summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch11_1.ipynb
blob: e5accd29d7f17ae25bfc1e82f5435b0bfd8048f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
{
 "metadata": {
  "name": "",
  "signature": "sha256:311c74298b5b14a54f4d1278f9c15d5918adb65c1f1cd4717c56b8ba91310447"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 11 : Liquefaction of Gases"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.1  Page No : 195"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#Given\n",
      "P1 = 8.74;#Initial pressure in Kgf/sq cm\n",
      "P2 = 2.41;#Final pressure in Kgf/sq cm\n",
      "H1 = 327.13;#Enthalpy of inlet stream in Kcal/Kg\n",
      "Hl = 26.8;#Enthalpy of liquid  at the final condition in Kcal/Kg\n",
      "H2 = H1#Enthalpy of exit stream in Kcal/Kg ,math.since throttling is isenthalpic\n",
      "Hg = 340.3;#Enthalpy of gas at the final condition  in Kcal/Kg\n",
      "vl = 152*10**-5;#Specific volume of liquid at the final condition in cubic meter/Kg\n",
      "vg = 0.509;#Specific volume of gas at the final condition in cubic meter/Kg\n",
      "v1 = 0.1494;#Initial specific volume in cubic meter/Kg\n",
      "\n",
      "#To Calculate the dryness fraction of exit stream and the ratio of upstream to downstream diameters\n",
      "#(i)Calculation of the dryness fraction of exit stream\n",
      "#From equation 3.13(a) (page no 82)\n",
      "x = (H2- Hl)/(Hg-Hl);\n",
      "print \"i)The dryness fraction of the exit stream is %f\"%(x);\n",
      "\n",
      "#(ii)Calculation of the ratio of upstream to downstream pipe diameters\n",
      "#From equation 3.13(b) (page no 82)\n",
      "v2 = (vl*(1-x))+(x*vg);#Total specific volume at the final condition in cubic meter/Kg\n",
      "#u1 = u2; math.since KE changes are negligible\n",
      "#From continuity equation: A2/A1 = D2**2/D1**2 = v2/v1 ; let required ratio,r = D2/D1;\n",
      "r = (v2/v1)**(1/2);\n",
      "print \" ii)The ratio of upstream to downstream diameters  is %f\"%(r);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i)The dryness fraction of the exit stream is 0.957990\n",
        " ii)The ratio of upstream to downstream diameters  is 1.000000\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.2  Page No : 199"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "P1 = 1000*1.033*10**4;#Initial pressure in Kgf/sq m\n",
      "P2 = 1*1.033*10**4;#Final pressure in Kgf/sq m\n",
      "T1 = 300.0;#Inital temperature in K\n",
      "Cp = 7.0;#Specific heat of the gas in Kcal/Kgmole K\n",
      "#Gas obeys the relation: v = (R*T)/P+(b*(T**2))\n",
      "b = 5.4392*10**-8;#in cubic meter/Kgmole K**2\n",
      "\n",
      "#To Calculate the temperature of the throttled gas\n",
      "#From equation (a) (page no 212);which we got after integration \n",
      "T2 = 1/((1/T1)-((b/Cp)*((P2-P1)/427)));\n",
      "print \"The throttled gas is cooled to %f K\"%(T2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The throttled gas is cooled to 284.000191 K\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.3  Page No : 203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "#From the figure 11.8 (page no 216) & from figure A.2.7\n",
      "H3 = 0.0;\n",
      "H7 = -47.0;#in Kcal/Kg\n",
      "H6 = -93.0;#in Kcal/Kg\n",
      "H8 = 7.0;#in Kcal/Kg\n",
      "\n",
      "#To Calculate the fraction of air liquified at steady state and temperature of air before throttling\n",
      "#(i)Calculation of fraction of air liquified\n",
      "#From equation 11.3 (page no 215)\n",
      "x = (H8-H3)/(H8-H6);\n",
      "print \"The fraction of air liquified is %f\"%(x);\n",
      "\n",
      "#(ii)Calculation of temperature \n",
      "H4 = H3+(H7*(1-x))-(H8*(1-x));#enthalpy of the gas before throttling\n",
      "#From figure A.2.7 temperature corresponds to pressure 160 atm and the enthalpy H4 is\n",
      "T = -112;\n",
      "print \" The temperature of air before throttling is %d deg celsius\"%(T);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fraction of air liquified is 0.070000\n",
        " The temperature of air before throttling is -112 deg celsius\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}