1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
{
"metadata": {
"name": "",
"signature": "sha256:a053f39727ace41fe9dd23fd039f18e2237a3b4848b2ddbeb10075aa5411107c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10 : Compressor"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.1 Page No : 168"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Given\n",
"V1 = 2.7;#flow rate of CO2 in cubic meter/min\n",
"T1 = 273-51;#temperature in K\n",
"P1 = 1.0;#initial pressure in Kgf/sq cm\n",
"P2 = 10.0;#final pressure in Kgf/sq cm\n",
"y = 1.3;#gamma\n",
"v1 = 0.41;#specific volume in cubic meter/Kg\n",
"H1 = 158.7;# initial enthalpy in Kcal/Kg\n",
"H2 = 188.7;#final enthalpy in Kcal/Kg\n",
"\n",
"#process is isentropic\n",
"#To calculate the horsepower required\n",
"\n",
"#(i)Assuming ideal gas behaviour\n",
"#From equation 10.3 (page no 189)\n",
"W = (y/(y-1))*(P1*1.03*10**4*V1)*(1-(P2/P1)**((y-1)/y));#work in m Kgf/min\n",
"W1 = W/4500.0;\n",
"print \"i)The horsepower required is %f hp\"%(W1);\n",
"\n",
"#(ii)Umath.sing the given data for CO2\n",
"#From equation 10.2 (page no 189)\n",
"W = -(H2 - H1);#work in Kcal/Kg\n",
"M = V1/v1;#Mass rate of gas in Kg/min\n",
"W1 = W*M*(427/4500.0);\n",
"print \" ii)Compressor work is %f hp\"%(W1);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i)The horsepower required is -18.779590 hp\n",
" ii)Compressor work is -18.746341 hp\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.2 Page No : 171"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"P1 = 1.0;#Initial pressure in atm\n",
"P2 = 29.0;#Final pressure in atm\n",
"C = 0.05;#Clearance\n",
"y = 1.4;#gamma of air\n",
"\n",
"#To calculate the volumetric efficiency and the maximum possible pressure that can be attained in a math.single stage\n",
"#(i)Calulation of volumetric efficiency\n",
"#From equation 10.11 (page no 194)\n",
"V_E = 1+C-C*(P2/P1)**(1/y);\n",
"print \"i)Volumetric efficiency is %f percent\"%(V_E*100);\n",
"\n",
"#(ii)Calculation of maximum pressure \n",
"V_E = 0;#Minimum efficiency\n",
"P2 = P1*(((1+C-V_E)/C)**y);\n",
"print \" ii)The maximum possible pressure attained is %f atm\"%(P2);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i)Volumetric efficiency is 49.596143 percent\n",
" ii)The maximum possible pressure attained is 70.975263 atm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.3 Page No : 174"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"V_d = 5.15;#print lacement volume in cubic meter/min\n",
"P1 = 1.0;#initial pressure in Kgf/sq cm\n",
"P2 = 8.5;#final pressure in Kgf/sq cm\n",
"C = 0.06;#Clearance\n",
"M_E = 0.8;#Mechenical efficiency\n",
"y = 1.31;#gamma\n",
"\n",
"#To calculate the capacity and the actual horse power of the compressor\n",
"v1 = V_d*(1+C-(C*((P2/P1)**(1/y))));\n",
"print \"The capacity of the copressor is %f cubic meter/min\"%(v1);\n",
"#From equation 10.6 (page no 192)\n",
"W = (y/(y-1))*(P1*1*10**4*v1)*(1-(P2/P1)**((y-1)/y));#work in Kgf/min\n",
"W1 = W/4500.0;#work in hp\n",
"W2 = W1/M_E;\n",
"print \" The actual horse power of the compressor is %f hp\"%(W2);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacity of the copressor is 3.876154 cubic meter/min\n",
" The actual horse power of the compressor is -30.000346 hp\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.4 Page No : 177"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"P1 = 1.0;#Initial pressure in Kgf/sq cm\n",
"Pn = 13.0;#Final pressure in Kgf/sq cm\n",
"V1 =27.0;#flow rate of gas in cubic meter/min\n",
"y = 1.6;#gamma of the gas\n",
"n = [1.0,2.0,3.0,4.0,7.0,10.0];#number of stages\n",
"print \"No of stages Horse power in hp\";\n",
"#To Calculate the theoretical horse power required\n",
"W = []\n",
"for i in range(0,6):\n",
" W.append(n[i]*(y/(y-1))*((P1*10**4)/4500)*V1*(1-(Pn/P1)**((y-1)/(n[i]*y))));\n",
" print \" %d\"%(n[i]),\n",
" print \" %f\"%(-1*W[i])\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No of stages Horse power in hp\n",
" 1 258.647729\n",
" 2 197.623943\n",
" 3 181.430407\n",
" 4 173.977056\n",
" 7 164.971690\n",
" 10 161.541416\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.5 Page No : 180"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"P1 = 1.0;#Initial pressure in Kgf/sq cm\n",
"P4 = 200.0;#Final pressure in Kgf/sq cm\n",
"n = 4.0;#no of stages\n",
"\n",
"#To find out the presure between stages\n",
"r = (P4/P1)**(1/n);#Compression ratio\n",
"P2 = r*P1;\n",
"print \"The pressure after 1st stage is %f Kgf/sq cm\"%(P2);\n",
"P3 = r*P2;\n",
"print \" The pressure after 2nd stage is %f Kgf/sq cm\"%(P3);\n",
"P4 = r*P3;\n",
"print \" The pressure after 3rd stage is %f Kgf/sq cm\"%(P4);\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The pressure after 1st stage is 3.760603 Kgf/sq cm\n",
" The pressure after 2nd stage is 14.142136 Kgf/sq cm\n",
" The pressure after 3rd stage is 53.182959 Kgf/sq cm\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|