM+TWc8QRcNdd8LGPxR2JiEh+US5YGLQVwAJ3vAC4K+v8\n+diCiOOBI4F1kUfXA3V16qISkfIQdtJYDjwGHAVsB76CtSQ+hQ25PYVMy2IzcLt7XoWtd5WsJkUn\nVAwXkXIRRfdU0BLXPfXsszB/PmzZEnckIiL5FXP3VMmZPBneeANaWrq+VkSkmClpBKCy0raAXbMm\n7khERMKlpBEQ1TVEpBwoaQSktlZJQ0RKnwrhAdm9G4YPhx07bE0qEZEkUSE8YQYNgkmT4Kmn4o5E\nRCQ8ShoB0iQ/ESl1ShoBUjFcREqdahoB2r7dNmZqabE9xEVEkkI1jQQaO9aK4I2NcUciIhIOJY2A\naeitiJQyJY2AqRguIqVMSSNgammISCkrxnJtYgvhAK2tcPDB8Mor9iwikgQqhCdUnz4wa5YWLxSR\n0qSkEYJTT4Wrr4Zdu+KOREQkWHF2T20D3gH2A/uAWUA1cBtwuHv/s8BbOZ9LdPcUQFsbXHQRbNgA\nq1ZBdXXcEYlIuSuF7ql2IAVMxxIGwCJgNTAReMC9LjqVlbB0KXziE5BKQXNz3BGJiAQj7u6p3Kw3\nF1jmjpcBZ0cbTnAqKuDaa+Hccy15vPJK3BGJiPRe3C2N+4Enga+6c8MBb9PUFve6aFVUwOWXW1fV\niSdqD3ERKX59YvzuOuBvwDCsS6oh5/129/iQ+vr6D45TqRSpVCqUAIPyzW/C4MHWVbVqFRxzTNwR\niUipS6fTpNPpwO+blHkaS4DdWIsjBTQDI4EHgUk51ya+EN6Z226DSy6BFStg9uy4oxGRclLshfCB\nwGB3fCAwB3gGWAEscOcXAHdFH1p4zjsPbr4ZzjwTQvgDQEQkdHG1NMYDd7rjPsB/AVdjQ25vB8ZR\nxENuu/Lgg5ZAfvMbOOOMuKMRkXIQVEsjKd1T3VH0SQNg7VqYNw9uuMESiIhImJQ0SsDTT1tX1Sc+\nYcNzR42KOyIRKVXFXtMQbBTV5s0wbpwd//jH8P77cUclItI5tTQS4sUXbWjuSy9Zl9WcOXFHJCKl\nRN1TJai9Hf70J1i4EKZNg+uvh5qauKMSkVKg7qkSVFEBZ51lXVbTp8OMGXDllbBnT9yRiYgYJY0E\nGjDAlh9Zv96K5R/9KNx9t7VERETipO6pInD//TaTvKoK5s+Hz3wGpk61lomIiB+qaZSZ/fttbsed\nd9qjrc0SyPz5ti95VVXcEYpIkilplLH2duu28hJIczPMnWstkFNOgf79445QRJJGSUM+8NJLmQTy\n3HNw2mnWAjn9dFtdV0RESUPyam62VXTvuAMee8xmm8+fby2RYcPijk5E4qKkIV16+23485+tBXLf\nfTaM16uDjBsXd3QiEiUlDemWPXtsFNadd8LKlZY05s+H446D0aNhzBgYOlQjskRKlZKG9FhrKzzy\niM39eP55aGqyR2trJoGMGZP/+LDDoFKze0SKjpKGBG7XLnj1VUsg3nPu8dtvw4gRnSeVMWNg5Ejo\n1y/un0ZEspVy0jgN+HegCrgJ+FHO+0oaMdq7F157rXBiaWmB6urCiWX0aDjwwLh/GpHyUapJowp4\nAfgk8CrwBPA54Pmsa4oiaaTTaVKpVNxhdCmMOPfvt8RRKLG8+qotl9JVd9jBB1udpZz/ewatGGIE\nxRm0oJJGn96HEqhZQCO21SvAfwPz6Jg0ikKx/EMKI86qKttQqtCmUu3t8OabH04ma9d2TCzvv28J\nZNeuNOPHpxgwwCYvDhhAh+N853p63L9/zwcEFMP/7sUQIyjOpEpa0hgNbM963QTMjikWCVFFBRxy\niD2mTu38ut27LXlcfz0sWGDdY++9Z4/Ojt99F3bs6Hjez+e84/ffzySP7iabJ5+EnTttsEC+R0VF\n5+9Fdd3WrfDAA8mJr6JCo/aKSdKSRvL7nSRSgwbBUUdZcb22NprvbGuzxNHdZLN3L7z8MnzkI3aP\nQo/2dhut5ue6rq7pznVtbdDYaHWpqL+7s+u83ubcZNLaartZQsek4h3nPnf3vaCuf+cduOmm5MRT\n6PogJC2/Hw/UY8VwgMVAGx2L4Y3AhGjDEhEpeluBI+IOImh9sB+sBugHbASOjjMgERFJttOxEVSN\nWEtDRERERESkd44CNmQ93gYuAaqB1cCLwH3A0KzPLAa2AA3AnAhjXQw8BzwD/A7on9A4F7oYn3XH\nkIw4fwW0uNg8PYlrhrvHFuBnEcV5Lva//X7g2JzrkxTnj7Hh6puAO4CDYo4zX4xXufg2Ag8AY2OO\nsbM4Pd/G6qzVCY2zHht16v0OPT0BcUamEvgb9o/oWuC77vz3gGvc8WTsH1tfrA7SSDT7ntcAL2GJ\nAuA2YEEC4/wY9o9hADZxcjU2iCAJcZ4ITKfjP/juxOUN4liHze8B+H9kBlGEGeckYCLwIB2TRtLi\n/BSZ//2uIf7/nvlizN7x5WJsFYg4Y+wsTrDfRfcAL5NJGkmLcwnwrTzXBhZnkpee+yT2g20H5gLL\n3PllwNnueB6wHNiHTQhsJPPDh+kd950DseL9QOC1BMY5CXgceA/7q/gh4JyExPkIsDPnXHfimg2M\nxH7prHPX3ZL1mTDjbMBaQ7mSFudq7K9isH8HY2KOM1+Mu7KOBwFvxBxjZ3ECXE/mjxpPEuPMNyo2\nsDiTnDTOx35IgOFYMwz3PNwdj8KaYp4mbIJg2N4ErgNewZLFW9j/QZMW57PYXyPVWGI7A/vFkbQ4\nPd2NK/f8q0Qbb64kx3kB9lckeeKJO84fYP9f+jJwtTuXtBjnue99Oud80uIEa7FtAm4m08UbWJxJ\nTRr9gLOA3+d5r53CkwCjmCA4Afgm1swbhf2F9IU8ccQdZwM2x+U+YBXWPN2fJ4644+zsezXZMxjf\nB97Ham9J9H1gHPBrbLHSpBkIXIZ1/XiSNsfNsxQYD0zDuvevC/oLkpo0TgeeAv7uXrcAI9zxSOB1\nd/wqHQtnY9y5sB0HPAbsAFqxIuMJQHPC4gQrlh0HnIQ1ZV8kef89Pd2Jq8mdH5NzPsp4cyUxzi9j\nLcz/lXUuiXGCJbWZ7jhJMU7A/kDchNUzxmC/n4YnLE6w/894f3DdRKZ7OWlxBu6/scKy51qsMAqw\niA8X9Pph2XUr0fwFMBXr+jnAfd8y4OsJjBPgMPc8DhtJc1CC4qzhw4Xw7sb1ONY3W0E4xcZ8cXoe\nxEaeeJIW52nYKK9Dc66LM87cGI/MOr4YuDUBMeaLM1u+QnhS4hyZdXwpmdZl3HGG6kCsGJY9qqIa\nuJ/8QzGYQl2zAAADQ0lEQVQvw4o6DcCpEcUIVhDzhtwuw0YlJDHOh12cG4GT3bkkxLkcqwe9jw12\n+EoP4/KGCzYCN0QQ5wVYoXA7sAdrXa5KaJxbgP8hM/zyFzHHmS/GP7jv2wj8kcwfOXHFmB3nXjL/\nNrO9RMcht3HHmf3f8xas7rIJuItMXTDOOEVEREREREREREREREREREREREREREQkuQ4hM+/gb2SW\ngV5P8va8PwlbKaC3/gwM6cb19dgS3mArHK8GrgggDpHE/Z9MpCs7sOWgwdYC2oWtPhqXKj68npfn\nZCy+Nd24Xx9saZpsn+5mTN4yEv2wCXNPAFd28x4ieSV17SkRvyqwGa1p4ElsvwNv/ao0llCewJZQ\nmQncic04v8pdU4PNkP0tsBlbJPMA916h+/7U3XchcCawFmvtrMZmNdcAX8OWclgPfBz4DbY0vWe3\ne05hy1zfjc3ez7UNm4Fc436O/8SWsbkXa0nk0xdbjucFbCawiEjZWwJ8B/grmfWVzsOWhAZbG8pb\navsSbMmF4dhf4NuBg7FfxG1kupFuxrp2+mCLUh7SyX1/nhVH9nInFwI/yYove0OcX9MxaXh7SaSw\nBHJ4Jz+nt9ZRDbYfwjHu/G10XIjQU4+1yJbneU+kV9Q9JcWuP7ZD4Wr3ugpLDp4V7vlZ9/D263gJ\nW/XzHSyBeF1Iv8USzD3AR7G1sPLd97as47HA7VhLpJ+7t8fvgo/rsHWiuvIymT0dnsISSa524FGg\nFlsQcIvPGES6pKQhxa4C69Kp7eT9ve65LevYe+39+8/et6PCve7qvu9mHd+ItS7+hBW/6zv5TCuZ\nLuFKLMHku18h2T/DfjJdabkexhbSXIV1jTX7vL9IQappSLHbCwwDjnev+2LLQHfHuKzPfx6rL7zQ\nxX2zWxBDyLRCvpx1fhcdV2veRmYp9bnunmG6A0tm92BL4ov0mpKGFLv9wD9jOxRuxIbf5hvmWmgn\nwBew/VA2Y79cl2K1g0L3zb5XPVZAfxLbOMx7byUw3322Dvgl1hLZiCWj3Vn38Lt7Yu51nX3OO/8f\nWPF/BdaVJyIivVBD55vtiEgOtTREtBe5iIiIiIiIiIiIiIiIiIiIiIiIiIiIiATj/wO8DLnTo5SU\npQAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x10b2ade10>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ii)From the graph it can be seen that as temperature increases Ka decreases exponentially,(so the reaction is exothermic.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.7 Page No : 300"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"import math\n",
"import matplotlib.pyplot as plt\n",
"import numpy\n",
"\n",
"#Given\n",
"#SO2 + (1/2)O2 - SO3\n",
"#Basis: 1 Kgmole of SO2\n",
"n_SO2 = 1.0;# SO2 fed in Kgmole\n",
"n_O2 = n_SO2;#O2 fed in kgmole\n",
"\n",
"#To Calculate the conversion of SO2 to SO3 at 1atm and at various temperature\n",
"#(1)Calculate the conversion of SO2 to SO3 \n",
"P = 1.0;#Pressure in atm\n",
"T = 850.0;#Temperature in K\n",
"m = 1-1-(1/2.0);\n",
"#From example 14.6\n",
"Ta = [700.0, 800.0, 825.0, 850.0, 900.0, 1000.0, 1100.0, 1300.0, 1500.0];\n",
"Ka = [395.40, 52.51, 34.60, 23.44, 11.59, 3.527, 1.48, 0.398, 0.0016];\n",
"\n",
"\n",
"\n",
"plt.plot(Ta,Ka)\n",
"plt.title(\"Equilibrium consmath.tant vs Temperature\")\n",
"plt.xlabel(\"Temperature in K\")\n",
"plt.ylabel(\"Ka\")\n",
"plt.show()\n",
"Ka1 = numpy.interp(850,Ta,Ka)\n",
"\n",
"\n",
"#Let Nc be the moles of SO3 at equilibrium\n",
"Nc = [0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 0.930, 0.95, 0.98, 0.988, 0.989, 0.9895, 0.9897, 0.9899, 0.9900];\n",
"#From equation 14.49 (page no 320) and umath.sing the given data ,we got equation (b) (page no 323)\n",
"Ka = []\n",
"for i in range (0,17):\n",
" Ka.append((((n_SO2+n_O2-0.5*Nc[i])/(n_O2-0.5*Nc[i]))**(1/2.0))*(Nc[i]/(n_SO2-Nc[i])));\n",
"\n",
" \n",
"\n",
"\n",
"plt.plot(Nc,Ka)\n",
"plt.title(\"Equilibrium consmath.tant vs Kgmoles of SO3\")\n",
"plt.xlabel(\"Kg moles of SO3\")\n",
"plt.ylabel(\"Ka\")\n",
"Nc1 = numpy.interp(Ka1,Ka,Nc)\n",
"\n",
"\n",
"C = Nc1*100.0/n_SO2;\n",
"print '1)The conversion of SO2 to SO3 at 1atm and 850K is %f percent'%C;\n",
"\n",
"#(2)Calculation of conversion at 1 atm and 850 K under the following conditions\n",
"#(i) Given:\n",
"n_N2 = 3.75;#Kgmoles of N2 fed\n",
"#Let Nc be the moles of SO3 at equilibrium\n",
"Nc = [0.85, 0.87, 0.90];\n",
"#From equation 14.49 (page no 320) and umath.sing the given data ,we got equation (c) (page no 324)\n",
"Ka2 = []\n",
"for i in range(0,3):\n",
" Ka2.append((((+n_N2+n_SO2+n_O2-0.5*Nc[i])/(n_O2-0.5*Nc[i]))**(1/2.0))*(Nc[i]/(n_SO2-Nc[i])));\n",
"\n",
"\n",
"\n",
"plt.plot(Nc,Ka2)\n",
"Nc2 = numpy.interp(Ka1,numpy.transpose(Ka2),Nc)\n",
"\n",
" \n",
"C2 = Nc2*100.0/n_SO2;\n",
"print ' 2)i)The conversion of SO2 to SO3 at 1 atm and 850 K when inert gas is also added is %f percent'%C2;\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"#(ii)SO3 is also sent along the original feed\n",
"n_SO3 = 1.0;#Kgmoles of SO3 fed\n",
"#Let Nc be the moles of SO3 at equilibrium\n",
"Nc = [0.80, 0.86, 0.92];\n",
"#From equation 14.49 (page no 320) and umath.sing the given data ,we got equation (d) (page no 326)\n",
"Ka3 = []\n",
"for i in range(0,3):\n",
" Ka3.append((((+n_SO3+n_SO2+n_O2-0.5*Nc[i])/(n_O2-0.5*Nc[i]))**(1/2.0))*((n_SO3+Nc[i])/(n_SO2-Nc[i])));\n",
"\n",
"\n",
"plt.plot(Nc,Ka3)\n",
"Nc3 = numpy.interp(Ka1,Ka3,Nc)\n",
"\n",
"\n",
"C3 = Nc3*100.0/n_SO2;\n",
"print ' ii)The conversion of SO2 to SO3 at 1 atm and 850 K when SO3 is also added along the original feed is %f percent'%C3;\n",
"\n",
"#(iii)Variation of SO2 to O2 ratio:\n",
"#(a)SO2:O2 = 1:1 ; This has been worked out in part 1\n",
"print ' iii)a)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:1 is %f percent'%(C);\n",
"Xc = Nc1/(n_SO2+n_O2-0.5*Nc1);\n",
"\n",
"#(b)SO2:O2 = 1.1:0.5,Now\n",
"n_SO2 = 1.1;#Kgmoles of SO2 fed\n",
"n_O2 = 0.5;#Kgmoles of O2 fed\n",
"#Let Nc be the moles of SO3 at equilibrium\n",
"Nc = [0.9, 0.91, 0.92];\n",
"#From equation 14.49 (page no 320) and umath.sing the given data ,we got equation (e) (page no 327)\n",
"Ka4 = []\n",
"for i in range(0,3):\n",
" Ka4.append((((n_SO2+n_O2-0.5*Nc[i])/(n_O2-0.5*Nc[i]))**(1/2.0))*(Nc[i]/(n_SO2-Nc[i])));\n",
"\n",
"\n",
"plt.plot(Nc,Ka4)\n",
"Nc4 = numpy.interp(Ka1,Ka4,Nc)\n",
"\n",
"\n",
"\n",
"\n",
"C4 = Nc4*100.0/n_SO2;\n",
"print ' iii)b)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1.1:0.5 is %f percent'%C4;\n",
"Xc1 = Nc4/(n_SO2+n_O2-0.5*Nc4);\n",
"\n",
"#(c)SO2:O2 = 1:0.5\n",
"n_SO2 = 1.0;#Kgmoles of SO2 fed\n",
"n_O2 = 0.5;#Kgmoles of O2 fed\n",
"#Let Nc be the moles of SO3 at equilibrium\n",
"Nc = [0.8, 0.85, 0.86, 0.87];\n",
"#From equation (a)\n",
"Ka5 = []\n",
"for i in range(0,4):\n",
" Ka5.append((((n_SO2+n_O2-0.5*Nc[i])/(n_O2-0.5*Nc[i]))**(1/2.0))*(Nc[i]/(n_SO2-Nc[i])));\n",
"\n",
"\n",
"\n",
"plt.plot(Nc,Ka5)\n",
"Nc5 = numpy.interp(Ka1,Ka5,Nc)\n",
"\n",
" \n",
"C5 = Nc5*100.0/n_SO2;\n",
"print ' iii)c)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:0.5 is %f percent'%(C5);\n",
"Xc2 = Nc5/(n_SO2+n_O2-0.5*Nc5);\n",
"\n",
"if(Xc2>Xc) and (Xc2>Xc1):\n",
" print ' SO2:O2 = 1:0.5 gives the maximum concentration of SO3 at equilibrium.';\n",
"else:\n",
" if(Xc1>Xc) and (Xc1>Xc2):\n",
" print ' SO2:O2 = 1.1:0.5 gives the maximum concentration of SO3 at equilibrium';\n",
" else:\n",
" if(Xc>Xc1) and (Xc>Xc2):\n",
" print ' SO2:O2 = 1:1 gives the maximum concentration of SO3 at equilibrium';\n",
"\n",
"\n",
"\n",
"#(3)Conversion of SO2 to SO3 at 50 atm and 850 K when SO2:O2 = 1:1\n",
"n_SO2 = 1.0;#Kgmole of SO2 fed\n",
"n_O2 = 1.0;#Kgmoles of O2 fed\n",
"P = 50.0;#Pressure in atm\n",
"#From figure A.2.9\n",
"phi_SO2 = 0.99;\n",
"phi_SO3 = 0.972;\n",
"phi_O2 = 1.0;\n",
"#From equation 14.48 (page no320), Ka = Ky*(P**m)*K_phi\n",
"K_phi = phi_SO3/(phi_SO2*(phi_O2**2));\n",
"#Let Nc be the moles of SO3 at equilibrium\n",
"Nc = [0.99, 0.985, 0.97, 0.96];\n",
"Ka6 = []\n",
"for i in range(0,4):\n",
" Ka6.append(K_phi*(P**m)*((((n_SO2+n_O2-0.5*Nc[i])/(n_O2-0.5*Nc[i]))**(1/2.0))*(Nc[i]/(n_SO2-Nc[i]))));\n",
"\n",
"\n",
"plt.plot(Nc,Ka6)\n",
"plt.legend(['1 part', '2.(i) part', '2.(ii) part', '2.(iii).(b) part', '2.(iii).(c) part', '3 part'])\n",
"plt.show()\n",
"Nc6 = numpy.interp(Ka1,Ka6,Nc)\n",
"\n",
"\n",
"C = Nc6*100.0/n_SO2;\n",
"print ' 3)The conversion of SO2 to SO3 at 50atm and 850K when SO2:O2 = 1:1 is %f percent'%(C);\n",
"#legend(\"1 part\",\"2.(i) part\",\"2.(ii)part\",\"2.(iii).(b)part\",\"2.(iii).(c)part\",\"3 part\");\n",
"\n",
"\n",
"\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFPWdx/F3MzgoQxAmhgmXQpQjZBWMI5DTNokEjRF4\ndhNNNlmvHLu6mmQ360KOhzE+SdCNV5LVTYwHmohhN4uCKwoSOpcRggEVEAHjAIMwkUsRhZGZ2T++\nv7are7p7umequqq7P6/n6aer6/z2Vd+q3+9XvwIRERERERERERERERERERERERERERGRinAicBCI\nudcJ4HI3/PfAY555O4B3FbHuzOWlcMV+1iIiaZqB17EdfPLxwwC2sxK4LMc07ciCkSCVqJOK+azv\nAa4LOB6/bSD1Oz4KvOF5PTvgbQclQfCfW8XqG3YAFagTOB/4ddiBFKgGaA87iDLRGXYAGUoRz3s8\nwyuB+4C7SrDdnuqLJbd8evu56T8jvnoR+EiOaX2AHwAvAy8AV2JHqn3c9Gbgo575m7A/KcCojHm9\nZxqXAL/zLNcBXOW28TJwA6lirUuAPwA3AXuwI1/v8pnbgfQjM+/y+4GtwPuBS4HtQCvwDzneP0A9\ncDewE9gHLPJM+yKwBdgLPAQMzXhPXwY2u+3+2DPtFOA3wAH3fh/IWO6f3HpfBb4DnAz80c3/AHCM\nm3cQ8DDwVxfbEmC4m/Zd0o+0k2eP+eLy+hLQBhxxyz/kxs/GPsNXsaP6mZ5lLgF+D/yHi+cvwPRu\n4vFaiv3GvJ72bONm7Pt6BXiG9ASRzUrSj9AvAza62B7FilCTivnc40ALMAf7/l4EPutZVz/sf7MN\n2A3cDhybsew1wC5gPsV/j6Mo/De/x72X2jwxiRTlRdJ3/F7/CDyH/YAHY3/CdlI/1syEM5eeJ40V\n2J9nJPA86X+AN7GdSR/sh+5dPnM72bb1JnAxloiuw/60P8J2AudgO4n+OT6D/wMWAMdjR4UfcuM/\ngu0wJmF/yB9iicD7nhYDA917+iswzU1bgO1wcMu+P2O5RcAAYAK20/61e58DsR11MsnVA7PcZzIA\nWEh6UstWJJgtro/neO93Yzscr78D3umGPw28BjS415dgieZy7LP+RyzZ5ovH6/NY0kmagCW2Y1yM\na1zcAOM8ceTi3d4MLCGMw34r38R2rEnFfO5x7Df1Axfbh7HPYaybfjPwIPZ7HoB93t/LWPb7btlj\nKf57HEVhv3nvfyZfTCJFacaOYPZ7Hskd9q+xI86kc0j/sWYmjSZ6njSmeV7/E/C4Z95tGTF7l8/c\nTrZtbfZMO9XN/w7PuD3AaXQ1FEuSx2eZdicwz/O6DtthJo9eO0hPBr/Eji7Bji5/Qupo0qsDeJ/n\n9Rrg3zyvf4DtALKZhB2pJmUeaeeK699zrO9uuq/TWAtc4IYvwXbMSf3d9obkicfrbdjOd6R7/V3g\nZ274I9jBxBTSv+t8vL+DpaTvePsAhzzbKuZzj2M75eM8038JfAtLlq+RXm/0PuysK7nsEexgIZfu\nvsdRdP+b9/5nuoupohX6Y5HCdWJHYYM9jzvdtKHADs+82wOMI3M7w3JM64lWz/Ab7vnljHEDsiw3\nEvvzvpJl2lDS/5iHsGIqbyLY7Rl+HdspgiWPGLAaWI8VleWLN/N1Mtb+WPJpdjH+BktwMc/82crD\nM+PK9t5z+QcsUSQPMP4GeHuedZOx/nzl8wexM7vPuNcXAb9ww7/GitL+E/s8fkLq8yzEScCtnrj3\nuvHe7yvf536Y9Pexn9RvCey3MBQ4AftenvJsa6kbn/QydoCR1NPvMR/vf+YdBcRUsZQ0SmsX6eW+\nJ2ZMP4QdYSd1V1yQT+Z2vMUa+f4wh9yzt3ipN3F47cCKDrKdabyEHfEl1WE7z51Z5s3Uip3BDcfq\nF26jZ63H/hUrEpnsYjwL29Ekdza9rUDNXP4k4KdYsUc9doCxnvSdWzHry2YBljTehxWrrPRM+xHQ\niBUfjSX9TKA727HP3HtwVAc8WeDymbEPJv03dxL2m9iDJZMJnu0MIlWslm1dxX6PhfzmvcsUElPF\nUtIIRq4//ULgalJ1GrNJ/zGuw44G+2J/5r+l5zuqr5Oq07gaO90vxMvYjvrzWCuRy7AKTD/swo7I\nbnOxJcuvwXZulwITsYrP72E7oFxnY97P+FPACDd8APvMOvLEEcsxPADbGbyC7cTnZizXSvefRb4d\nfivpyazOxboH+y9eip1pFKqQeB7BdsDXkt5AoBErmjoGO4M5THEtgv4L+Aa24wTbOX+qm2Vyfe5J\n17p4PgR8Avhv7PO5A7iFVBHocNKLXzMV+z0W+5vv6EFMFUNJIxhLSL9O41du/B3YRXRPY2W8vyL9\nz/Nt7Me6H6vP+AXpciWQzizTHsJOn9diLUnuzDNv5rgvYkede7Cdwh/yzJsvrmw+j5Vfb8L+vFe7\n8Suw9/8r7AhzNJZAc23DG0cjlmCSrZKuxoomcsXWmTGcfH0LVq6+B3gCS3DeeW/FKq73uXmz8a7v\nQy6mpDtJVUb/L9by6EasRdFuLGF4K667+6wLiafNbeujwP2e8QOxs5x92Ge1B2ulVagHgeuxRPQK\n8CzpDQCK+dzB3v9+7Lu/j1SLNLA6oq3Yd/wKsJxUJXm2bfXkeyz2N99dTNILNdiOa4l7XY99wJuB\nZdgRZ9IcrOJvE9WRtUfRtQJOpNrE6X09m5RIKXZWX8GOqJKZejaprLyC1FWlE4AL3fN0rAhDO1MR\nkQgJeqc8AjgPa+aXLIa5AGsiiXtOXmg0AyvXfhM7Xd6KVWRVuqhdZSwSBv0PykTQSeNmrJzQWynZ\nQKrpXSupC5mGYReJJbWQvd19JWnGiu/yVdqKVLoEXVsSSkQFmTTOx66OXUvuFiXZKpgyp4uISEQE\n2WHh+7GiqPOw9uEDsVYRrVgb6N3YxTt/dfPvJHU1KVjRVpc2+ieffHLnCy+8EFzUIiKV6QWsn7ay\ncBap1lM3kOpmYTapriMmYNcp1GLNLV8g+xlKZzmYO3du2CEURHH6qxziLIcYOzsVp9/wqeSmlF2j\nJwOeh13kdjlWpv9pN36jG78R64XyClQ8JSISKaVKGr8h1WPpPuBjOeb7HgX0FNnRAX3UGFdEpOTK\nctf7/PNhR9C9eDwedggFUZz+Koc4yyFGUJxRVWjHaFHSedddnVya2Y+piIjkFIvFwId9flmeaTxZ\naD+aIiLiKyUNEREpWFkWT/Xv30lrKwwo5lY3IiJVrKqLpyZOhDVrwo5CRKT6lGXSmDpVRVQiImFQ\n0hARkYKVddLo1PXiIiIlVZZJY+RIuyJ827awIxERqS5lmTRiMRVRiYiEoSyTBihpiIiEQUlDREQK\nVpYX93V2dnLoEAwZAvv2Qb9+YYckIhJtVX1xH0BdHYwbB2vXhh2JiEj1KNukASqiEhEpNSUNEREp\nmJKGiIgUrKyTxpgxcPAg7NoVdiQiItUhyKRxLLAKWAdsBL7vxjcBLcBa9zjXs8wcYAuwCZjW3QZi\nMZgyBVat8i9oERHJrW+A6z4MnA287rbze+CDQCdwk3t4TQAudM/DgceBsUBHvo0ki6hmzvQ1dhER\nySLo4qnX3XMtUAPsd6+ztRWeASwA3gSaga3A5O42oHoNEZHSCTpp9MGKp1qBlcAGN/4q4GngTmCQ\nGzcMK7ZKasHOOPKaPBmeegqOHvUrZBERySXopNEBTAJGAB8G4sDtwGg3fhdwY57lu+38fNAg6/V2\n/fpexyoiIt0Isk7D6xXg/4BGIOEZ/zNgiRveCYz0TBvhxnXR1NT01nA8Hmfq1DhPPgmTJvkXsIhI\nOUskEiQSCd/XG2TfUycAR4EDwHHAY8C1WBHVbjfP14Azgc9iFeD3Y/UYyYrwU+h6ttHZmXH3pZ/+\nFJ54Au65J4i3ISJS/vzqeyrIM42hwHysCKwPcB+wArgXK5rqBF4Evuzm3wgsdM9HgSsooHgKrDL8\npsy2WCIi4ruy7eXWq70dBg+G5maorw8nKBGRKKv6Xm69amqgsRFWrw47EhGRylYRSQN0vYaISCko\naYiISMEqok4DoLUVxo+HvXuhT8WkQhERf6hOI0NDg1WGb94cdiQiIpWrYpIGqIhKRCRoShoiIlIw\nJQ0RESlYxVSEA7S1Wb1GaysMGFDiqEREIkwV4VnU1sLEibBmTdiRiIhUpopKGqAiKhGRIClpiIhI\nwSo2aeSo9hARkV6ouKQxcqRdEb5tW9iRiIhUnopLGrGYiqhERIJScUkDlDRERIKipCEiIgWrqIv7\nkg4dgiFDYN8+6NevRFGJiESYLu7Lo64Oxo2DtWvDjkREpLIEmTSOBVYB64CNwPfd+HpgObAZWAYM\n8iwzB9gCbAKm9WbjKqISEfFfkEnjMHA2MAk4zQ1/EJiNJY2xwAr3GmACcKF7ng7c1pv4lDRERPwX\ndPHU6+65FqgB9gMXAPPd+PnATDc8A1gAvAk0A1uByT3dsJKGiIj/gk4afbDiqVZgJbABaHCvcc8N\nbngY0OJZtgUY3tMNjxkDBw/Crl09XYOIiGTqG/D6O7DiqeOBx7AiKq9O98gl67Smpqa3huPxOPF4\nvMs8sRhMmQKrVsHMmV0mi4hUtEQiQSKR8H29pWxy+23gDeALQBzYDQzFzkDGk6rbmOeeHwXmYpXp\nXt02uU36znfg9ddh3rzu5xURqWTl0OT2BFIto44DzgHWAouBi934i4EH3fBi4CKs/mM0MAZY3ZsA\nVK8hIuKvIIunhmIV3X3c4z6stdRaYCFwOVbh/Wk3/0Y3fiNwFLiC/EVX3Zo8GZ56Co4ehb5BF8SJ\niFSBirwi3GvCBLj/fpg0KcCIREQirhyKpyJBRVQiIv5R0hARkYIpaYiISMEqvk6jvR0GD4bmZqiv\nDy4oEZEoU51GgWpqoLERVveq8a6IiEAVJA1QEZWIiF+UNEREpGAVX6cB0NoK48fD3r3QpyrSpIhI\nOtVpFKGhwSrDN28OOxIRkfJWFUkDVEQlIuIHJQ0RESmYkoaIiBSsKirCAdrarF6jtRUGDAggKhGR\nCFNFeJFqa2HiRFizJuxIRETKV9UkDVARlYhIbylpiIhIwaoyafSgSkRERKiypDFypF0Rvm1b2JGI\niJSnqkoasZiKqEREeiPopDESWAlsANYDV7vxTUALsNY9zvUsMwfYAmwCpvkdkJKGiEjP9Q14/W8C\nXwPWAQOAp4DlQCdwk3t4TQAudM/DgceBsUCHXwFNnQrXXOPX2kREqkvQZxq7sYQB8BrwHJYMIPtF\nJjOABViyaQa2ApP9DOiMM+DZZ+HIET/XKiJSHUpZpzEKOB1IFg5dBTwN3AkMcuOGYcVWSS2kkowv\n6upg3DhYu9bPtYqIVIegi6eSBgD/A3wFO+O4HfiOm3YdcCNweY5luzSQbWpqems4Ho8Tj8eLCiZZ\nrzF1alGLiYiUjUQiQSKR8H29peh76hjgYWApcEuW6aOAJcCpwGw3bp57fhSYC6zyzN+jvqe87r0X\nHnkEHnigV6sRESkb5dL3VAwrftpIesIY6hmeBTzrhhcDFwG1wGhgDLDa76DUgkpEpGeCLp76APA5\n4BmsaS3AN4DPAJOwoqcXgS+7aRuBhe75KHAFWYqnemvMGDh4EHbtgqFDu59fRERM1XSNnum88+BL\nX4KZM32ISEQk4sqleCqyVEQlIlI8JQ0RESlY1RZPHThgHRju3w99S9XwWEQkJCqe6qVBgyxprF8f\ndiQiIuWjapMGqIhKRKRYShpKGiIiBVPSUNIQESlY1VaEA7S3w+DB0NwM9fW+rFJEJJJUEe6Dmhpo\nbITVvndUIiJSmao6aYCKqEREiqGkoaQhIlKwqq7TAGhthfHjYe9e6FP1KVREKpXqNHzS0GCV4Zs3\nhx2JiEj0VX3SABVRiYgUSkkDJQ0RkUIpaaCkISJSqKqvCAdoa7N6jdZWGDDA11WLiESCKsJ9VFsL\nEyfCmjVhRyIiEm1KGo6KqEREuldI0jgO+GfgduBu97irwPWPBFYCG4D1wNVufD2wHNgMLAMGeZaZ\nA2wBNgHTCtxOrylpiIh0r5CkcR/QAHwcSAAjgNcKXP+bwNeA9wBTgSuBdwOzsaQxFljhXgNMAC50\nz9OB2wqMsdeSScPn6hIRkYpSyA75FODbWKKYD5wHTClw/buBdW74NeA5YDhwgVsX7nmmG54BLMCS\nTTOwFZhc4LZ6ZeRIuyJ827ZSbE1EpDwVkjTa3PMrwKlYUdI7erCtUcDpwCrszKXVjW91rwGGAS2e\nZVqwJBO4WExFVCIi3elbwDx3YHUQ3wIWAwOwM49iDAB+BXwFOJgxrdM9cukyramp6a3heDxOPB4v\nMpzskknjoot8WZ2ISGgSiQSJRML39eZrszsS2JFj2ieBJQVu4xjgYWApcIsbtwmIY8VXQ7HK8vGk\n6jbmuedHgbnY2UmS79dpJP32t3DNNTrbEJHKU4rrNB4HRmcZfxlwa4HrjwF3AhtJJQywM5aL3fDF\nwIOe8RcBtW7bY4CS3SLpjDPg2WfhyJFSbVFEpLzkSxpfw5rDjvWMmwP8C/DhAtf/AeBzwNnAWveY\njp1JnIM1uf0IqTOLjcBC97wUuIL8RVe+qquDceNg7dpSbVFEpLx0d6ryUeCnWKumL2AtmT4B7A84\nrnwCK54CuOIKGDsWvvrVwDYhIlJypepGZAVwKfAb4F3YWUGYCSNwakElIpJbvqzzGqmioWOxprcd\n7nUnMDDAuPIJ9Exj82aYNg2amwPbhIhIyfl1pqFebrusHE44Adavh6FDA9uMiEhJqZfbgMRiMGUK\nrFrV/bwiItVGSSML1WuIiGSnpJGFkoaISHaq08jiwAHrwHD/fuhbSEcrIiIRpzqNAA0aZElj/fqw\nIxERiRYljRxURCUi0pWSRg5KGiIiXSlp5KCkISLSlSrCc2hvh8GD7U5+gwcHvjkRkUCpIjxgNTXQ\n2AirS9Yxu4hI9Clp5KEiKhGRdEoaeShpiIikU51GHq2t8O53w5490EfpVUTKmOo0SqChwS7027Il\n7EhERKJBSaMbKqISEUlR0uiGkoaISErQSeMuoBV41jOuCWgB1rrHuZ5pc4AtwCZgWsCxFURJQ0Qk\nJeiK8A9ht429FzjVjZsLHARuyph3AnA/cCYwHHgcGEvqFrNJJasIB2hrg/p6qxSvqyvZZkVEfFUu\nFeG/A/ZnGZ8t8BnAAuBNoBnYCkwOLLIC1dbCaafBmjVhRyIiEr6w6jSuAp4G7gQGuXHDsGKrpBbs\njCN0KqISETFh3GLoduA7bvg64Ebg8hzzZi2Hampqems4Ho8Tj8f9iy6LqVNhwYJANyEi4qtEIkEi\nkfB9vaW4uG8UsIRUnUauabPduHnu+VGs/mNVxjIlrdMA2L4dpkyBl16CWDleDikiVa9c6jSyGeoZ\nnkWqZdVi4CKgFhgNjAEi0V3gyJGWLLZvDzsSEZFwBV08tQA4CzgB2IGdOcSBSVjR04vAl928G4GF\n7vkocAU5iqdKLRZL1WucdFLY0YiIhKccC1tKXjwFcMMNsGsX3HxzyTctItJr5Vw8VZbUgkpERGca\nBTt0CIYMgX37oF+/km9eRKRXdKZRYnV1MG4crFsXdiQiIuFR0iiCiqhEpNopaRRBSUNEqp2SRhGU\nNESk2ilpFGHMGHj1Vdi9O+xIRETCoaRRhFjMuhNZldmxiYhIlVDSKJKKqESkmilpFElJQ0SqmS7u\nK9KBA9aB4f790DeMjuVFRHpAF/eFZNAgSxobNoQdiYhI6Slp9ICKqESkWilp9ICShohUKyWNHlDS\nEJFqpYrwHmhvh8GDYds2exYRiTpVhIeopgYaG2F1JG5GKyJSOkoaPaQiKhGpRkoaPaSkISLVKOik\ncRfQCjzrGVcPLAc2A8uAQZ5pc4AtwCZgWsCx9UqyD6qOjrAjEREpnaCTxt3A9Ixxs7GkMRZY4V4D\nTAAudM/TgdtKEF+PNTTYhX5btoQdiYhI6QS9U/4dsD9j3AXAfDc8H5jphmcAC4A3gWZgKzA54Ph6\nRUVUIlJtwjiSb8CKrHDPDW54GNDima8FGF7CuIqmpCEi1SbsLvc63SPf9C6ampreGo7H48TjcV+D\nKtTUqXD33aFsWkQkr0QiQSKR8H29pbi4bxSwBDjVvd4ExIHdwFBgJTCeVN3GPPf8KDAXyLzlUegX\n9yW1tUF9PbS2Ql1d2NGIiORWzhf3LQYudsMXAw96xl8E1AKjgTFApC+fq62F006DNWvCjkREpDSC\nThoLgCeAccAO4FLsTOIcrMntR0idWWwEFrrnpcAV5C+6igTVa4hINVHfU720cCEsWACLFoUdiYhI\nbuVcPFVRkmcaEcpjIiKBUdLopZEjIRaD7dvDjkREJHhKGr0Ui6leQ0Sqh5KGD5Q0RKRaKGn4QElD\nRKqFWk/54NAhGDIE9u2Dfv3CjkZEpCu1noqQujoYNw7WrQs7EhGRYClp+ERFVCJSDZQ0fKKkISLV\nQEnDJ0oaIlINlDR8MmYMvPoq7N4ddiQiIsFR0vBJLJa6b7iISKVS0vCRiqhEpNIpafhISUNEKp0u\n7vPRgQPWgeH+/dA37Bvpioh46OK+CBo0yJLGhg1hRyIiEgwlDZ+piEpEKpmShs+UNESkkoWZNJqB\nZ4C1wGo3rh5Yjt0/fBkwKJTIekFJQ0QqWZhJoxOIA6cDk9242VjSGAuscK/LynveAzt3WmW4iEil\nCbt4KrMm/wJgvhueD8wsbTi9V1MDjY2wenX384qIlJuwzzQeB9YAX3TjGoBWN9zqXpeds86CW2+F\nI0fCjkRExF9hXqcxFNgFvAMrkroKWAwM9syzD6vn8IrsdRpJbW3w2c/CwYOwaBH07x92RCJS7fy6\nTiPMS9B2ueeXgUVYvUYr8E5gN5ZU/pptwaampreG4/E48Xg8wDCLV1sLDzwAl10G06fDww/DwIFh\nRyUi1SSRSJBIJHxfb1hnGv2BGuAgUIe1lLoW+BiwF7geqwQfRNfK8MifaSR1dMCVV8Kf/wxLl0J9\n5jmTiEiJ+HWmEVbSGI2dXYCd7fwC+D5WFLUQOBFrkvtp4EDGsmWTNAA6O+HrX4fHH4fly+1e4iIi\npVbuSaM3yippgCWOpiZYuNCSx/DhYUckItWmEuo0qkYsBtdeC3V18OEPW+IYPTrsqEREiqekUULX\nXGOJ46yzrKhq3LiwIxIRKY6SRoldeaUljrPPhkcfhdNOCzsiEZHCKWmE4JJL4LjjYNo0WLIEzjwz\n7IhERAoTdjciVevCC+GOO+Dcc+H66+2CQBGRqFPSCNEnPwmrVsHvfw+nngrLloUdkYhIfmpyGxEP\nPwxf/SpMnAg33QQnnRR2RCJSSXS71wpz/vmwfj2cfjqccQZcdx0cPhx2VCIi6ZQ0IuTYY+Fb34Kn\nnoJ16+zeHA8/HHZUIiIpKp6KsGXL4Oqr4ZRTrKv1k08OOyIRKVcqnqoC06bBM8/YVeRTpsCll8Li\nxfDGG2FHJiLVSmcaZWL3buu7atEi6zX3nHNg1iz4xCdgUNndSV1ESk0dFlaxPXvsosBFiyCRgKlT\nLYHMmAHDhoUdnYhEkZKGAPDaa/DYY5ZAHnnE+rOaNcseY8aEHZ2IRIWShnTR1mZnHosWwUMP2U2f\nZs2CmTPhve+13nZFpDopaUheHR12tfmiRfZoa7PkMWsWfPCD0Fe9jolUFSUNKVhnJ2zcmEog27db\nFyYzZ0JjIzQ0QE1N2FGKSJCUNKTHtm2DBx+0IqznnoO9ey1xDB8OI0Zkfx4+3C4+FJHypKQhvmlr\ng127YOdOaGnJ/vzSS/C2t6Unk2wJZuBA1Z2IRFElJ43pwC1ADfAz4PqM6UoaIejosKa+LS25E0tL\nixWF5TpbST4PGQJ9dFmpSElVatKoAZ4HPgbsBP4EfAZ4zjNPWSSNRCJBPB4PO4xu+R3nq6/mTyot\nLTbPO9+Z/6xl2DCorQ0uzqCUQ5zlECMoTr/5lTSi1oZmMrAVaHavHwBmkJ40ykK5/JD8jnPgQJgw\nwR65HD5sxV3ehLJ9O/zxj6nXu3fD4MGWRIYNgxdfTNDYGKdfPwJ5HHOMP8Vq5fC9l0OMoDijKmpJ\nYziww/O6BZgSUiwSkGOPhXe9yx65tLdDa6slkJ074d57rQ+uI0fSH4cPwyuvdB2f+Whryz+9vd3O\nbHqTeGpr4Ykn4OhRK35LPmKx9Ne9ndbb9e3YAU8+GU4csZjqvMpd1JJG9MudpCRqauwMY9gwu4f6\nunVw2WXBba+9vfvEUkhiqq21pNjRYY+jR+25szM1LvPh97Tultm2DTZsKM22so2DwpLNG2/Aj3+c\nSjLehJNtuND5ejOcbVprq7VEDHIbfg37IWo5fyrQhFWGA8wBOkivDN8KqJNwEZHivACcEnYQfuuL\nvbFRQC2wDnh3mAGJiEi0nYu1oNqKnWmIiIiIiIj0zjhgrefxCnA1UA8sBzYDywDvbYfmAFuATcC0\nEsY6B9gAPAvcD/SLaJxfcTGud8MQjTjvAlpdbEk9iesMt44twK0livNT2HffDrw3Y/4oxfkfWHP1\np4H/BY4POc5sMV7n4lsHrABGhhxjrjiT/hWrZ62PaJxNWKvT5D703AjEWTJ9gF3Yj+gG4Bo3/t+B\neW54AvZjOwarB9lKaW5hOwr4C5YoAH4JXBzBOP8G+zEci104uRxrRBCFOD8EnE76D76YuJKNOFZj\n1/cAPEKqEUWQcY4HxgIrSU8aUYvzHFLf3zzC/zyzxfg2z/BVWC8QYcaYK06wfdGjwIukkkbU4pwL\n/EuWeX2LM8qdOXwMe2M7gAuA+W78fGCmG54BLADexC4I3ErqzQfpVbfN/ljlfX/gpQjGOR5YBRzG\njop/A/xtROL8HbA/Y1wxcU0BhmI7ndVuvns9ywQZ5ybsbChT1OJcjh0Vg/0ORoQcZ7YYD3qGBwB7\nQo4xV5wAN5E6qEmKYpzZWsX6FmeUk8ZF2JsEaMBOw3DPDW54GHYqltSCXSAYtH3AjcB2LFkcwP6g\nUYtzPXY0Uo8ltvOwHUfU4kwqNq7M8TspbbyZohznZdhRJFniCTvO72L/pUuA77txUYtxhtvuMxnj\noxYn2BkybLyyAAAE4ElEQVTb08CdpIp4fYszqkmjFvgk8N9ZpnWS/yLAUlwgeDLwVew0bxh2hPS5\nLHGEHecm7BqXZcBS7PS0PUscYceZa7u62NMf3wTasLq3KPomcCJwN9ZZadT0B76BFf0kRe0at6Tb\ngdHAJKx4/0a/NxDVpHEu8BTwsnvdCrzTDQ8F/uqGd5JecTbCjQtaI/AEsBc4ilUyvg/YHbE4wSrL\nGoGzsFPZzUTv80wqJq4WN35ExvhSxpspinFegp1h/r1nXBTjBEtqZ7rhKMV4MnaA+DRWnzEC2z81\nRCxOsP9M8oDrZ6SKl6MWp+8ewCqWk27AKkYBZtO1Qq8Wy64vUJojgIlY0c9xbnvzgSsjGCfAEPd8\nItaS5vgIxTmKrhXhxca1CiubjRFMZWO2OJNWYi1PkqIW53SsldcJGfOFGWdmjGM8w1cB90Ugxmxx\nemWrCI9KnEM9w18jdXYZdpyBqsMqw7ytKuqBx8neFPMbWKXOJuDjJYoRrEIs2eR2PtYqIYpx/tbF\nuQ44242LQpwLsPqgNqyxw6U9jCvZXHAr8MMSxHkZVlG4A3gDO7tcGtE4twDbSDW/vC3kOLPF+D9u\ne+uAX5E6yAkrRm+cR0j9Nr3+QnqT27Dj9H6e92L1Lk8DD5KqFwwzThERERERERERERERERERERER\nERERERGJlreTutZgF6mun/9M9O5zfxbWO0BQ/lDk/PdgnVSCXVuwlvQLZ0WKErU/nEg2e7EuoMH6\n/zmI9Tgalhq69uGVdDYW3x+LWF9frDuaQnygiPVCqkuJ44HHgP8i1ZOwSNGi2veUSD4x7CrWBLAG\nu8dBss+qBJZQ/oR1m3ImsAi7yvw6N88o7KrYnwMbsY4xj3PT8q33ZrferwDnA09iZzvLsSuZRwFf\nxrpv+DPwQdKP9AFec89xrGvrh7AuafpgN01ajV3N+6Uc7927fMLF/px7L7m8Dese4ufAT/LMJyJS\nceYCX8eKaZJ9Kl2IdQMN1h9Usnvtq7FuFhqwPnd2AIOxnXsHqWKkO7E7svXFOqJ8e471/tgTh7eL\nky8AP/DE570Jzt2kJ43k/SPiWAI4yb3+EtbbK9jNvf7k4szkXf4A1styzMWd7SzkHuxMbV6WaSJF\nU/GUlKN+2F0Jl7vXNVhySFrsnte7R/IeHX/Bevp8FUsgySKkn2MJ5lHgPVj/V9nW+0vP8EhgIXYm\nUuvWnVRoJ4+rsb6hwG6/eSrwd+71QOAU7IY5+ZZPxrcOSzKZdR6dwK+x/rJuJNVztEiPKGlIOYph\nnTC+P8f0I+65wzOcfJ38zXvv1RFzr7tb7yHP8I+ws4uHscrvphzLHCVVDNwHSzDZ1gfwz6QSYSG8\n762d3P/nB7Bk8ghW5/JajvlEuqU6DSlHR4B3AFPd62Owrp+LcaJn+c9i9QvPd7Ne7xnEQFJH+Zd4\nxh8kvYfmZlLdp1/g1pnNY8AVpHb8Y7Gb//jlFmAFdu+XXDGIdEtJQ8pRO1aMcz1WLLOW7M1c8939\n73nsHigbsZZFt2P3T863Xu+6mrBK6DVYkU9y2hJgllv2A8Ad2JnIOiwZeY/yvev7mYvlz1g31beT\n/cyhM8dwtteZ42djzZXvJbp3nhMRiZxR5L7BjojkoTMNqVa6/7iIiIiIiIiIiIiIiIiIiIiIiIiI\niIiI+O3/ASQ1uCGDf9VHAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x10fc16a50>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1)The conversion of SO2 to SO3 at 1atm and 850K is 93.189481 percent\n",
" 2)i)The conversion of SO2 to SO3 at 1 atm and 850 K when inert gas is also added is 88.179412 percent\n",
" ii)The conversion of SO2 to SO3 at 1 atm and 850 K when SO3 is also added along the original feed is 82.979198 percent\n",
" iii)a)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:1 is 93.189481 percent\n",
" iii)b)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1.1:0.5 is 82.473630 percent\n",
" iii)c)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:0.5 is 85.774995 percent\n",
" SO2:O2 = 1:0.5 gives the maximum concentration of SO3 at equilibrium.\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEZCAYAAACNebLAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FNX6wPHvJiTUVBIChEAoIk2KNNELrA0BCyjFRkd/\ntgtevdcCggS7iN4rqPeqlyIoqIgFlXBVMIKIolIEQ28JLQQIKUD6/P44s8nuZnezyfbk/TzPPpmd\nmZ15d7M775xzZs4BIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEqKAlkAsY9OcpwGR9+m7gf2br\nlgJtqrBt69cL51X1sxbVNwHY4OV93gqko3573by8b1EDHQYuoL5Qpsc8D+zne2CSnWVy0PKMFMqT\nsklVPuvFwLMejscTrPdjBM4Co72wb3MT8H6COADc7GD5MGAbkA1kAmuBRLPlnYBVwDkgB1gH9DNb\n3hjYCJzWt7EVGO6e0L0nyNcBBBANuAkIM3tM9WlEjgX7OoAAovk6ACveikcz29cg4DPUwfpjL+3f\nVwyoknuqneXtgPeAR4AIoDXwJlCiL2+LOvhvRyWNZqjP7hvgCn2dPNSJXhN9G0moz7WRO9+I8B+H\ngGvsLAsC5qLONA4AD6HOQE0J+DBwrdn6ScBSfTrRal3zEsQELM+sSoEp+j4ygTmUV01NQH1pX0Od\ntTxr9Xrr/YDlGaT567OA/cCVwEQgDcgAxtl5/wDRwCLgGOos9DOzZfcC+4AzwBeoH5T5e7oP2Kvv\n9w2zZe2AH1BnaZnAh1ave0Dfbg7wDOqHu0lf/0MgRF83EvgKOKXH9iUQry97HigGLmJZKnQUl7n/\nAwqBAv31X+jzn0R9hjnAn1iePU4AfgRe0eM5CAyuJB5zyajvmLntZvv4J+r/lQ38AXS2E/v3qP//\nTfp7HGy1fBCwB/V5von6X1T3+xIBLEH9Dw4DT2H53TX/nncAvkV9X3YDo8yWDUV9njnAUeDvdt6b\nAZih7ysDdcAPB+qiDt6l+t99Nl47EnXGb89S1PfJ2luoz8haEKq0chwIdbBdEcAOYXmQN3c/sAt1\n0IlC/fBKKD8YWyeXWVQ/QaxFHfASUD9e8x9sEerAEQTUo/IEYb2vImA86sf1LOoHOB91oL0e9aNs\nYOcz+BpYjjoQ1AH66/OvQR3cu6N+HPOw/BGVoorq4fp7OoU6MKFvb5o+HYo6AJm/7jPUGVkn1AF6\nnf4+w1EHEdMBKhpV51xPX/9jLBOYrWo9W3HdYOe9L0IlKHMjgab69GjUwShOfz4BlVQmoz7r+1GJ\n1VE85saiEoxJJ9RBOkSP8Tc9boBLzeKw9j0qoZ2l4slPDCrBDEd9Z6bqMVf3+7IE9Zk3BFqhvru2\nvucNUW0D4/X9dkd9fzroy08AV+nTEUAPO+9tEurgn6hvc6Ueg4mjKsTWqAT9Gqrazfqs/4Qen7Wr\nUcm9rtm8P1DfzTNAXzv7EzXAYdQZXZbZw3RwXoc6kzS5HsuDsXWCSKL6CWKQ2fMHgO/M1j1iFbP5\n6633Y2tfe82WXaavH2s27zTQlYqaoRJihI1lC4CXzJ43RB1oWurPS7E88H8EPK5Pvwe8TfnZvrlS\nLOt8fwMeM3s+F3UmbUt31EHRxHQmbb1967iesLO9RVTeBrEVuEWfnoDlmWsDfX9NHMRjLgyVcBL0\n588D/9Wnr0EdfPtSeRVyCioJ/IxKnubGoUoI5tKo3vclGHWQ7GC27P9Q79O0LdP39HZgvdV+3wae\n1qeP6K8Nx7G1qMRr0h71vTN9JpW1MfVF/c9PoZLFItR3F1RiHGTjNR307Tazmh+KKvkfJcCqmKQN\nwnkaquEqyuyxQF/WDHXWY5LmwTis99PczrLqyDCbvqj/zbSaZ+sLnoA64GbbWNYMy8R1HnU2ZX7Q\nP2k2fQF1AASVKAzAZmAnqvrCUbzWz02xNkAdZA7rMf6ASmYGs/Vt1ftbx1WVH/c4VFIwnUx0QTVc\n2ts2Vtt31A6Riyqx3ak/vwP4QJ9eh6oOexP1ebxN+edpTQNmog6cn2NZ/dEcdUAzZ/3c2e9LDKpU\nYf49SMN24m+FOjibn4jdRXnpawSqmukwKsFdUWELivX3Lg1Vso2zvXoFv6CSVRNUaXgAqloMVOJr\nbuM1zVAJIstqfiGqZJWL/VoIvyQJwj1OUH5GjNU0qINiQ7Pn9or8zrDej3nVhKODynn9r3kVkStx\nmEtHVePYKkEcx/Lqj4aoA+UxG+tay0CdLcaj2gPeonpXcf0ddQbZR49xICo5mBKEq43C1q9vBbyD\nqu6LRp1M7MQyIVVle7YsRyWIfqiz/+/Nls0HeqGqntpjWbKyloc64EYAK1AHUVD/txZm6xmsnlfF\nadRZd6LZvJZUTDigDuQ/YHkiFkZ5m8tvqGqvWFRSs9egbv29a4mq/smwubZjv6Gqx0xtOd9h2S5i\nMhr4Cci3s506lP8OA4IkiKqx9wP/GFVHa2qDeBLLH/k21FleHdQPdwTVPyj9g/I2iKmoYrAzMlEH\n5bGoIv8kVKOuO5xANZy+pccWgjrjAnUgm4i61rwu8AKqSsNeKcv8Mx5F+UHpHOozK3UQh8HOdCPU\n2Ww26oA9y+p1GVT+WTg6uGdgmbga6rGeRv3GJqJKEM5yJp7VqEQ0G8vG+16oM/AQVMkkn/Krb2wx\noJLEYNT3d5ke82pUtdEw1Pf2Iap/QlGC+o08j/pftEJdIfS+jXW/RiW1Mfp7CAF6o6pvQlD39kTo\n28x18N6W6/tI1Pf5AupzcvT9MbkKuIfy6rIOqEbmn/Xns1HVj89RnsCmoH5bpmrIvsBfUKWy+vr8\nembbCAiSIKrmSyzvg1ipz38XdUPadtTZxkosDygzUT/4LFT7wwdYspcsNBvLvgB+R1VffEV5NZet\nda3n3Ys6mzyNOrvc6GBdR3HZMhZ1lrgbdYAzXQK8FvX+V6LO6lqjkqW9fZjH0Qv1gzJdHTQVVbVg\nLzbNatr0/F+oH+lp1BlestW6r6Malc/q69pivr3+ekwmCyhvKP4Udfnkq6grqk6ikoN5o3Jln7Uz\n8RTq+7oWdVA3CUeVXs6iPqvTqKul7DHtNxvVdtYe1fZzBpWg5+jb6Ij6bhc4+R6sTUGdPR9EtTd8\ngKrXt95WLqp+/w7UCc0J4EXKq7/GoNr0slGly7vt7G8hqp1vvb7PC3oMzsR6DtVetEOPJxn1Wc/R\nl+9HHfy7oT7j46iLIAah/uegTobeQH12aagTpsGoZCxQ/6AM1Ids0gdVn7wV+BV1ZmAyDdVwtxvb\nDUCBJJGKDcJCBLIg1AF7oK8DETVDf9QlaOYJIoXySwWHUF5v2glVDROCOrjuJ7AProlIghCBbxCq\nyrAu6p6CY1hewilqOE8ewDZQsTX/BOUNmZGUN1QOQ9UZFqGKbPtRpY1A5m935wpRVf1Qv8VM4EZU\n43CBw1cIUQWJWJYgWqGueElDXcFguo57PpZ1if9FNeQKIYTwEW9XgSxANTS2RF1hsNDBunIGLoQQ\nPlSn8lXcqg9wnT79CeV3fx6jvDQB6tLGCtfJt23bVjtw4IBHAxRCiBroAKpvsyrxdgliP+VXQVxD\n+a36q1CXtYWiLoO8BHW1k4UDBw6gaZrfPWbNmuXzGCQmiak2xiUxOfegmvc8ebIEsRyVDGJQ7Q5P\no65bfhN1JcRFyvsvSkXdSJOKutvxQaSKSQghfMqTCeJOO/Pt9Wj4gv4QQgjhB+Q6fTcwGo2+DqEC\nick5EpPz/DEuicmznO08zF9oen2aEEIIJxkMBqjG8d7bVzEJIbwsOjqarCzre1ZFTRQVFcXZs2cr\nX9FJUoIQooYzGAzI76Z2sPe/rm4JQtoghBBC2CQJQgghhE2SIIQQooa5914oLHR9O9IGIUQNJ20Q\ntYfpf12nDly8CCEh5fORNgghRKB544036NWrF/Xq1WPixIle3XdKSgoJCQmVrxhANA1KSqCOG65R\nlctchRA+FR8fz8yZM/nf//7HxYsXvbbf4uJir+3Lm4qLITgYDG6oH5IShBDCp2699VaGDRtG48aN\nK1138eLFXHXVVUyZMoXIyEg6duzIunXrypYvWrSITp06ER4eTtu2bXnnnXfKlqWkpNCiRQvmzJlD\ns2bNuOuuuxg6dCjHjx8nLCyM8PBwTp486ZH36E1FReVVS66SEoQQwi84206yefNmRo8ezZkzZ1i5\nciW33XYbhw4dIioqiri4OL7++mtat27N+vXrGTJkCL1796ZHjx4AZGRkkJWVRVpaGiUlJfzyyy+M\nGTOG9PR0T741ryoudl+CkBKEEAKDwfWH6zE4t5EmTZrw8MMPExwczOjRo7n00kv5+uuvARg6dCit\nW7cGYMCAAQwaNIgNGzaUvTYoKIjZs2cTEhJCvXr1amTjfVGRe9ofQBKEEALVsOnqw/UYnNtIfHy8\nxfNWrVpx4sQJAJKTk7niiito3LgxUVFRrF69mjNnzpStGxsbS2hoqOvB+jF3VjFJghBC+AVnSxDH\njlkONnnkyBGaN29OQUEBI0aM4PHHH+fUqVNkZWUxdOhQi8RjvQ9n9xlIpIpJCFFjlJSUkJ+fT3Fx\nMSUlJRQUFFBSUmJ3/VOnTjFv3jyKiopYsWIFu3fvZujQoRQWFlJYWEhMTAxBQUEkJyfzzTffONx3\nXFwcZ86cIScnx91vy2cCpYppIZAB7LCaPwXYBewEXjabPw3YB+wGBnkwLiGEH3n22Wdp0KABL7/8\nMu+//z7169fn+eeft7t+37592bdvH7GxscycOZOVK1cSFRVFWFgY8+bNY/To0URHR7N8+XKGDRtm\n8VrrEkOHDh248847adOmDdHR0XIVkxVPlq/6A3nAEuAyfd7VwHRgKFAExAKZQCdgGdAbiAe+A9oD\npVbblDuphaiimnQn9eLFi1mwYIFFw7MoZzAY2LlTY9QoSE21nI+f3Um9AbDuhP4B4EVUcgCVHACG\nocawLgIOA/uBPh6MTQghaqRAbqS+BBgA/AykAL30+c2Bo2brHUWVJIQQoozBYKiRDcvuFMg3ytUB\nooArUNVJHwNt7Kxrs0yclJRUNm00GmvU+K9CCMfGjx/P+PHjfR2GXysshIsXU0hKSnF5W95OEEeB\nT/XpX1FtDDHAMcC8x6wW+rwKzBOEEEIIS0VFEBNjJCnJWDZv9uzZ1dqWt6uYPgeu0afbA6HAaWAV\ncIf+vDWqKmqzl2MTQoiAFyhVTMuBgUBjIB14GnXp60LUpa+FwDh93VRUdVMqUAw8iJ0qJiGEEPYF\nSoK40878sXbmv6A/hBBCVFMgX8UkhBDCgyRBCCFqrdTUVHr37l32vEuXLqxfvx5Qo9M9+eSTvgrN\nL0iCEELUCIWFhUyePJnExETCw8Pp0aMHa9ascfiamTNn8thjj5U937lzJwMGDADg3nvv5YMPPiAz\nM9Pey90uMTHRYtAiXysshLp13bMtSRBCCJ8pLi6mZcuWrF+/npycHJ577jlGjx7NkSNHbK5/4sQJ\nUlJSGD58uM3ldevWZciQISxZssSTYQPlQ5b6W1cmhYXgrh7NJUEIIXymQYMGzJo1i5YtWwJw4403\n0rp1a7Zs2WJz/W+//ZaePXtajOmQmJjI2rVry54bjcayAYRsCQoKYv78+bRt25bY2Fgef/zxsgP8\ngQMHuOaaa4iJiSE2NpYxY8aQnZ1tsa85c+bQrVs3GjVqxF133UVaWho333wzYWFhzJ0716XPwx0K\nC6WKSQhRA2VkZLB37146d+5sc/mOHTu49NJLLeZZd7/RoUMHtm/f7nA/n3/+Ob///jtbtmzhiy++\nYOHChWXLnnrqKU6cOMGuXbtIT0+vcHPuhx9+yOrVq8nOzmbZsmW0bNmSr776itzcXP7xj39U8R27\nnztLEDImtRACw2zX+zfSZrlWzVJUVMTdd9/NhAkTaN++vc11srOzady4scPthIWFWZz12/LEE08Q\nGRlJZGQkf/vb31i+fDmTJ0+mbdu2tG3bFoCYmBgeeeQRnnnmmbLXGQwGpk6dWmFUO39SVCQJQgjh\nRq4e3F1VWlrK2LFjqVevHm+88Ybd9aKiosjNzXW4rdzcXCIiIhyuk5BQ3rNPy5YtOX78OKBKMA8/\n/DA//vgjubm5lJaWEh0dbfe1/kjaIIQQNYamaUyePJnMzExWrlxJcHCw3XW7du3K3r17HW5v165d\ndO/e3eE6aWlpFtOmEsH06dMJDg5m586dZGdns3TpUkpLLYel8fdhSyVBCCFqjAceeIDdu3ezatUq\n6lZyfeZ1113Hli1bKCwstLvODz/8wJAhQxxuZ+7cuZw7d4709HTmzZvH7bffDkBeXh4NGzYkPDyc\nY8eO8corr1Qaf1xcHAcOHKh0PW+RBCGEqBGOHDnCO++8w/bt22natClhYWGEhYWxfPlyQJ3dh4WF\ncfSoGi4mLi6Oa665hs8//9zm9vLz80lOTq60S/Bhw4bRs2dPevTowU033cSkSZMAmDVrFlu2bCEi\nIoKbb76ZESNGVFpCmDZtGs899xxRUVG89tprVf0I3M6dVzH5V9mocjLkqBBV5G/X6btq165djB8/\nns2bK3b4/MYbb3D06FFeeuklu68PCgpi//79tGljbyiawGUwGHjoIY1LL4UpUyznU43jvTRSCyEC\nSseOHW0mB4C//vWvXo7G/7jzKiapYhJC1Cr+1qjsbnIfhBBCVFNJSYmvQ/AoaaQWQghhU6AkiIVA\nBmr0OGt/R41HbX4HyjRgH7AbGOTBuIQQosYKlL6YFgGDbcxPAK4HzLtr7ATcrv8dDLzl4diEEKJG\nCpQSxAYgy8b814DHreYNQ41hXQQcBvYDfTwYmxBC1EgXLkCDBu7ZlrfP0ocBR4E/rOY31+ebHAX8\ntzcsIYTwU+5MEN68iqkBMB1VvWTi6Hozm3f2mHe9azQaMRqNbghNCBEoUlNTGT9+PL/++iughhx9\n6623GDBgAC+88AKHDh3i3XffJSMjg6uvvppt27ZZjB9R050/D3/+mcLq1Sm+DqVSiZQ3Ul+GarQ+\npD9M1UlxwJP6w2QN0NfG9jQhRNX48++moKBAmzRpktaqVSstLCxM6969u5acnOzwNbfddpv20Ucf\nObX9Bx98UJs/f747QnXKrFmztDFjxnhtf9YArWVLTTt0qOL86hzAvVnFtAOVDFrrj6PA5aiksQq4\nAwjVl10C2L5VUghRY7h7yFFrd999N2+//bY7Q7bLNASpr7mzismTlgPHgQIgHZhotfwglpe5Tkc1\nTu8GbrCzTZ9kZSECWaD9brp27ap9+umnNpe999572vXXX28xr1WrVtratWs1Tat4Bl9UVKQ1aNBA\nS0tLs7m98ePHa/fdd592/fXXa2FhYdrAgQO1I0eOlC2fOnWqlpCQoIWHh2s9e/bUNmzYULZs1qxZ\n2ogRI7QxY8Zo4eHh2htvvKGFhoZqISEhWqNGjbTu3btX+zOoLkCrX1/T8vIqzq/OQdyTJYg7UY3P\ndVGXti6yWt4GOGv2/AWgHdAB+J8H4xJC+KnqDjlqaxqgTp06tGvXjm3bttnd57Jly3j66ac5ffo0\n3bt35+677y5b1qdPH7Zv305WVhZ33XUXo0aNsuhqfNWqVYwaNYrs7GwmT57M9OnTueOOO8jNzWXr\n1q1Veu/ukp8P9eu7Z1tyr4EQAgwG1x8ucnbI0UaNGtndhmaj19rKhiC96aab+Mtf/kJoaCjPP/88\nmzZt4tixY4CqooqKiiIoKIhHH32UgoIC9uzZU/baK6+8kltuuQWAevXqoWmaz3vOrVcPgtx0ZJcE\nIYQATXP94QJ3DjlqLTc3l8jISJvLDAYDLVq0KHvesGFDoqOjy4YgnTt3Lp06dSIyMpKoqCiys7M5\nffp02frmr/UXDRu6b1uSIIQQPqW5echRc8XFxezfv59u3brZ3Xd6enrZ87y8PM6ePUvz5s3ZsGED\nr7zyCitWrODcuXNkZWURERFhUUKwrtIKctepuwskQQghagx3DzlqbvPmzSQmJpKQkGB3ndWrV7Nx\n40YKCwuZOXMm/fr1Iz4+ntzcXOrUqUNMTAyFhYU888wz5OTkONxfXFwchw8f9mk1kzuvYJIEIYTw\nGXcPOWowGCzO6j/44AMeeOABu/s3GAzcddddzJ49m8aNG7N161bef/99AAYPHszgwYNp3749iYmJ\n1K9fn5YtW9rdF8CoUaMAaNy4Mb169arGJ+I6d5YgAm3kDM3XDUBCBJraNOSouVOnTmE0Gh3eST1x\n4kRatGjBs88+64lQvc5gMDBwoEZKSsX5yJCjQoiaztGQo+aaNGlCamqqw3VqUuI0kSomIYRwA1vV\nRIHOnVVMUoIQQtRaixZZ378b+OQqJiGEEDZJFZMQQgibpAQhhBDCJilBCCGEsElKEEIIIWySBCGE\nqLVSU1Pp3bt32fMuXbqwfv16AF544QXuvfdeoPwubNO9DiNHjmTNmjUOt52ZmUnHjh0pKCgA1LDG\nCxYssLluRkYGnTp1crrbD2+RKiYhRI1QWFjI5MmTSUxMJDw8nB49elR6EJ85cyaPPfZY2fOdO3cy\nYMAAAKZPn867774LQMuWLcnNzS27z+GJJ55gxowZDrf90ksvMXHixLI+oRzdJxEXF8fVV1/NO++8\n49ybdYOkpCTGjh3rcJ1AKUEsRA0nusNs3ivALmA78CkQYbZsGrAPNaLcIA/GJYTwE54ectRc7969\nycnJ4ffff7e5vKCggCVLljBmzBint+mPQ5oGSoJYBAy2mvcN0BnoBuxFJQWATsDt+t/BwFsejk0I\n4QcaNGjArFmzyjrBu/HGG2ndujVbtmyxuf63335Lz549LfpWSkxMZN26dYDlGfbhw4cJCgqitLS0\nbF2j0cjXX39tc9u//PILkZGRNG/e3GL+/v376du3LxEREQwfPpysrKyyZX369OHgwYMWXYabmzBh\nAvfffz+DBg0iPDwco9FIWlpa2fKHH36Yli1bEhERQa9evfjxxx/LliUlJTFy5EjGjh1LREQEb7/9\nNi+++CIfffQRYWFh9OjRw+Y+A6WKaQOQZTXvW8D03/oFMI22MQw1hnURcBg1NnUfD8YmhPBD7h5y\n1FrHjh3Zvn2709vWNI0lS5awaNEiTpw4QZ06dZg6dWrZcn8c0rSmdLUxCZUUQI1d/bPZsqNAvNcj\nEqKWMlh3/1kNmtHo0uudHXK0cePG9mOopPO9Ro0ace7cOZvLzp07R1hYmMU8g8HAuHHj6NSpEwDP\nPvss3bt3Z8mSJWXJyNkhTQGef/55IiIiOHbsGPHx8RbJ4tFHH+W5555jz549XHbZZUD1hjStCQni\nKaAQWOZgHZufQlJSUtm00WjE6OKXUgjh+sHdVZ4cctSco+FHo6OjbW7bfLChli1bUlRUxOnTp4mN\nja10m46GNI2Pj2fu3LksXLiQ48ePYzAYyMnJcXlI0wYNICUlhRQ3JH1fJIgJwFDgWrN5xwDzIZ9a\n6PMqME8QQojAZz7k6OrVqysdcvS9996r9r527dpF9+7d7W77n//8Z4X55m0GaWlphISEEBMTA7hn\nSNN169aVValFR0e7PKRpw4YVT55nz55d6ets8XZD8GDgMVSbQ77Z/FXAHUAo0Bq4BKi8w3chRMDz\n5JCj1tavX8+QIUNsLuvduzfnzp3j+PHjZfM0TeP9999n165dXLhwgaeffppRo0aVHbj9cUjTQLmK\naTnwE3ApkI5qc5gPNEI1Vm9FXa0EkAp8rP9NBh7EThWTEKLm8PSQo+bTv/76K2FhYRZDgYaFhbFx\n40YAQkNDmTBhQtmQo6bXjxs3jgkTJtCsWTMKCwuZN29e2XJ/HNK0fn274VRZoI2UIUOOClFFtXXI\nUWsjR47knnvuYfBg66vvy50+fZr+/fuzbdu2Sksz/jikqb3/dXWHHJUEIUQNV9MSRCCZMGECCQkJ\nAZsg5GY0IYTwkEAf0jTQIpcShBBVJCWI2kNKEEIIIbxCEoQQQgibJEEIIYSwSRKEEEIImyRBCCGE\nsEkShBAioHhzyFF7/vjjD6666ipX3obwAE0IUTX+/LspKCjQJk2apLVq1UoLCwvTunfvriUnJzt8\nzW233aZ99NFHVd7X5s2btZ49ezpc59FHH9Vefvllp7Y3dOhQ7csvv6xyHNU1fvx4bcaMGQ7Xsfe/\npppdF0kJQgjhM4E85Kg3hxstKSnxyn6sSYIQQviMvw85evbsWSZOnEh8fDzR0dHceuutZcsGDhzI\n2rVrKSoqsrk9o9HItGnT7A5XOmrUKJo1a0ZkZCQDBw4kNTW1bNmECRN44IEHGDp0KI0aNWLhwoUs\nW7aMOXPmEBYWxrBhw2x/oG4mCUII4Tf8bcjRsWPHkp+fT2pqKqdOneLRRx8tWxYfH09ISAh79uyx\nu7+lS5faHa70xhtvZP/+/WRmZnL55ZdbjC4HsHz5cmbOnEleXh7jxo3j7rvv5oknniA3N5cvvvjC\n4ft0F18OOSqE8BMphhSXt2HUjC693t+GHD1x4gRr1qzh7NmzREREANC/f3+L14SFhdndXmXDlU6Y\nMKFs3VmzZvH666+Tm5tbFsPw4cPp168fQFnPspW9P3eTBCGEcPng7ip/HHI0PT2d6OjosuRQ1e2B\n/eFKo6Ojeeqpp/jkk0/IzMwsGynu9OnThIWFVRiq1Fc8WcW0EMgAdpjNi0YNFrQX+AYw/2SnAfuA\n3cAgD8YlhPAjmtmQoytXrqx0yNG9e/dWe1+VDTlqvu2EhATOnj1Ldna2zfWPHTtGYWFhhWopc/aG\nK122bBmrVq1i7dq1ZGdnc+jQIcBxCcEXvcJ6MkEsQg0xau5JVIJoD6zVnwN0Am7X/w5GjTQn7SNC\n1AL+OuRos2bNGDJkCA8++CDnzp2jqKio7H4LgB9++IFrr72WkJAQm9vTHAxXmpeXR926dYmOjub8\n+fNMnz69wmutxcXFcfDgwWq97+ry5EF4A5BlNe8WwDTi+HuA6Vq1YaghSouAw8B+oI8HYxNC+AF/\nH3J06dKlhISE0KFDB+Li4ioMN3r//ffbfW8Gg4GxY8faHK503LhxtGrVivj4eLp06UK/fv0qxG1d\nYpg8eTLUGV1pAAAd7ElEQVSpqalERUVx22232d1vIEnEsorJPGEYzJ7PB8yb8P8LjLCxPffeeSJE\nLVDTfjepqala7969q/y6ESNGVHoTXmZmptahQwctPz/f4Xrbt2/XrrzySofrGI1GbcGCBVWO0xX2\n/tdU80Y5XzZSVxa0jHAihKigY8eOVR6PGuCTTz6pdJ2YmBh27dpV6Xpdu3YtK3k4ogX4QE3eThAZ\nQFPgJNAMOKXPPwYkmK3XQp9XQVJSUtm00WjEaDR6IEwhhHCdr4YbTUlJISUlxeXteDr6ROBL4DL9\n+RzgDPAyqoE6Uv/bCViGaneIB74D2lGxFKEFekYWwttkyNHaw91DjnqyBLEcGAjEAOnA08BLwMfA\nZFRj9Gh93VR9fipQDDyIVDEJIYRP+ab8U31SghCiiqQEUXu4uwQh9xoIIYSwSRKEEEIImyRBCCGE\nsEkShBBCCJucSRD1gb8C/0b1r7QI1RGfEEK4bMyYMTRr1ozw8HDatGnD888/77V9p6SkWPS4Kiw5\nkyCWAnHADUAK6ia2PA/GJISoRaZNm8ahQ4fIyckhOTmZ+fPns2bNGo/vt7i42OP7CHTOJIh2wExU\nUngPGAr09WRQQojao3PnztSrV6/seZ06dWjSpInNdRcvXsxVV13FlClTiIyMpGPHjmXDjQIsWrSI\nTp06ER4eTtu2bXnnnXfKlqWkpNCiRQvmzJlDs2bNuOuuuxg6dCjHjx8nLCyM8PBwTp486bk3GoCc\nSRCmfnWzUXdERwKxHotICFHrPPjggzRs2JDOnTszY8YMLr/8crvrbt68mXbt2nHmzBlmz57Nbbfd\nVjbWc1xcHF9//TU5OTksWrSIRx55hK1bt5a9NiMjg6ysLNLS0liyZAnJyck0b96c3NxccnJyaNq0\nqcffayBx5saJe4GVqOSwGGiEKlH8x3Nh2SU3yglRRc7cKJeS4vo9s0aja79NTdP44YcfGDlyJKtX\nr6ZPn4o9/i9evJinnnqKY8fKu2rr27cvU6ZMYcyYMRXWv/XWW7n66quZOnUqKSkp3HDDDeTm5hIa\nGgqoUsXYsWNJT093KXZ/4c2uNhJQXWS8qz//AWitT99c1R0JIfyXqwd3dzAYDBiNRkaNGsXy5ctt\nJgiA+Ph4i+etWrXixIkTACQnJzN79mz27dtHaWkpFy5coGvXrmXrxsbGliUHUTlHVUzfUZ4QzE0C\nXvdMOEKI2q6oqIiGDRvaXW5eegA16FDz5s0pKChgxIgRPP7445w6dYqsrCyGDh1qcUZt3buqr3pb\nDRSOEsQjqHGj25vNmwY8CgzwZFBCiNohMzOTDz/8kPPnz1NSUsL//vc/VqxYwbBhw+y+5tSpU8yb\nN4+ioiJWrFjB7t27GTp0KIWFhRQWFhITE0NQUBDJycl88803DvcfFxfHmTNnyMnJcfdbqxEcVTGt\nBgqAZNSQoPeguuPuT8WhRIUQosoMBgP/+c9/eOCBB9A0jfbt27N06VJ69+5t9zV9+/Zl3759xMbG\n0rRpU1auXElUVBQA8+bNY/To0RQUFHDzzTdXSDTWJYYOHTpw55130qZNG0pLS0lNTZWGajPOlK8G\nAJ8BG1Hdc+d7NCLHpJFaiCqqSb25Ll68mAULFrBhwwZfh+KXvNlInUf5mAz1gGuBTP25BoRXdWdC\nCCECh6ME0chrUQghhBMMBoM0LHuRrz7pacAYoBTYAUwEGgIfAa0oH23unNXrpIpJiCqqSVVMwrGa\nMGBQIurmu8tRN98FA3egxqb+FnXV1Fr9uRBCCB/xRYLIAYqABqgqrgbAceAWVF9P6H+H+yA2IYQQ\nOl8kiLPAq0AaKjGcQ5Uc4oAMfZ0M/bkQQggfcdRI7Sltgb+hqpqygRWo9ghzGuVXUAkhXBAVFSUN\nu7WE6X4Qd/FFgugF/ASc0Z9/CvQDTgJN9b/NgFO2XpyUlFQ2bTQaMRqNnotUiBrg7Nmzvg5BeNAV\nV8Crr8JVV5XPS0lJISUlxeVt++K0ohvwAdAbddPdYmAz6uqlM8DLqAbqSCo2VMtVTEIIoSsthYgI\nSE+HyEj763niRjlP2Q4sAX5DXea6BXgHCAM+BiZTfpmrEEIIO44cUYnBUXJwhS8SBMAc/WHuLHCd\nD2IRQoiAtHMnXHaZ57bvi6uYhBBCuMGOHdCli+e2LwlCCCEC1M6dkiCEEELYsGOHZ6uYAu3iaLmK\nSQghgMJCdQXT2bNQv77jdQOpLyYhhBAu2rcPWrWqPDm4QhKEEEIEIE83UIMkCCGECEiebqAGSRBC\nCBGQPH0PBEiCEEKIgOSNKia5ikkIIQLM+fMQGws5OVDHif4w5ComIYSoJf78Ezp0cC45uEIShBBC\nBBhvNFCDJAghhAg4kiCEEELY5OkuNkwkQQghRICREoQQQogKTp+GixehRQvP78tXCSIS+ATYBaQC\nfYFo4FtgL/CNvo4QQggzptKDwQs3KfgqQbwOrAY6Al2B3ajxp78F2gNrqTgetRBC1Hreql4C3ySI\nCKA/sFB/XgxkA7cA7+nz3gOGez80IYTwb964g9rEFwmiNZAJLAK2AO8CDYE4IENfJ0N/LoQQwow3\n+mAy8fB9eHb3eTnwV+BX4F9UrE7S9EcFSUlJZdNGoxGj0eiJGIUQwu9omkoQnTs7Xi8lJYWUlBSX\n9+eLvpiaAptQJQmAvwDTgDbA1cBJoBnwPdDB6rXSF5MQotZKS4O+feHEiaq9LpD6YjoJpKMaowGu\nA/4EvgTG6/PGA597PzQhhPBf3qxeAt9UMQFMAT4AQoEDwEQgGPgYmAwcBkb7KDYhhPBL3ryCCXyX\nILYDvW3Mv87bgQghRKDYsQOuucZ7+5M7qYUQIkB4uwQhAwYJIUQAKC6G8HDIzISGDav22kBqpBZC\nCFFF+/dD8+ZVTw6ukAQhhBABwNvVSyAJQgghvOfXX6v9Um92sWEiCUIIIbxhxQq4/Xa4cKFaL/f2\nPRAgCUIIITxv/3548EH46CNo0KBam/BFFZNcxSSEEJ6Unw/9+sGkSTBlSrU2cfEiREdDTg6EhFT9\n9XIVkxBC+KNHHoF27eCvf632JnbtgksuqV5ycIWv7qQWQoiab/ly+PZb+P13l4aA80UDNUiCEEII\nz9izB6ZOhW++gYgIlzbli/YHkComIYRwvwsXYNQoeO456NHD5c354gomkEZqIYRwv3vuUUnigw9c\nqloyadECNmyA1q0rX9eW6jZSSxWTEEK405Il8OOP6qY4NySHrCzIzoZWrdwQWxVJghBCCHdJTYVH\nH4V16yAszC2b/PNPNcRokA8aBKQNQggh3OH8edXuMGcOdO3qts366gom8G2CCAa2ooYaBYgGvgX2\nAt8AkT6KSwghqkbT1J3SvXrBxIlu3bSvGqjBtwniYSAVMLU6P4lKEO2BtfpzIYTwf4sWwW+/wVtv\nuaXdwVxtLEG0AIYC/6W8Zf0W4D19+j1guA/iEkKIqvnjD3jiCdUZn5sHa9A0390DAb5LEP8EHgNK\nzebFARn6dIb+XAgh/Fdurmp3eO016NTJ7Zs/cQLq1IE4Hx0NfXEV003AKVT7g9HOOhrlVU8WkpKS\nyqaNRiNGo71NCCGEB2ka3Hcf9O8PY8d6ZBfVrV5KSUkhJSXF5f374ka5F4CxQDFQDwgHPgV6oxLG\nSaAZ8D3Qweq1cqOcEMI/vP02vPkm/PIL1K/vkV28+iocOQLz5rm2nUDqzXU6kAC0Bu4A1qESxipg\nvL7OeOBzH8QmhBCV27oVZsxQ7Q4eSg7g2yuYwD/ugzAVCV4Crkdd5nqN/lwIIfxLdrZqd5g/Hy69\n1KO78uUVTCB9MQkhhPM0DUaPhpgY+Pe/PbqrkhIID1cN1eHhrm1L+mISQghPe/NNOHAAli71+K4O\nHoTYWNeTgyskQQghhDN+/RWeeQY2bYJ69Ty+O1/e/2DiD20QQgjh37Ky4PbbVbVS27Ze2aUkCCGE\n8HeapvpXuukmGDHCa7vdscO3VzCBJAghhHDsX/+C48fhlVe8tsuiInV7hRs7ha0WaYMQQgh7fv4Z\nXnwRNm+GunW9ttt//Uv13OHrKia5zFUIIWw5cwYuv1zdxjxsmNd2m56uhrH++Wdo184926zuZa6S\nIIQQwlppKdxyC3ToAHPnenXXI0eqkoNZt3Muk/sghBDCXebOhbNnVfWSF61Zo3rx8MJtFk6RBCGE\nECZFRbBggeq++9dfISSkSi8/fO4w2fnZdGvarcq7zs+Hv/4V3njDo907VYlcxSSEEKWl8OGH0Lkz\nfPKJOpVPSAAgb0cehacLK93E+iPr6begH7+f+N3m8vySEmYfPkxBaanN5aahrIcMqf7bcDcpQQgh\nai9Ng+RkeOopCA1VN8Jde23Z4rwdeWy/fjsdFneg8eDGdjfz7u/vMuP7GSy9dSmD2g6qsLywtJRR\nqak0DAqijo0hSQ8cUG3hW7a45225iyQIIUTttGEDTJ+u2hqeew6GD7cYT/p86nn+uOEPLnn9ErvJ\nobi0mEfWPMK3B79lw8QNtG/c3sY6pYzZtYtgYGnHjgRbJQhNg6lT4bHHoGVLt75Dl0mCEELULlu3\nqhLDrl0wezbcfTcEB1uscmHvBbZfv502c9rQ5PYmNjdz9uJZRq8YTUhwCD/f8zOR9SIrrFOqaUza\ns4fs4mJWXXYZIUEVa/U//xwOHYLPPnPP23MnaYMQQtQOe/fCHXfAjTeqx549MG6c7eRw7XZaP9ea\npmOa2tzUrsxd9P1vX7rFdeOrO7+ymRyKS0v5vz17OJKfz2ddulDXRnI4fx7+9jd46y1Vw+Uu+flp\nuOOWAEkQQoiaLT0d7r0XrroKunWDffvgoYdsHpHPrT/H1v5bSZydSLOJzWxubvW+1QxcPJCn+j/F\nqze8SnBQcIV1coqLuXnnTtILCvjqsstoEFxxHYBnn1VDWhuNrrxBS6WlBWzefCmlpQUub8sXVUwJ\nwBKgCWo0uXeAeUA08BHQCjgMjAbO+SA+IURNkJmp7mN47z247z5VgoiKsrv6yaUnOfD3A3Rc1pHo\n66IrLNc0jVc3vcprm17j8zs+58qEK21uJz0/nxt37ODK8HDmX3KJzWolUHdKL1igOuVzp/PnU6lf\nvx3Bwa53Se6LEkQR8AjQGbgCeAjoCDwJfAu0B9bqz4UQompyctRtyB07QmEh/PknvPCC3eRQWlzK\noZmHODzrMN1TuttMDvnF+Uz4YgIf7PiAn+/52W5y+D03l35btjAuLo5/t29vNzksWwY33wyLF0NT\n27VY1ZaXt42GDat+H4YtvihBnNQfAHnALiAeuAUYqM9/D0hBkoQQwlkXL6rK/DlzYPBgdaNb69Z2\nV9c0jTOrznDwyYPUbVGXyzddTmhcxWqnk3knufWjW0kIT+DHiT/SMLSh3W2eLynh9UsuYURsrM3l\nJSUwYwZ89BGsW+eZ7rzz8rbRqFF3t2zL11cxJQI9gF+AOCBDn5+hPxdCCMeKi2HRIjXaW69e6sjb\nubPDl2RvyubAYwcoyS6h7WttiR4cbeqvqMzFoovM+2UeczfNZWqfqcwYMKPCOtYGRFZsrDbJyVEX\nTOXmqs5hY2Kcf4tVkZe3jcaNb3bLtnyZIBoBK4GHgVyrZZr+qCDJrAcro9GI0Z2tO0KIwFFaCh9/\nDE8/re56/uQT6NvX4Usu7L3AwWkHyd2cS+KziTQd2xRDsOVBv6S0hPf/eJ+Z38+kT3wfNk7aaPP+\nhqrYv1/1/TdwoLohroo9eDhN0zTy8rbz++95bNyY5JmdeEEI8D/gb2bzdgOm2rhm+nNrmhBCaJqm\naf/3f5rWp4+mffddpasWnCzQ9jy4R9vQeIN2+MXDWvGF4grrlJaWamv2rdG6/rurduWCK7WNaRvd\nEuZ332lakyaa9tZbbtmcQxcuHNI2boyvMB87J9yV8UUJwgAsAFKBf5nNXwWMB17W/37u/dCEEAHj\nxRdVw7ODap/ivGKOvnaUo68fpem4pvTZ3YfQmIrtDFtPbOXx7x4nLTuNl697mWGXDqu0OqkymgZv\nvqlu0v7wQ7j6apc25xR3tj+AbxLEVcAY4A9gqz5vGvAS8DEwmfLLXIUQwrboilcbmZQWl3Jy4UkO\nJx0mcmAkPX/tSf02trtIzbqYxYiPR/D4VY8zucdkQoJdr/8pLIQpU2DjRvjpJ2jTxuVNOsXdCUIG\nDBJC1Bia2ZVJoU1DafNKG8J7hVf6upLSEps3vFVHZiaMGKEKN++/D2FhbtmsU3bsGE5c3BiaNBlp\nMb+6AwbJndRCiBoh++dstg3YxsGnDtL21bZ0W9fNqeQAuCU5nD8PX3wBffqou6M/+8y7yaGw8DTZ\n2T8SHu64ob4qpAQhhAhoF/Ze4OD0g+T+kkviM4k0HVfxyiRP0DTVndPq1arH8J9/ht69VS8eI0Z4\nfPcV7Ns3FdC45JL5FZbJmNRCiFqlMKOQw88c5tRHp0j4RwItprYguIF7qonsOX9e3WaRnKwexcVq\ngJ8hQ9QwEuHOFVg8ENdutm3rT+/euwgNrXiDhYxJLYSoVQ7PPowh1GD3yiR3MJUSkpNVScFUShgy\nBL78Ut2P5+LFTm5x8ODjJCQ8YTM5uMIP3lqVSAlCCAGoBmlXL0W1xV9LCfZkZa1jz5576NNnF0FB\ndW2uIyUIIUSt4q7kYF5KSE6GTZtUjx1Dh/pXKcEWTSvhwIG/06bNy3aTgyskQQghap3z5+H778ur\njkylhAceUD12+FspwZ6TJ5cQFNSA2NiRla9cDZIghBA1nqap4SBMVxyZSglDhsCqVdCli/+WEuwp\nLs7j0KEZdOnyqUeq2kDaIIQQNZR5KSE5GYqK/LstoaoOHZrFxYv76dTpg0rXlTYIIUStZiolmBLC\nTz+VlxK++CIwSwn25Oenc+zYG/TqtcWj+5EEIYQIWNalhMJClRDuvx9WrAj8UoItZ858zZ4999Gy\n5TTq1Wvl0X0FWj6VKiYhaonCQsjIgJMnbT+OH1ejifbsWV51VJNKCdaKis6xf//fyM5ez6WXLiAq\nyvnuYeVOaiGE3ysthTNn7B/0zR+5udCkiRqz2dYjLg66dauZpQRr+fnpbN16JY0b30KbNi9Tp06j\nKr1eEoQQwic0DfLynDvoZ2aqA7q9g775IzoagqQ7UcA0UtwWwsJ6Vuv1kiCEENVWXAwXL8KFC+qv\n9fT58+rgbu/AD9CsWeUH/SZNINQzvWIIB2pKghiMGmUuGPgvanQ5c5IgRK2gaVBQYPtgbWu6suWV\nTWsa1K+vHg0aVJxu0ABiY+0f+BtVrcZDeFlNSBDBwB7gOuAY8CtwJ7DLbB2/TBApKSkYjUZfh2FB\nYnJOVWIqLfXOwTovL4WiIiN16tg+WLsybW95SEjljbuB/v/zFn+MqSbcB9EH2I8abhTgQ2AYlgnC\nL/njF8LfY9I0deNScbHn/zpatmlTCh07Gp06cBcVlR9Qq3owbtzY+df9858pPPuskWDP9lxdZf7+\nnfIX/hhTdflTgogH0s2eHwXcNjSSpqkzQNNf08MdzzMzYefO8nklJbanvbksJQWeflo9LylRB0PT\ntPXDW8suXICXXlIH2tJSqFNHnbm6468z64SGqoOw+fy0NHV5pDNn2nXreucSytBQ/C45iNrJnxKE\nU3VHTZtW74AO6scdFKQe5tPOPLe3jsEAZ8/CDz9YLgsOtj3tjWVBQep9Bwerg02dOmra1sOby+bM\ngVmzypf7w/XqmZkwZoyvoxDCP/nBT7TMFUASqqEaYBpQimVD9X6grXfDEkKIgHcAaOfrIFxRB/Um\nEoFQYBvQ0ZcBCSGE8B9DUFcy7UeVIIQQQgghhBCicoOB3cA+4AkbyzsAm4B84O9+EtPdwHbgD2Aj\n0NVP4hqmx7UV+B24xg9iMukNFAO3+UFMRiAb9TltBWb4QUymuLYCO4EUP4jpH5R/RjtQ/79IP4gr\nBliDqpreCUzwg5iigM9Qv79fgM4ejmchkIH6v9gzDxXvdqCHh+PxiGBUFVMiEILttohYoBfwHN5J\nEM7E1A+I0KcHAz/7SVwNzaYv09f3dUym9dYBXwEj/CAmI7DKw3FUNaZI4E+ghf48xg9iMncT8J2H\nYwLn4koCXtSnY4AzePYqTWdiegWYqU9fiuc/q/6og769BDEUWK1P98WJY5Q/doVlfsNcEeU3zJnL\nBH7Tl/tLTJtQZ6CgzhZa4HnOxHXebLoRcNoPYgKYAnyC+l96mrMxefOqPmdiugtYibonCPznf2dy\nF7DcwzGBc3GdAEz9uoajEkSxj2PqCHyvT+9BJZNYD8a0AchysPwW4D19+hfUCUicow36Y4KwdcNc\nvI9iMalqTJMpz9Se5Gxcw1F3pCcDU/0gpnjUj+nf+nNP95/iTEwacCWq6L0a6OQHMV0CRKMOMr8B\nY/0gJpMGwA2oBOZpzsT1LqoK5zjqf/iwH8S0nfLq0z5AK7xz4miPrZgdxuNPN8qZ+F9nS1WL6Wpg\nEnCVh2Ix52xcn+uP/sBSVHHXU5yJ6V/Ak/q6Bjx/5u5MTFuABOAC6mq6z4H2Po4pBLgcuBZ1QN6E\nqhbY58OYTG4GfgTOeSgWc87ENR1VzWNE3Sv1LdANyPVhTC8Br1PeXrMVKPFQPM6y/q05fB/+mCCO\noX6oJgmUF7F9xdmYuqLOZAbjuKjn7bhMNqD+541RRXBfxdQTVSQHVV88BFVM91QbgDMxmR9IkoG3\nUGfvZ30YUzqqWumi/liPOuh5KkFU5ft0B96pXgLn4roSeF6fPgAcQp0I/ebDmHJRJ4smh4CDHorH\nGdYxt9DnBZSq3DCXhHcaqZ2JqSWqTvIKL8RTlbjaUn7WcLm+vq9jMrcIz1/F5ExMcZR/Tn0o7zTS\nlzF1QDVsBqNKEDvwbNWXs/+7CNQJRn0PxlLVuF4DZunTcaiDdbSPY4rQlwHcCyz2YDwmiTjXSH0F\n3rmQxiNs3TB3n/4AaIo6u8pGnamnoRpgfRnTf1E/GtMlgJs9HI+zcT2OuuxvK6oE0dsPYjLnjQTh\nTEwPoT6nbcBPeCfRO/M5/QN1JdMOPN9+5GxM44FlXoilKnHFAF+i6v13oBrQfR1TP335btQFGRHW\nG3Cz5ag2mELU8XESFf93b+jxbkedMAohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYTwnDyz6aGo\na8wT7KzrbhOA+R7c/lQgFdUVirkGwAeobuR3oO5lMfXQ2wL4AtiLurb9X6juOUDd7Ge6J+cP4HYP\nxi6EED5n6g7jWlR3E629uO/xeDZB7AKa25g/DZhr9vwS1N25BtTNmOP1+UGomzXn6M/rU94ZZ1NU\nlx3B7g1ZCCH8Ry4wANXFgXlHem1R3Qb8gRojxFYHbYmoO1oXoUoeHwCDUIM77aX8DvNoVEd921Gd\n412mzzdPELGoO2M3648r9fkDKT9r34Ltu/sfRZUEdlDe4+h/gAI9/r9Zrf+6/hpr1wI/WM0LQyWC\nelbzW+P5LlaEEMKnilDdmXSxmv8V5VUo92E/QRShuoQ2oDpxW6AvuwU18heoJGAa5OVq1MEeLKuY\nllHeW29LVNUQqM4G++nTDah4xt4TlQTqo6qJdqI63wPVkZutvoO6oUYJ+wl4Fminz5+K6n/I2hbK\nP5++qG46LuB4XAchbPLH8SCEsKcQdcZ/j9X8K4AV+rSjHkYPoQ6Ymv7XNMLXTlQCAXXgN7UDfI/q\n+TbMajvXofq02YpqAwhDHfA3Av9EDYYURcWunf8CfIrqmfW8Pj3AQbygSjJtUKOTRQO/ojrxc6a7\nadMwl5ejSiKe7gtI1DCSIEQgKQVGoxpgp1Wyri0FVtsqNJs27/q+sj7zDaiz8x76IwF1wH8ZNVhU\nfVSysB53wzT+hfl2nDnQn0eVcB4C3kc10KeiSiTmwinvVdjcblQVUzuEqAJJECLQ5AM3AndT3tf+\nz8BIffoOF7e/Qd82qMFnMrG8egrgGyx7Vu2u/22LKpnMQZ3pWyeIDajR/UxVTMP1eY5ciSqNgGqc\n7oTqinwtqhrLNMpcMPAqqo0lH1UiMiW9VqjGbU+NIyGEED6XYzbdAjX4yk2oM+OfUV11v4ztQW4S\nUfX/JubdjJsvi0KdrW9H1fub6vPHA/P06caoAY+2oxLCW/r8eajG5+2oRnDTJafmHqG8kdo8yRzE\ndhvEWH17f6Cqwl4yW9YC1e5husz1dbN9jqG8m/fNqEGshBCi1jEfuOYOyhuchRBC1HJ/QZUetgMp\nqEZdIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEDXP/wPocUh/4AMxdgAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x10fccd5d0>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 3)The conversion of SO2 to SO3 at 50atm and 850K when SO2:O2 = 1:1 is 96.000000 percent\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.9 Page No : 305"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Given\n",
"#2A(g) - B(g)+C(g)\n",
"T = 400.0;#Temperature in Kelvin\n",
"P = 1.0;#Pressure in atm\n",
"R = 1.98;#gas consmath.tant in Kcal/Kgmole K\n",
"del_Fo = 3000.0;#standard free energy of the reaction in Kcal/Kgmole\n",
"n_A = 1.0;#Kgmoles of A\n",
"n_B = 0.1;#Kgmoles of B\n",
"n_C = 0.1;#Kgmoles of C\n",
"\n",
"#To find out the equilibrium has been attained or not. If not then calculate the equilibrium composition and also find out whether the equilibrium composition will change or not if pressure were increased to 3 atm.\n",
"#(1)To find out the equilibrium has been attained or not. If not then calculate the equilibrium composition\n",
"#P_B/P_C = 1 (Given)\n",
"n_T = n_A+n_B+n_C;#Total Kgmoles of the component\n",
"p_A = (n_A/n_T)*P;#Partial pressure of A\n",
"p_B = (n_B/n_T)*P;#Partial pressure of B\n",
"p_C = (n_C/n_T)*P;#Partial pressure of C\n",
"#Umath.sing the relation 14.36 (page no 312)\n",
"del_F = del_Fo + (R*T)*math.log((p_B*p_C)/(p_A**2));\n",
"if del_F == 0:\n",
" print '1.Equilibrium has been attained.';\n",
"else:\n",
" print '1.Equilibrium has not been attained.';\n",
"#Equilibrium composition\n",
"#At equilibrium del_F = 0\n",
"#From equations 14.35(page no 312) and 14.49(page no 320), we got the relations (a),(b)(page no 331) &(c)(page no 332) and\n",
"#ln(p_C**2/(P-(2*p_C**2)))= -del_Fo/(R*T); \n",
"Kp = math.e**(-del_Fo/(R*T))#equilibrium consmath.tant in terms of pressure\n",
"p_C = (Kp**(1/2))/(1+2*(Kp**(1/2)));#Partial pressure of C at equilibrium in atm\n",
"p_B = p_C;#as p_B/p_C = 1\n",
"p_A = P-(2*p_C);#Partial pressure of A at equilibrium in atm\n",
"N_A = p_A*P*100.0;\n",
"N_B = p_B*P*100.0;\n",
"N_C = p_C*P*100.0;\n",
"print ' Equilibrium composition of A,(B and C are %f'%N_A,\n",
"print '(%f and '%N_B,\n",
"print '%f mole percent respectively.'%N_C\n",
"#2.Calculation of composition at 400 K and 3 atm and vapour pressure of C at 400 K is 0.3 atm\n",
"P = 3.0;#Pressure in atm\n",
"P_C = 0.3;#Vapour pressure of C in atm\n",
"#Since m=0,pressure will not have an effect on equilibrium compositions.\n",
"print ' 2.The compositions will be the same as above on increamath.sing the pressure.';\n",
"p_B1 = p_B*P;#Partial pressure of B in atm\n",
"p_C1 = p_B1;#Partial pressure of C in atm\n",
"p_A1 = p_A*P;#Partial pressure of A in atm\n",
"if P_C < p_C1:\n",
" p_A2 = ((p_B1*P_C)/Kp)**(1/2.0);#decreased partial pressure of A in atm\n",
"print ' The partial pressure of A drops from %f'%p_A1,\n",
"print ' to %f to compensate for the amount of C condensed.'%p_A2;\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.Equilibrium has not been attained.\n",
" Equilibrium composition of A,(B and C are 33.333333 (33.333333 and 33.333333 mole percent respectively.\n",
" 2.The compositions will be the same as above on increamath.sing the pressure.\n",
" The partial pressure of A drops from 1.000000 to 3.639888 to compensate for the amount of C condensed.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.10 Page No : 307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"import math\n",
"import matplotlib.pyplot as plt\n",
"import numpy\n",
"\n",
"#Given\n",
"#SO2(A) + (1/2)O2 (B) - SO3(C)\n",
"#Basis: 1 Kgmole SO2\n",
"n_A = 1.0;#Kgmole of SO2 fed\n",
"n_B = n_A;#Kgmole of O2 fed\n",
"T1 = 273+400.0;#Temperature in K at which reacmath.tants enter\n",
"To = 298.0;#room temperature in K\n",
"del_H = -23490.0;#Smath.radians(numpy.arcmath.tan(ar heat of reaction at 25 deg cel from example 14.6 in Kcal/Kgmole\n",
"\n",
"#At T1,\n",
"C_A_T1 = 11.0;\n",
"C_B_T1 = 7.4;#in Kcal/Kgmole\n",
"#Assume the various temperature be\n",
"T = [913.0, 1073.0, 1373.0, 1573.0];#in K\n",
"#Mean specific heats of the components A,B & C at various temperature are given below in Kcal/Kgmole K\n",
"C_A = [11.6, 11.8, 12.3, 12.5];\n",
"C_B = [7.7, 7.8, 8.0, 8.2];\n",
"C_C = [16.6, 17.2, 18.2, 18.6];\n",
"\n",
"#To Calculate the final temperature for various conversions and the maximum conversion that can be attained in a math.single reactor operating adiabatically\n",
"#In equation 14.18 (page no 307), H2-Hr = K & (Hp-H3)= L(say)\n",
"K = ((n_A*C_A_T1)+(n_B*C_B_T1))*(To-T1);#in Kcal/Kgmole\n",
"print 'Adiabatic reaction temp in K pecentage conversion of SO2';\n",
"n_C = []\n",
"for i in range(0,4):\n",
" n_C.append((-K-(C_A[i]*(T[i]-To))-(C_B[i]*(T[i]-To)))/((T[i]-To)*(C_C[i]-C_A[i]-0.5*C_B[i])+del_H));\n",
" n_C[i] *= 100\n",
" print ' %d'%T[i];\n",
" print ' %f'%(n_C[i]*100);\n",
"\n",
"\n",
"plt.plot(T,n_C)\n",
"\n",
"#Now equilibrium conversion at various temperature taken from figure 14.7 (page no 325) are given as\n",
"Ta = [850.0, 900.0, 1000.0, 1100.0, 1200.0, 1300.0, 1400.0,];\n",
"n_C1 = [93.5, 88.2, 69.0, 49.0, 37.0, 21.5, 6.25];\n",
"\n",
"plt.plot(Ta,n_C1)\n",
"plt.title(\"Temperature vs Percentage Conversion\")\n",
"plt.xlabel(\"Temperature in K\")\n",
"plt.ylabel(\"% Conversion\")\n",
"plt.show()\n",
"\n",
"#From the graph,it can be seen that the curve cut each other approximately at the temp\n",
"T1 = 1140.0;#in Kelvin\n",
"C = numpy.interp(T1,Ta,n_C1)\n",
"\n",
"print ' The maximum conversion that can be attained is %d percent'%C;\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Adiabatic reaction temp in K pecentage conversion of SO2\n",
" 913\n",
" 2181.255555\n",
" 1073\n",
" 3712.910088\n",
" 1373\n",
" 6957.687376\n",
" 1573\n",
" 9308.739255\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjfX7x/HXzBj7nmxJypKitHwthQxCixgUskV8K0p7\n2ovUtz1+bVrsSUhEqWwZIRHKGkKylKXsZBhzfn9c92nOjJlxmHPOfc6c9/PxmMec/b7OmTP3dX+W\n+/qAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhEqceBD90OQiSnDgEHnZ9U4IjP9VtdjCsnNgNN3A7i\nNFXCPn/vZ/8b8KibAWUiCejp4vbrAF8Be4G/gUVAdxfjEYl6vxH+O9s4Px7zG9A0yNsItEpY0oh1\nrtcDDgMtTvN18gQwpozm4F7SuApLpo8AJZ3brgDGuRRPZoL52YuEJd+kEQs8BmwA/gLGAyWc+yph\nO7juwBbsqO8uoDawAjsSfMvndbsDC5zb9gG/kD45FQOGAX8A24CBpO08vc99w4njOeAC4Fvn+m5g\njPMaAB8BJ0hrMT0MJABbM7zXzT4x9AcmOs/dD9x+iph8lXe2VcLntsuduOKAKsBc533vJuudXCXS\nJw2AxcCDzuXbgTXAHuAboKLP41KBPsCvwEbnttbAz8772UBa8jnVZz0feNXZzibgOue+F4AU4B/s\nc33Tuf3/sO/AfmAJ0MAnrgLAKOe11gD9SP93KA98BuxyttU300/GzCf9dyoz/8U+g7+BKUA5n/tS\ngTuB9dj3823n9nzY36aGz2PPxv6mpZzrLbHPci/2XbzE57Gbnfe1Avts4rAW4jbgALCW9N+zj3ye\n2wpY7bzuHKB6htd9CFjuxDfOiVUkrPgmjfuA77F/7HjgPWCsc18l7J/wXSAv0AxIBiZj/2jlgZ3A\nNc7juwPHndeMA9pj/wjFnfsnA0OwnczZWLfDHRmeeze2c8sPVMZaEvHO9uYCg7J4H5B50vB9TH/g\nGPZPjLON7GLKaDbQy+f6q9hnA/AJ1pcN9lldncVrVMI+0zggBqiPtTQaYwngV+BC7DN4Ett5eaUC\n07HPMx/WjbOPtNZWeee5nOJ9dXc+h55ODHcB2322MwdLXr46YwkzFktwfzrvE+Al5znFgHOwHesW\n575YYCnwFHaEfj6W8Jpn8tkUxBJWo0zu82qCJeXLnO2/iX0vvFKBqUBR4FwsUXkT6TDgeZ/H3o11\ng4EdAOzEDohigG7YdyfeuX8zsMx5f/mwz3kLUNa5vyJ2kAPwLGlJoxrWNdwU+5s/gv2Nva2V34Af\nnNcpgSXdO7N5/yKu8N2RriH9jrcctkOJJW0H53sk9xdwi8/1iViSANsZ+e58wHZWXYAywFFsR+11\nK9aS8D7391PEnYj942b2PsC/pJHkc9+pYsqoJ5Y4wHYsW0g74h4FvI/tVLJTCftM95J2ZH6Pc9/X\npN9Zx2IJ5Vzneir2Hr3eB17PZBv+fNa/+txX0Hnt0s51f7qn9pB2JL4RO6Dw6kna36EuJ/9dHweG\nZ/Ka5zhxVMtmu8OwJOVVCPu+eltkqaRP2ONJGzNqirXGvBZg302wBPtchm2tBRo6l38j/bhKFSzJ\neA9qfPUnLWk8TfpWZwzWOvEeaP0GdPK5/2UnFvGh/sDwUgk7Kk31uS0F2/F47fS5/E8m1wv5XM+Y\nNH7HjoArYv9cf/rcF0vaESmcvMMvg3WLNACKOI/fk+U78c82n8vn+RGTr0lY10lZ7EgzFetOAeu6\nGIh1Ne3FduYjsonjLNJ/5t54/o+TE8E5pH02vp9RBWBaJq/tz/va4XP5iPO7MHZkDuDJ8JoPYwmt\nvHNfUdK6dcpniCvjZ1we+0y84oDvMol7L2kHKeszuR/nviU+1w9j3VTnkPb+Mr63ws7lJCxB1sHe\nZy3su++Nsxvpu87indi9fN/jBuB+LEHUwFqA3haYr/Kk/9w9zuv4Hlz4xvtPhm0KShrhZgvQA1iY\nyX2VzuD1Mh5pn4f1O2/FurYy21l6ZdxR/Q8bt6iJdcMkkr6/O+PjD2M7Ba84rGsmq234E5OvvcAM\noANwMdYl5bWTtO6f+sAsrNtkkx+v67UFSzyfZPOYjPFXyeQxp/u+stsG2NH2I1iLbbVz2x7sqBls\nR3kudmQOaS0jbyy/kX3rwesI9j28mfRdTr7+IP33shD2PjMerGTmBDABa3XtAr7AvjNgn/0L2Hcu\nKxk/l0+cnyJYq+9lLPH42k76sZEY7PPJKt6M2xAyH2QU97yH/aN4m/dnk9bn768Yn8ulgXuxo7Rb\nsEG/r7CjqRnYQLe31VCZtGZ6Zgpj/9QHsGT0SIb7dzqv4bUe65K5wdn+U2Q/qPjnGcQ0FrgNaEfa\n2A/Ye63gXN6H/fOf7g77PeAJLCGBjRHckvXDGYYl/CZO7OdgLaAzeV++Mn6uRbDW51/YOMIzWEvD\nawLW5VTcieEe0nZ+i7EB9X7Y+EocdhDwnyy23Q/rBnoYSwZgLQJvIv3Eec+1sL/t/7AxgaxahzEZ\nro8FOmJdQr5/vw+xsZ06znMKATeS1krJqBr2uefDEvRRLCll9KnzOk2w7+RDzmO/9zNeQUkj3Pwf\nNnA4A9s5L8T+cbz8OfLxfcwioCo2WDkQ27l6uya6YTsd7+ygT0kbSPRksq0B2HTL/dhR4WcZHvMi\nlhj2Yl0D+7HZRUOxLpJDpO9SyGwb2cWUmanY0f2fwEqf2/+D7bwOYi2re7HB08xk9Zl+jh2tjnPe\ny0rST8XN+LwfsR3oICxRJZGW/E/3s/a9/n/Y0f4eYDA2i+sbLClvxrpQfHfSz2Gf92/Y9+hTbJwB\nbEfaEhu43oR9Lz4gfdLxtRDbwTbBxkr+xo7ivd1ws7Fxgs+wVsf5WBLI7H1k9l4XY9+LctgYktdS\nbFbW2877/hX7DLP6W+XDvn+7se9CKdImQvhucx02bvKW89gbgZuwJJyZzP42EkTDsaMk33/mksBM\n7As/g7SZPGB/5F+xZnVmsznk9HQH5rkdhLiuNzaYLhL2GmJT53yTxitYkxdsFoV35sXF2JzseKyP\ndANqBeVUd5Q0olFZbBwnFuse+xVraYlEhEqkTxprSZsJVJa0wbrHSV++4Rvs7Fw5c7eR+awYyd0q\nYv9zh7BuqlfRhBcJoFB/mcqQNkV0J2kJpDzWB+21jVPPsZfsjXJ+JLpsIf0MIZGAcrML6FSDTBqA\nEhEJM6FuaezEuqV2YDMmvCcvbSf9fPIKZDJ3unLlyp6NGzdmvFlERLK3kczPIzptoW5pTMX62nF+\nf+5ze0dsWuL52DTRxRmfvHHjRjweT9j/PPvss67HoDgVp+JUjN4f0p/rkyPBbGl8ghU7K4XNz38G\nmy01AauHsxkrogc2f32C8zsFm9+v7ikRkTATzKSR1WJC12Zx+//IvmyAiIi4TOdCBEFCQoLbIfhF\ncQaW4gysSIgzEmIMtEirreJx+udERMRPMTExEKD9vVoaIiLiNyUNERHxm5KGiIj4TUlDRET8pqQh\nIiJ+U9IQERG/KWmIiIjfojppHD9xnDErxnAiNbPlhEVEJKOoThp///M3Hy77kMvfv5yZG2e6HY6I\niF+++QZ+/NGdbUd10ihbuCxJtyUxIGEAvaf1puXYlqz9a+2pnygi4oIdO6BjR7j7bjh61J0Yojpp\ngJ1e3+aiNqzus5rGlRrTcERD+n7Vl7+P/O12aCIiAKSmwvvvw6WXwvnnw8qV0LChO7Go9lQGfx35\ni/5J/Rm/ejxPNHiCu+vcTd64vEHdpohIVlatgjvvBI/HEsclZ7CYr2pPBVGpgqV4+4a3mdt9LjM3\nzaTmuzWZsnYKKpQoIqH0zz/w5JPQuDF06QLz559Zwgg0tTROYfqG6Tw04yFKFyrNGy3e4LKyl4V0\n+yISfWbOhN694corYfBgKFcuZ68XyJaGkoYfUlJTGLpsKP2T+nNj1Rt5vsnzlCuSw7+iiEgGu3bB\ngw9aq+Ldd+GGGwLzuuqeCrE8sXm46z93se6edZQqWIpLhlzCC9+9wD/H/3E7NBHJBVJTYdgwqFnT\nWhWrVwcuYQSaWhpnYNPeTTw661EWb1/Mi01f5Naat3ozuYjIafnlFxvoPnoUPvgALgtCD7i6p8LE\n/C3zeWD6A8TFxPFGize4+tyr3Q5JRCLE0aPw4ovWDfXsszaGERcXnG0paYSRVE8qH6/4mCe+fYL6\n59bn5Wtf5rzi57kdloiEsTlz4K67oEYNePNNqFAhuNvTmEYYiY2JpWutrqy7Zx0Xn30xV35wJQPn\nDtQUXRE5yV9/QffucNtt8MorMGlS8BNGoClpBEjB+II80+gZlt+1nKnrp/LIzEeUOEQEsBPzRo2y\nlkWJEjbQ3bq121GdGXVPBcHef/bSZHQTrq9yPS80eUGD5CJRbP1664rav98Guq+8MvQxqHsqzJUo\nUIKZXWfy5foveW7uc26HIyIuSE6G556Dq6+GVq1g0SJ3Ekag5XE7gNyqVMFSzOo2i4SRCcTHxfNE\nwyfcDklEQmTePLjjDqhaFZYtg4oV3Y4ocJQ0gqh0odLM7jabhFEJ5I3Ly8NXP+x2SCISRHv2QL9+\ntt7Fm29CmzaQ23qn1T0VZOWKlGN2t9m8t+Q93lz0ptvhiEgQeDzw8cc20F2gAKxZA23b5r6EAWpp\nhESFohX+bXHEx8bTu3Zvt0MSkQDZuNFOzNu1C6ZMgTp13I4ouNTSCJHzip/H7G6zeXH+iwxbNszt\ncEQkh44dszO669aFZs1s+dXcnjBALY2QuqDEBczuNpvGoxoTHxdPt1rd3A5JRM7AggVWL6piRViy\nBCpVcjui0FHSCLGqZ1VlVrdZNBnVhPjYeG695Fa3QxIRP+3bB489BlOn2joXt9ySO8ctsqPuKRdU\nL1WdGV1n8OCMB5m4ZqLb4YjIKXg8MH48XHyxJYk1a6B9++hLGKCWhmtqlq7JN52/ocWYFsTHxtO6\neoTWFBDJ5X77Dfr0gW3bYOJEO1kvmqml4aJaZWsxrdM07vjyDr769Su3wxERH8ePW1HB2rWhUSM7\nSS/aEwao9lRYWLRtETd9chNj2o6heeXmbocjEvUWLbIzusuUgSFDoHJltyPKmdxQe+pxYDWwEhgL\n5ANKAjOB9cAMoLhLsYVc3Qp1mdxhMl0mdeHb3751OxyRqLV/P9xzDyQmwqOPwvTpkZ8wAs2NpFEJ\n+C9wBXAJEAd0BB7DkkY1YLZzPWrUr1ifT2/5lI4TOzLv93luhyMSVTwe+OwzO6M7OdlKl3fqFJ0D\n3afiRtI4ABwHCmID8QWBP4BWwCjnMaOARBdic1WjSo34pN0ntJvQjoVbF7odjkhU2LLF1rZ4+mn4\n5BP48EMoWdLtqMKXG0ljD/A6sAVLFvuwFkYZYKfzmJ3O9ajT9IKmjG4zmtbjWrN4+2K3wxHJtVJS\n4I034Ior7Ezun36Chg3djir8uTHltjJwP9ZNtR/4FOiS4TEe5+ck/fv3//dyQkICCQkJQQjRXddV\nuY7hrYdz0yc38XXnr7mi3BVuhySSqyxZYgPdJUrA999DtWpuRxRYSUlJJCUlBeW13eix6wA0A3o5\n17sC9YAmQGNgB1AOmANUz/DcXDl7KiuTf5lM72m9mdF1BpeWudTtcEQi3sGD1g01bpxNp+3aNTrG\nLSJ99tRaLEkUwN7EtcAa4AvgNucxtwGfuxBbWGlzURvevP5NWoxpwepdq90ORySiTZliA93798Oq\nVdCtW3QkjEBzo3tqOTAaWAKkAsuAD4AiwASgJ7AZaO9CbGGnfY32HD9xnOZjmvNtt2+5sNSFbock\nElG2bYO+fa30x+jRkAt7tEMq0vJsVHVP+Rr580ienvM0c26bQ5WSVdwORyTsnTgB77xj63Tfc48V\nGsyf3+2o3BHI7inVnooQ3S/rzrETx2g6uilJtyVxfonz3Q5JJGz99JMNdBcsCPPnQ/WMo6NyxlR7\nKoLcceUd9Lu6H01HN2XL/i1uhyMSdg4dgocfhhYtbDW9pCQljEBT0ogwd9e5m751+tJkVBO2H9ju\ndjgiYWPaNKhZE3butIHu22/XQHcwqHsqAj1w1QMcTz1Ok9FNmNt9LmULl3U7JBHX/PEH3HefdUkN\nHQrXXut2RLmbWhoRql/9fnS9tCtNRzdl1+FdbocjEnInTsC770KtWnDhhbBypRJGKKilEcGeuuYp\njp04xrWjr2XObXM4q+BZbockEhIrVthAd1ycjVvUqOF2RNFDLY0INyBhADdUvYFmHzVj7z973Q5H\nJKiOHLGps9dea2MW8+YpYYSakkaEi4mJ4cWmL5JQKYEWY1qw/+h+t0MSCYpvvrGB7t9/T2tpxGoP\nFnKRNrcgak/uOxWPx0Pfr/uy7M9lTO8ynSL5irgdkkhA7NgBDzxgq+m9+y5cd53bEUWeSK89JUEQ\nExPDm9e/ySWlL+HGsTdy+Nhht0MSyZHUVPjgA7j0UjjvPJtGq4ThPrU0cplUTyo9p/bk932/82Wn\nLykYX9DtkERO2+rVcOedtuaFN3HImVNLQ7IUGxPL0JuGUr5IedqMb8PRlKNuhyTit3/+gSeftKKC\nnTrBggVKGOFGSSMXiouNY2TiSIrnL067Ce1ITkl2OySRU5o1yxLEr7/C8uXQp49NqZXwou6pXOz4\nieN0mNiBVE8qn97yKfFx8W6HJHKS3bvhwQdt+uzbb0PLlm5HlPuoe0r8Eh8Xz7ibx3HCc4JOkzqR\nkpridkgi//J4YPhwO8+iTBkb6FbCCH9qaUSB5JRkEscnUiJ/CT5q8xFxsWrzi7vWrrWB7iNHbKD7\n8svdjih3U0tDTku+PPmY1H4Suw7v4vapt5PqSXU7JIlSR49C//7QoAG0awc//KCEEWmUNKJEgfgC\nTL11Kr/v+507v7hTiUNCbs4cKy64fDn8/DPce68GuiORuqeizKFjh7huzHVcWuZS3rnhHW+zVSRo\ntm2DRx+F776Dt96CxES3I4o+6p6SM1Y4b2G+6vwVy/5cxoPTH0RJWILlyBFbn7tWLbjgAvjlFyWM\n3EBJIwoVzVeUb7p8Q9LvSQyYO8DtcCSX8Xhg/Hi46CKbEbV0KQwcCIULux2ZBILW04hSxfMXZ3qX\n6TQc0ZBi+YrxwFUPuB2S5ALLltkqegcPwujR0KiR2xFJoKmlEcVKFyrNzK4zGbxoMMN/Gu52OBLB\ndu6E//4XbrgBuna11oUSRu6kpBHlKharyMyuM3nq26eYuGai2+FIhDl2DF57zU7QK1rUzr/wrqgn\nuZO6p4RqZ1Xjq85f0fyj5hTJW4QWVVq4HZKEOY8HvvwSHnoIqlWzwoIXXuh2VBIKkTbfUlNug2jB\nlgUkjk9kcofJNKjYwO1wJEytWWOLIm3ZAoMGaY2LSKAptxIU9SvW5+O2H9N2fFt++vMnt8ORMLNn\nj52Q16iRjV2sWKGEEY2UNCSd5pWbM+TGIdww9gbW/bXO7XAkDKSk2DKr1avD8ePW0rjvPohX0eSo\npDENOUm7i9txIPkAzcc0Z16PeVQsVtHtkMQls2fD/ffD2WenrXch0U1JQzLV4/IeHEg+wLWjr2Ve\nj3mUKVzG7ZAkhDZuhIcftjpRr70GbdqAKs4I+Jc08gPtgEo+j/cAzwUpJgkT99W7j31H99FiTAvm\n3DaHEgVKuB2SBNnBg/DCCzB0qM2M+uQTyJ/f7agknPgzpjEFaAUcBw45P4eDGZSEj2caPUPjSo25\nceyNHD6mP3tulZoKI0fatNkdO2yQ+/HHlTDkZP40OFcBNYMdiJ805dYFqZ5Uek3txbYD2/ji1i/I\nlyef2yFJAH3/vQ1s58kD//d/UKeO2xFJoIV6yu33gIa/olhsTCwf3PQBRfMVpfOkzlo2NpfYuhU6\ndYL27W2we8ECJQw5NX+SRkNgKbAeWOn8rAhmUBJ+8sTm4eO2H3Pw2EH++8V/tYhTBPOWLL/sMqhc\n2Up/dO4MsZqAL37wp7lSyfnt7RfyPmdzDrZbHBgK1HBetwfwKzAeOM957fbAvgzPU/eUyw4fO0zz\nMc2pXb42g1oM0iJOEcTjgQkToF8/qFsXXnkFKlVyOyoJhUB2T/n7IpdhLQ4PMA9YnsPtjgLmAsOx\nGVmFgCeBv4BXgEeBEsBjGZ6npBEG9h3dR+NRjUm8MJFnE551Oxzxg7dk+aFDNm5xzTVuRyShFOox\njfuAMcDZQBnn8r052GYxLAF5a3GnAPuxGVqjnNtGAVrjK0x51+IYu2osg38Y7HY4ko2dO6FXLyv7\n0a0bLFmihCE540/S6AXUBZ4BngbqAf/NwTbPB3YDI4BlwIdYS6MMsNN5zE7nuoQp71ocg34YxIif\nRrgdjmSQnAyvvmoly4sXh3XrbL0LlSyXnPL3jPDULC6f6TavAO4BfgQGk0k3FGljKBKmvGtxJIxM\noGi+orS7uJ3bIUU9b8nyBx+0cy5UslwCzZ+kMQJYBEzC+sQSSetaOhPbnJ8fnesTgceBHUBZ53c5\nYFdmT+7fv/+/lxMSEkhISMhBKJJT3rU4WoxpQeG8hbUWh4tWr7aS5Vu3wltvqQJtNEtKSiIpKSko\nr+3vwMiVQAPSBsJzWjf7O6zbaz3QHyjo3P438DLW8iiOBsIjxoItC2gzvg2TO0ymfsX6bocTVfbs\ngf79reTH009D796qQCvphWr2VFHgAFAyw2O9e+09OdhuLWzKbV5gIzblNg6YAFREU24j0oyNM+g6\nuSvTu0znsrKXuR1OrpeSAu+/b+dctGtnv0uVcjsqCUehShrTgBuxHXhme+rzAxHAaVLSCHOfrfmM\nvl/3Jal7EtXOquZ2OLnWrFl2Fnfp0jB4sEqWS/bcOE8jXChpRIARP42g/9z+WosjCDZssJLlK1bA\n669DYqJKlsuphfo8jfpAYedyV+AN7KxtkUz1uLwHD9Z7kGYfNWPnoZ2nfoKc0sGD8NhjUK+e/axZ\nozUuxB3+JI33gCPYOMSDwCZgdDCDksh3X7376FSzEy3GtGDf0YxDU+Kv1FQYMSJ9yfLHHlPJcnGP\nP8cpPwGXA88C27EB7GXYuRahpu6pCOLxeHhw+oMs/mMxM7rMoFDeQm6HFFEWLEhbi1slyyUnQt09\ndRB4AugCfInNctKEPjmlmJgYXm/xOheedSFtJ7QlOSXZ7ZAigrdkeceOdt7F998rYUj48CdptAeS\ngduxE+/OAV4NZlCSe3jX4iiSt4jW4jiFI0dgwAArWV6lSlrJco1bSDg51dcxDzATaByCWPyh7qkI\nlZySTKtxrShfpDzDWg0jNkaLN3j5liyvV89Klp+nqSYSQKGecjsbaMfJJ9q5QUkjgmktjpMtXWrn\nW6hkuQRTqJPGVGwgfCZw2LnNQ87Ko58pJY0Ip7U4zM6d8OSTVlxw4EC4/XZVoJXgCWTS8Kdg4STn\nx3flPu255Yx41+JoOKIhxfIX4/5697sdUkglJ8Obb8LLL0P37layvFgxt6MS8Z8/SWMkVlCwIrA2\nqNFIVPCuxdFwREOK5StGj8t7uB1S0PmWLK9e3WZEVVOVFYlA/iSNVthsqXzYeuGXAwOc20XOSDSt\nxeEtWb5tG7z9NrRQ9XiJYP5MYemPrdy317n+E3BBsAKS6OFdi6PPV32YvmG62+EE3J490LcvJCRA\ny5awfLkShkQ+f5LGcU6eOZXT1ftEALis7GVMaj+JrpO7smDLArfDCYiUFHjnHeuGOnECfvkF7r1X\na1xI7uBP0lgNdMa6sqoCbwHfBzMoiS71K9ZnTNsxtJ3Qlp93/Ox2ODkya5adnDdpEsyeDe++qzUu\nJHfxZwpWIeBJoLlzfTowEDgarKCyoSm3uVgkr8XhLVm+cqWVLG/dWmdyS/gI9XkaV2AFCsOBkkYu\nF2lrcRw4AC+8AMOGWdK4/35VoJXwE+qChW9gU20HAjUDsVGRrETKWhypqTB8uI1b7NplLQyVLJdo\n4G/mKYcVLmyPrR0+AUsioaaWRpQYkDSAyWsnk9Q9ieL5i7sdTjrekuV581rpj9q13Y5IJHtuLvd6\nCfAo0AF3yqMraUSJcFyLY+tWePRRmDfPzui+9VaNW0hkCHX31MXYuRqrgLexmVPnBGLjIlnxrsVx\ncamLqTesHou2LXItFt+S5VWrWsnyTp2UMCQ6+fO1XwiMBz7FVu5zk1oaUcbj8TB+9XgemP4AHWp0\n4Pkmz1M4b+FTPzEg24bx4611oZLlEsnc7J5ym5JGlPr7yN88NOMhkjYnMeTGIVxf9fqgbm/pUhu3\nOHLExi0aNgzq5kSCKtRJowG2Pngl0mpVeXCnlIiSRpSbuXEmd027i6sqXMWgFoM4u9DZAX39HTus\nZPm0afD889Cjh0qWS+QL9ZjGMGzabQOgtvOjFYvFFc0qN2PFXSsoV7gcNYfU5KPlHxGIA4nkZHj1\nVahZE0qWtJLlvXopYYhk5E/mWYQVLAwHamnIv5b+sZReX/SidKHSvHfje5xf4vzTfg2PB774Ah56\nCC66yM7mrlo1CMGKuCjU3VMvAXHYQkzJPre7cZa4koakc/zEcd5Y+Aavfv8qTzR8gnvr3kueWH8q\n/qcvWT5okCrQSu4V6qSRROYr9TUORACnSUlDMrVhzwbu+OIODh47yNCbhlKrbK0sH7tnDzz7rM2M\nevppuOsuVaCV3E2zp0Qy4fF4GPHzCB6b9Ri9rujF09c8TYH4Av/en5IC770Hzz0Ht9xi516oAq1E\ng1APhBcHBgFLnZ/XAa1qLGEnJiaG2y+/nRW9V7BhzwZqvVeLpM1JQFrJ8smTrWT5O+8oYYicCX8y\nzyRgJTDKeXxX4FKgbRDjyopaGuK3KWuncNcX95B3y3XEzHqFwS+WUMlyiUqhbmlUxs7T2ARsxEqK\nVA7ExkWC5cAB+H5Ea5LfWE35Mnk53qsmJ6p9RubDcyLiL3+Sxj+A7/mwDYAjwQlHJGe8JcsvvBB2\n74bVy4qy8Kl3GH/LeJ6a8xRtJ7Rl+wG3q+GIRC5/miuXAaNJG8fYC9wGLA9WUNlQ95Rk6VQly5NT\nkvnfvP/x7pJ3Gdh4IHdceQexMf4cN4lENrdmT3mTxv5AbPgMKWnISbZssaKC8+f7V7J81a5V9Jra\ni/i4eD7FTO8IAAAWEUlEQVS86UOql6oeumBFXBCqMY2HgF4+1/c7Pz2B+wOxcZGcOHIE+veHK66A\natX8L1les3RNFty+gPYXt6fB8AY8/93zHDtxLCQxi0S67P69lgH1gIz/TXmxqbeX5HDbccASYBtw\nE1ASK8F+HrAZWyVwX4bnqKUh/5Ys79cPrr7aWhdnWrJ8y/4t9J7Wmy37tzD0pqHUrRAuFXNEAidU\nLY08nJwwcG4LxMbvA9aQNp3lMWAmUA2Y7VwXSWfpUitT/sor8PHHMG5czta4qFisIl/e+iVPNHiC\nxPGJ3Pf1fRw6dihwAYvkMtkljRigbCa3lyHn8xYrADcAQ0lLQK2wc0FwfifmcBuSi+zYAT17QsuW\nVq78xx8Dt8ZFTEwMt15yK6t6r2J/8n5qvFuDr3/9OjAvLpLLZJc0XgWmAQlAEeensXPb6znc7iDg\nESDV57YywE7n8k7nukS55GRrVXhLlq9da8kjGCXLzyp4FiMTRzL0pqHc/dXddJ7Umd2Hdwd+QyIR\nLLukMRp4CngOG2PYDAwAngZG5mCbLYFdwE9k3c3lQWdhRTWPB6ZMgRo1bFbUwoW23kWxEBSwaVa5\nGSt7rwz4mh0iuYEbBRX+h5UiSQHyA0WxUiW1sVbNDqAcMAfIOBfS8+yzz/57JSEhgYSEhKAHLKG1\napWVLP/jDytZ3ry5e7Es+WMJvabamh3vt3z/jNbsEAm1pKQkkpKS/r0+YMAAyCVVbhsBD2Ozp14B\n/gZexgbBi3PyYLhmT+Vi4VqyPCdrdoiEg1DXngo2bxZ4CWgGrAeaONclCqSkwNtvQ/Xq1i31yy/Q\nt294JAyA+Lh4Hm3wKAt7LuSL9V9w1bCrWL7DjYIIIu5zu6VxutTSyGVmzrSuqLJlrSvqkpye/RNk\nHo+H4T8N5/HZj2e6ZodIOHKrpVEP+AaYC7QJxMYlem3YAK1bWxfUCy9Y8gj3hAH2z9fzip6Zrtkh\nEg2yyzxlsUFpr0+xQoUAi4GawQoqG2ppRLi//rIzuEeMsDO677sP8uVzO6ozN2XtFO75+h6uq3wd\nrzV/jWL5tT6ZhJ9QtTTeA57BZjiBlfRohy2+5GbRQolAe/fCU09ZyfJDh2yGVL9+kZ0wAFpXb82q\n3qsAqDesHhv2bHA5IpHgyi5pJGLnUnwJdMOKFObHakTpbG3xy/79thZ31ap2VvfSpTBkiI1h5BbF\n8hfjw1Yfcn/d+2kwvAHf/vat2yGJBM2pxjS+AFpg018nA+uANwGdJivZOnQIXnzRksWmTfDDDzB0\nKFSq5HZkwXPnf+5k3M3j6PRZJ9798V23wxEJiuySRmvsBLvp2BrhHbAWxji03Ktk4cgReO01qFwZ\nVqyA776DUaOgShW3IwuNhEoJLLh9Ae/8+A59pvXh+InjbockElDZDYysBOpgXVIzsDO2AaoCz2NJ\nJNQ0EB6mjh6FDz6Al16ycuX9+1u9qGh1IPkAnSd15vCxw3x6y6ecVfAst0OSKBaqgfD92NTam0kr\nJAjwK+4kDAlDx47ZGEXVqjBrFkybBhMnRnfCACiaryifd/ic2uVrU3doXdbsXuN2SCIBkV3SaAOU\nwhZL6hSacCRSHD9uYxTVqsHUqfDZZ/b78svdjix8xMXG8XKzl3mm0TMkjExg2vppbockkmM6I1xO\nS0oKjB0Lzz1ng9oDBkD9+m5HFf4Wbl3IzZ/ezAP1HuChqx7ydheIhEQgu6ci7ZurpOGS1FQrJDhg\nAJQuDQMHQqNGbkcVWbbu30rrca25pMwlvN/yffLnyX/qJ4kEgJKGhExqKkyebNVnCxe2ZHHttaAD\n5TNz+Nhhuk/pzvYD25nUYRJlC+eiE1YkbClpSNB5PPDFF/DMM5Anj3VHXX+9kkUgpHpSGTh3IMN/\nHs7nHT7n8nIaCJLgUtKQoPF4YPp0SxbJydYd1bq1kkUwTFwzkd7TejPkxiHcfPHNbocjuZiShgSc\nxwPffmvJYu9eSxbt2kFsOKy4kost+3MZieMS/y2zrgFyCQYlDQmo776zlfL+/NNOyuvQAeLi3I4q\neuw4tIM249twbtFzGZk4koLxBd0OSXKZ3LZyn7hk4UJo1gy6d4cePWDNGujUSQkj1MoWLsuc2+ZQ\nIL4ADYY3YOv+rW6HJJIlJY0otGQJ3HADdOwI7dvDunWWOPJo2WvX5M+Tn5GtR3JrzVupN6weP2z7\nwe2QRDKlpBFFli+HxET7adkS1q+H//43fNbijnYxMTE8Uv8R3m/5Pq0+acVHyz9yOySRk2hMIwqs\nXm1jFfPnw6OPwp13QgEtax3WVu9aTatxrbj5opv5X9P/ERerPkM5cxrTEL+sWwedO0OTJlCnjq3L\nff/9ShiRoEbpGizqtYjFfywmcXwiB5IPuB2SCKCkkStt3GhjFA0awMUXW7J45BEoVMjtyOR0lCpY\nihldZlChSAWuHnY1m/ZucjskESWN3OT3322Mom5dKya4YQM8+SQUKeJ2ZHKm4uPiGdJyCH1q9+Hq\nYVeTtDnJ7ZAkyilp5ALbt0OfPnDFFVZMcP16G8MoVsztyCRQ+tTuw8dtP6bDxA58sPQDt8ORKKak\nEcF27LAxiksusa6ntWvhhRegZEm3I5NgaHpBU+b3mM+gHwbR96u+pKSmuB2SRCEljQi0ezf06wc1\natj1NWvg1Vfh7LPdjUuCr+pZVfmh5w9s2LuB68Zcx55/9rgdkkQZJY0IsmePjVFUrw6HDtl5F4MH\nQ1lV144qxfIX48tbv6RWmVrUHVqXtX+tdTskiSJKGhFg/34bo6hWDXbtgmXL4N13oUIFtyMTt8TF\nxvF6i9d5osETXDPiGr7Z8I3bIUmUUNIIYwcP2hhFlSqweTMsWgQffgjnned2ZBIuelzeg8kdJtNj\nSg8GLRyETn6VYFPSCENHjtgYRZUqdjb3/PkwciRUrux2ZBKO6leszw89f2DU8lH0nNqT5JRkt0OS\nXExJI4wcPWpjFJUrw+LFMHs2jB0LF17odmQS7s4rfh7zb5/PvqP7aDq6KbsO73I7JMmllDTCQHKy\njVFUqQJz5sDXX8Onn0LNmm5HJpGkcN7CTGw/kSbnN6HOh3VYvmO52yFJLqSChS46fty6nZ5/3qbP\nPvcc/Oc/bkclucG4VePo+3VfPmj5AW0uauN2OOKyQBYs1AoKLkhJgY8/tiRxwQUwbhxcdZXbUUlu\n0rFmR6qUrEKb8W1Ys3sNTzR8QkvJSkBE2rcoolsaJ07A+PG2/nbZspY0GjVyOyrJzf44+AeJ4xKp\nXLIyw1sNp0C8ShxHI5VGj0CTJsGll8Jbb8E770BSkhKGBF/5IuWZ230usTGxXDPyGrYf2O52SBLh\n3Ega5wJzgNXAKuBe5/aSwExgPTADKO5CbEGzdi289hp8/z1cey2op0BCpUB8Aca0GUO7i9pRd2hd\nFm1b5HZIEsHc2HWVdX5+BgoDS4FEoAfwF/AK8ChQAngsw3MjuntKxG1T102l19RevNb8NbrV6uZ2\nOBIigeyeCofj3c+Bt52fRsBOLKkkAdUzPFZJQySH1uxeQ+txrbmp2k280uwV8sRqPkxul5uSRiVg\nLlAT2IK1LsDi2uNz3UtJQyQA9vyzh44TO+LBw/ibx1OygOrp52a5ZcptYeAz4D7gYIb7PM7PSfr3\n7//v5YSEBBISEoITnUguVrJASb7q/BWPzXqMOh/WYUrHKdQoXcPtsCRAkpKSSEpKCspru9XSiAe+\nBL4GBju3rQUSgB1AOWywXN1TIkE2evloHprxEENvGkrr6q3dDkeCINKn3MYAw4A1pCUMgKnAbc7l\n27CxDhEJsm61ujGt0zTu+foeBs4dSKon1e2QJIy50dJoAHwHrCCtC+pxYDEwAagIbAbaA/syPFct\nDZEg+fPgn7Sd0JZzipzDyMSRFM5b2O2QJEBy00D46VLSEAmi5JRkek/rzdI/l/J5h885v8T5bock\nARDp3VMiEqby5cnHsFbD6Hl5T64adhVzfpvjdkgSZtTSEJFMzd40m86TOvPUNU9xd+27VfAwgql7\nSkRCYtPeTbQe15q659TlnRveIV+efG6HJGdA3VMiEhIXlLiAhT0XsuefPTQe1Zgdh3a4HZK4TElD\nRLLlXRGwReUW1P6wNkv+WOJ2SOIidU+JiN8m/zKZO768g0EtBtHl0i5uhyN+0piGiLhm5c6VJI5P\npG31trx07UvExca5HZKcgpKGiLjq7yN/02FiB/LE5uGTdp9QokDG2qISTjQQLiKuOqvgWXzT5Ruq\nl6pO3aF1+WX3L26HJCGipCEiZyRPbB4GXzeYxxs8TqORjfhy/ZduhyQhoO4pEcmxH7b9wM0TbqZP\n7T483uBxnQgYZjSmISJhZ/uB7bSd0JZKxSsxvNVwCuUt5HZI4tCYhoiEnXOKnsPc7nPJF5ePBiMa\n8Pu+390OSYJASUNEAiZ/nvyMShxFt0u7UW9YPb77/Tu3Q5IAU/eUiATFzI0z6TK5C/0b9ad37d5u\nhxPVNKYhIhFhw54NtB7XmoYVG/Lm9W+SNy6v2yFFJY1piEhEqFKyCgt7LuTPQ3/SdHRTdh7a6XZI\nkkNKGiISVEXzFWVyh8k0rtSYOkPrsOzPZW6HJDmg7ikRCZmJaybSe1pv3rr+LTrW7Oh2OFFDYxoi\nErGW71hO4vhEOtboyPNNnlfBwxBQ0hCRiLb78G7aT2xPwfiCjG07lmL5i7kdUq6mgXARiWhnFzqb\nGV1mcEHxC6g7tC7r/lrndkjiJyUNEXFFfFw8b93wFg9f/TANRzTk61+/djsk8YO6p0TEdQu2LOCW\nT2/h/nr388jVj6jgYYBpTENEcp2t+7fSZnwbqp1VjaGthlIwvqDbIeUaGtMQkVzn3GLnMq/HPGJi\nYmg4oiH7ju5zOyTJhFoaIhJWPB4PU9dNpdWFrdRNFSDqnhIREb+pe0pERFyhpCEiIn5T0hAREb8p\naYiIiN+UNERExG9KGiIi4jclDRER8Vu4JY3rgLXAr8CjLsciIiIZhFPSiAPexhLHxcCtwEWuRnSG\nkpKS3A7BL4ozsBRnYEVCnJEQY6CFU9KoA2wANgPHgXFAazcDOlOR8kVSnIGlOAMrEuKMhBgDLZyS\nxjnAVp/r25zbREQkTIRT0lBRKRGRMBdOBQvrAf2xMQ2Ax4FU4GWfx2wAKoc2LBGRiLcRqOJ2EIGW\nB3tjlYC8wM9E6EC4iIiExvXAOqxF8bjLsYiIiIiISG7yOLAaWAmMBfIBJYGZwHpgBlA8w+N/xU4K\nbB6iGO9z4lvlXCZMYhwO7HRi8zqTuK50XuNX4P9CFOct2N/9BHBFhseHU5yvAr8Ay4FJQLEwjXOg\nE+PPwGzg3DCN0+shbAyzZJjG2R+b0fmT83O9y3Fm9Vn2xb6fq0g/HuzWZxl0lYBNWKIAGA/cBrwC\n9HNuexR4ybl8MfZPEe88dwPBnxFWE/uQ82MnJM7EBufDIcaGwOWk/yKdTlzeiRGLsfNmAL4ibXJC\nMOOsDlQD5pA+aYRbnM1I+/u9RPh+nkV8LvcFhoZpnGAJ7RvgN9KSRrjF+SzwYCaPdSvOzGJsjO2P\n4p3rZwcjxnCacgtwADuxryA2MF4Q+ANoBYxyHjMKSHQutwY+cZ6zGfsw6hBc1YFFwFHsqHgu0C5M\nYpwH7M1w2+nEVRcoh+1wFjuPG+3znGDGuRZrDWUUbnHOxI6Iwb4HFcI0zoM+lwsDf4VpnABvkHZg\n4xWOcWY229StODOLsTfwohMLwO5gxBhuSWMP8DqwBUsW+7B/0jJYUwzndxnncnmsyegVihMCV2FZ\nviSW1G7AdhzhFKOv040r4+3bcfcky3CO83bs6IxM4gmHOF/A/pe6YzsTMonH7ThbO9tdkeH2cIsT\nrMW2HBhGWjdvOMVZFbgG+AFIAv4TjBjDLWlUBu7HmlDlsSOkLhke4yH7EwGDfZLgWqyvcAbwNdbs\nO5FJDG7GmN12dRJlYDwJHMPG3cLVk0BFYAQw2OVYMlMQeALr+vEKp3PHfA0BzgcuA/7EDm7DTR6g\nBHbO2yPAhGBsJNySxn+A74G/gRRsoPEqYAdQ1nlMOWCXc3k76Qf4Kji3BdtwJ9ZGWBNxPXYUH04x\nep1OXNuc2ytkuD2U8WYUjnF2x1qYnX1uC8c4vcYCtZ3L4RRnZewAcTk2nlEBWIq1hsMpTrD/G+9B\n11DSupjDKc5t2D4T4EesG7VUmMUYcLWw7p8C2BHHKOBubDDXWyr9MU4efMyLHQVsJDRHKqWd3xWx\nmQrFwijGSpw8EH66cS3C+jxjCM5AY2Zxes3BZnR4hVuc12GzvEpleFy4xVnV53Jf4KMwjdNXZgPh\n4RJnOZ/LD5DWwnQzzowx3gkMcC5Xw7om3Y4xJPqRNuV2FDbiXxKYRebTRp/ABnbWAi1CFON3Tow/\nYzMWCJMYP8HGgo5hxR97nGFc3ml4G4A3QxDn7dgA3FbgH6xl+XWYxvkr8DtpUy/fDdM4Jzrb/Bn4\njLQDnXCIM5m076evTaSfcut2nL6f52hs3GU58DlpY4NuxZnZZxmPHRysxFpsCS7HKCIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiLh5yzSzon4k7Ty1MuwsgnhpBFWwSBYFpzm40dixTTBzn/4CasaLXLGwu2f\nTiSjv7ES0GA1ig5iVVHdEsfJtca8GmPxLTyN18uDlczxR/3TeF1IK3tRDJgOvEdaxWORMxJutadE\nTiUGO4s1CViCrcPgra2VhCWUH7HyLrWBydjZ8AOdx1TCzoodA6wBPsXK1nCK1x3kvO59QEuskugy\nrApzaed178RKTCwDGpD+SB/gkPM7ASttPQUrmxOLLe60GDvj+I4s3rvv85Oc2H9x3ktWimDlIcYA\n72fzOBGRXOdZ4GGsm8Zb+6kDVqoarG6VtwT4vViZhTJYzZ2tWAXQSlghN2830jBs1bg8WLHMs7J4\n3bd94vAtxdILeM0nPt+FekaQPml417hIwBLAec71O7CKtGALkP3oxJmR7/P3YZWgY5y4M2uFjMRa\nai9lcp/IGVH3lESafNjqiTOd63FYcvCa6vxe5fx41xLZhFX6PIAlEG8X0hgswXwD1MDqdGX2uuN9\nLp+LlZ0uiyWkTT73+VuMcjFWwwps+c1LgJud60WBKtiCOdk93xvfz1iSyTjm4QG+xep6vU7aojwi\nZ0xJQyJNDFYs8uos7k92fqf6XPZe937ffdcUiXGun+p1D/tcfgtrXXyJDX73z+I5KaR1AcdiCSaz\n1wO4h7RE6A/f93aCrP+Xx2HJ5CtszOVQFo8T8YvGNCTSJGNrH9dzrsdjpZ9PR0Wf53fCxhfWneJ1\nfVsQRUk7yu/uc/tB0q/NvZm0Mu+tSFu7OaPpQB/SdvzVsAWKAmUwMBtbayGrGET8oqQhkeYE1o3z\nMtYt8xOZT3PNbpXCddg6LWuwmUVDsPWTs3td39fqjw1CL8G6fLz3fQG0cZ5bH/gQa4n8jCUj36N8\n39cb6sSyDCtTPYTMWw6eLC5ndj3j7Y9h05VHE76r44mIhJ1KZL0IkIicgloaEo20TrqIiIiIiIiI\niIiIiIiIiIiIiIiIiIiIBMP/A3ddtmCKzHeDAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x10fc6d310>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The maximum conversion that can be attained is 44 percent\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.11 Page No : 309"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Basis: 1 Kgmole of benzene\n",
"#C6H6 (A) + HNO3 (B) - C6H5NO2 (C) + H2O (D)\n",
"T = 298.0;#Temperature in K\n",
"R = 1.98;#gas consmath.tant in Kcal/Kgmole K\n",
"#standard enthalpy in Kcal/Kgmole at 25 deg celsius of the above components are given as\n",
"H_A = 11718.0;\n",
"H_B = -41404.0;\n",
"H_C = -68371.0;\n",
"H_D = 3800.0;\n",
"#standard entropy in Kcal/Kgmole K at 25 deg celsius of the above components are given as\n",
"S_A = 41.30;\n",
"S_B = 37.19;\n",
"S_C = 16.72;\n",
"S_D = 53.60;\n",
"\n",
"#To Calculate the conversion of benzene at 25 degree celsius and 1 atm\n",
"del_F = (H_C+H_D-(T*(S_C+S_D)))-(H_A+H_B-(T*(S_A+S_B)));\n",
"Ka = math.e**(-del_F/(R*T));#Equilibrium consmath.tant\n",
"x = (Ka**(1/2.0)/(1+(Ka**(1/2.0))));\n",
"print 'The conversion is almost %f percent for this reaction.'%(x*100);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The conversion is almost 100.000000 percent for this reaction.\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.12 Page No : 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from sympy import Symbol\n",
"import numpy\n",
"\n",
"#Given\n",
"#C + 2H2 - CH4\n",
"#Basis: 1 Kgmole of C fed\n",
"T = 1000.0;#Temperature in K\n",
"P1 = 2.0;#Pressure in atm\n",
"del_F = 4580.0;#standard free energy in Kcal/Kgmole\n",
"\n",
"\n",
"#To Calculate the maximum CH4 concentration under the condition of 2 atm and the quantity of methane obtained if pressure is 1 atm\n",
"Ka = math.e**(-del_F/(R*T));#Equilibrium consmath.tant\n",
"#In relation (d) (page no 339) p_H2 = p (say)\n",
"p = Symbol('p');\n",
"q = [Ka,1,-P1]#*(p**2)+p-P1;\n",
"r = numpy.roots(q);\n",
"p_H2 = r[1];#partial pressure of H2\n",
"p_CH4 = P1-p_H2;#partial pressure of CH4\n",
"X_H2 = p_H2*100/P1;#mole percent of H2\n",
"X_CH4 = p_CH4*100/P1;#mole percent of CH4\n",
"print 'Under the conditions of 2 atm and 1000 K, the maximum CH4 concentration is %f percent and further increase is not pssible'%(X_CH4);\n",
"#Now.pressure has become\n",
"P2 = 1;#in atm\n",
"q = Ka*(p**2)+p-P2;\n",
"r = [Ka,1,-P2]#numpy.roots(q);\n",
"p_H2 = r[1];#partial pressure of H2\n",
"p_CH4 = P2-p_H2;#partial pressure of CH4\n",
"X_H2 = p_H2*100/P2;#mole percent of H2\n",
"X_CH4 = p_CH4*100/P2;#mole percent of CH4\n",
"print ' Under the conditions of 1 atm and 1000 K,Methane = %f percent and Hydrogen = %f percent'%(X_CH4,X_H2);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Under the conditions of 2 atm and 1000 K, the maximum CH4 concentration is 14.475434 percent and further increase is not pssible\n",
" Under the conditions of 1 atm and 1000 K,Methane = 0.000000 percent and Hydrogen = 100.000000 percent\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.13 Page No : 312"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Given\n",
"T1 = 273+110;#Temperature in K\n",
"T = 298.0;#Room temperature in K\n",
"P = 1.0;#Pressure in atm\n",
"R = 1.98;#gas consmath.tant in Kcal/Kgmole\n",
"#Ag2CO3(s) (A) = Ag2O(s) (B) + CO2(g) (C)\n",
"a = 1.0;#Stoichiometry coefficient of A\n",
"b = 1.0;#Stoichiometry coefficient of B\n",
"c = 1.0;#Stoichiometry coefficient of C\n",
"#standard entropy of the above components in Kcal/Kgmole K at 25 deg cel are given as\n",
"S_A = 40.17;\n",
"S_B = 29.09;\n",
"S_C = 51.08;\n",
"#standard enthalpy of the above components in Kcal/Kgmole at 25 deg cel are given as\n",
"H_A = -119900.0;\n",
"H_B = -6950.0;\n",
"H_C = -94036.0;\n",
"#Specific heat (assumed consmath.tant) of the above components in Kcal/Kgmole K are given as\n",
"C_A = 26.1;\n",
"C_B = 16.5;\n",
"C_C = 9.6;\n",
"\n",
"#To Calculate the partial pressure of CO2 required for decomposition and thus determine whether Ag2CO3 will decomposes or not at the given pressure and temperature\n",
"del_H = H_C+H_B-H_A;#standard heat of reaction at 25 deg cel in Kcal/Kgmole\n",
"del_C = b*C_B+c*C_C-a*C_A;\n",
"#From equation 14.15 (page no 340)\n",
"del_Ht = del_H +del_C*(T1-T);\n",
"del_F = del_H-(T*(S_B+S_C-S_A));#standard free energy in Kcal/Kgmole\n",
"Ka1 = math.e**(-del_F/(R*T));#Equilibrium consmath.tant at temperature T\n",
"#Since del_Ht is consmath.tant(as del_C = 0),Ka2 can be calculated by equation 14.43 (page no 316)\n",
"Ka2 = Ka1* math.e**((del_Ht/R)*(1/T1-1/T));\n",
"p_CO2 = Ka2;\n",
"print 'The partial pressure of CO2 required for decomposition is %4.3e atm'%(p_CO2);\n",
"if p_CO2 < P :\n",
" print ' Silver carbonate will not decompose at 110 deg celsius as the pressure given is 1 atm';\n",
"else:\n",
" print ' Silver carbonate will decompose at 110 deg celsius';\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The partial pressure of CO2 required for decomposition is 8.523e-20 atm\n",
" Silver carbonate will not decompose at 110 deg celsius as the pressure given is 1 atm\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.15 Page No : 314"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import poly1d,roots\n",
"#Given\n",
"#C3H8 = C3H6 + H2... (i)\n",
"#C3H8 = C2H4 +CH4...(ii)\n",
"Kp1 = 7.88;#Equilibrium consmath.tant of equation (i)\n",
"Kp2 = 775.0;#Equilibrium consmath.tant of equation (ii)\n",
"T = 760+273;#Temperature in K\n",
"\n",
"#To Calculate the equilibrium composition of the mixture\n",
"#Basis: 1 mole of C3H8 in feed\n",
"#From the equations (a) &(b) (page no 343); y/x = z (say)\n",
"z = (Kp2/Kp1)**(1/2);\n",
"#Substituting y = z*x in equation(a), we got the equation p:\n",
"\n",
"#x = poly(0,'x')\n",
"p = poly1d([1+Kp1+Kp1*(z**2)+2*Kp1,0,-Kp1])\n",
"q = roots(p);\n",
"\n",
"x = q[0];\n",
"y = z*x;\n",
"print 'Moles of H2, C3H6, C2H4 and CH4 formed at equilibrium are %f %f %f %f respectively.'%(x,x,y,y);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Moles of H2, C3H6, C2H4 and CH4 formed at equilibrium are 0.492252 0.492252 0.492252 0.492252 respectively.\n"
]
}
],
"prompt_number": 23
}
],
"metadata": {}
}
]
}
|