1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 : Exergy"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.1 Page Number : 184"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of fraction of the availability loss\n",
"\n",
"import math\n",
"\n",
"# Variables\n",
"T_1 = 500+273.15;\t\t\t#[C] - Condensation temperature\n",
"T_2 = 250+273.15;\t\t\t#[C] - Temperature at which vaporization takes place.\n",
"\n",
"T_3 = 25+273.15;\t\t\t#[C] - Ambient atmospheric temperature.\n",
"\n",
"Q = 1;\t\t\t#We are taking a fictitious value of Q, its value is not given.But we need to initialize it wid some value,so we are taking its value as Q=1.\n",
"\n",
"# Calculations\n",
"\t\t\t#The exergy content of the vapour at 500 C,\n",
"Ex_T_1 = Q*(1-(T_3/T_1));\n",
"Ex_T_2 = Q*(1-(T_3/T_2));\n",
"\t\t\t#Therefore,loss in exergy is given by\n",
"Ex_loss = Ex_T_1 - Ex_T_2;\n",
"\t\t\t#Fraction of exergy lost due to irreversible process is,\n",
"Ex_fraction =(Ex_loss/Ex_T_1);\n",
"\n",
"# Results\n",
"print \" The fraction of exergy lost due to irreversible process is %f\"%(Ex_fraction);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The fraction of exergy lost due to irreversible process is 0.299954\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.2 Page Number : 188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of availability change and irreversibility\n",
"\n",
"# Variables\n",
"T_1 = 300.;\t\t\t#[K] - Initial temperature.\n",
"P_1 = 100.;\t\t\t#[kPa] - Initial pressure.\n",
"T_2 = 500.;\t\t\t#[K] - Final temperature.\n",
"T_0 = 300.;\t\t\t#[K] - Environment temperature.\n",
"P_0 = 1.;\t\t\t#[atm] - Environment pressure.\n",
"R = 8.314;\t\t\t#[J/mol*K]\n",
"\t\t\t#(Cp_0/R)= 3.626\n",
"Cp_0 = 3.626*R;\t\t\t#[J/mol-K] - Heat capacity at constant pressure\n",
"\n",
"\n",
"# Calculations and Results\n",
"\t\t\t#(1).\n",
"\t\t\t#The availability change is given by, (phi_1 - phi_2) = U_1 - U_2 + P_0*(V_1 - V_2) - T_0*(S_1 - S_2)\n",
"\t\t\t#Let us determine the change in internal energy\n",
"\t\t\t#For ideal gas the molar internal energy change is given by delta_U = Cv_0*(T_2-T_1)\n",
"\t\t\t#For ideal gas Cp_0 - Cv_0 = R, and therefore\n",
"Cv_0 = ((Cp_0/R)- 1)*R;\t\t\t#[J/mol-K] - Heat capacity at constant volume\n",
"delta_U = Cv_0*(T_2-T_1);\t\t\t#[J/mol]\n",
"\t\t\t#delta_U = -w (from energy balance). Therefore, U1-U2 = -delta_U.\n",
"\t\t\t#The entropy change of ideal gas is given by\n",
"\t\t\t#delta_S = Cp_0*math.log(T_2/T_1) - R*math.log(P_2/P_1), but,(P1*V1/T1) = (P1*V1/T1) and therefore (P2/P1) = (T2/T1)\n",
"delta_S = Cp_0*math.log(T_2/T_1) - R*math.log(T_2/T_1);\t\t\t#[J/mol-K]\n",
"\t\t\t#The exergy change is given by, (phi_1 - phi_2) = U_1 - U_2 + P_0*(V_1 - V_2) - T_0*(S_1 - S_2)\n",
"\t\t\t#(V_1 - V_2) = 0, because the tank is rigid and so the volume is constant\n",
"delta_phi = (-delta_U) - T_0*(-delta_S);\t\t\t#[J/mol]\n",
"print \" 1).The change in exergy is %f J/mol\"%(delta_phi);\n",
"\n",
"\t\t\t#(2).\n",
"\t\t\t#Entropy change of the system is given by, delta_S_sys = q/T_b + S_gen\n",
"\t\t\t#Since the system is adiabatic therefore, delta_S_sys = S_gen\n",
"S_gen = delta_S;\n",
"\t\t\t#Irreversibility is given by\n",
"i = T_0*S_gen;\t\t\t#[J/mol]\n",
"print \" 2).The value of irreversibility is %f J/mol\"%(i);\n",
"\t\t\t#Irreversibility can also be determined using\n",
"\t\t\t#i = (W_rev_use - W_use)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1).The change in exergy is -1020.722863 J/mol\n",
" 2).The value of irreversibility is 3345.789937 J/mol\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.3 Page Number : 190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of availability change and irreversibility\n",
"\n",
"import math\n",
"# Variables\n",
"P_1 = 15.;\t\t\t#[bar] - Initial pressure\n",
"P_1 = P_1*10**(5);\t\t\t#[Pa]\n",
"T_1 = 300.+273.15;\t\t\t#[K] - Initial temperature\n",
"T_0 = 298.15;\t\t\t#[K]\n",
"T_R = 1200.;\t\t\t#[K] - Reservoir temerature.\n",
"P_0 = 1.;\t\t\t#[bar]\n",
"P_0 = P_0*10**(5);\t\t\t#[Pa]\n",
"n = 1.;\t\t\t#[mol] - No of moles\n",
"R = 8.314;\t\t\t#[J/mol*K]\n",
"Y = 1.4;\t\t\t# - Ratio of heat capacities.\n",
"Cv_0 = R/(Y-1);\t\t\t#[J/mol-K] - Heat capacity at constant volume\n",
"Cp_0 = Cv_0 + R;\t\t\t#[J/mol-K] - Heat capacity at constant pressure\n",
"\n",
"# Calculations and Results\n",
"\t\t\t#(1)\n",
"\t\t\t#V_2 = 2*V_1 and since pressure is constant,we get (V_1/T_1) = (2*V_1/T_1), or, T_2 = 2*T_1.\n",
"T_2 = 2*T_1;\t\t\t#[K]\n",
"W = P_1*(((R*T_2)/P_1)-((R*T_1)/P_1));\t\t\t#[J/mol] - Actual work done\n",
"delta_U = Cv_0*(T_2-T_1);\t\t\t#[J/mol] - Change in internal energy.\n",
"q = W + delta_U;\t\t\t#[J/mol] - Heat change\n",
"\t\t\t#Now the availability change is given by, (phi_1 - phi_2) = U_1 - U_2 + P_0*(V_1 - V_2) - T_0*(S_1 - S_2) + q*(1-(T_0/T_R))\n",
"\t\t\t#delta_S = Cp_0*math.log(T_2/T_1) - R*math.log(P_2/P_1), and P_1 = P_2, Therefore\n",
"delta_S = Cp_0*math.log(T_2/T_1);\t\t\t#[J/mol-K] - Entropy change.\n",
"\t\t\t#Substituting expressions for delta_phi calculation. Decrease in availability is given by,\n",
"delta_phi = (-delta_U) + P_0*(((R*T_1)/P_1)-((R*T_2)/P_1)) - T_0*(-delta_S) + q*(1-(T_0/T_R));\t\t\t#[J/mol]\n",
"\t\t\t#Actual work done is given by, W = P_1*(V2-V1)\n",
"\t\t\t#Work done to print lace the atmosphere is given by, W = P_0*(V_2-V_1)\n",
"\t\t\t#Therefore, W_use = (P_1*(V2-V1) - P_0*(V2-V1))\n",
"W_use = (P_1-P_0)*(((R*T_2)/P_1)-((R*T_1)/P_1));\t\t\t#[J/mol] - useful work done\n",
"W_rev_use = delta_phi;\t\t\t# reversible useful work done\n",
"\t\t\t#Irreversibility is given by,\n",
"i = W_rev_use - W_use;\t\t\t#[J/mol]\n",
"print \" a).When the system is confined at constant pressure by a piston and is heated until it's volume is doubled \\n the ireversibility value is %f J/mol\"%(i);\n",
"\n",
"\t\t\t#The irreversibility can also be calculated using \n",
"\t\t\t# i = T_0*S_gen\n",
"\t\t\t#S_gen = delta_S - (q/T_R)\n",
"\n",
"\t\t\t#(b)\n",
"\t\t\t#V2 = 2*V_1 and therefore T_2 = 2*T_1, as P_2 = P_1\n",
"\t\t\t#Actual work done is same as before\n",
"\t\t\t#Let work done on stirrer be W_stir. Thus net work done by the system is W - W_stir.Fron energy balance we get,\n",
"W_stir = W + delta_U;\n",
"\t\t\t#Initially the exergy is due to that of the system at state 1 and stirrer work,'W_stir' and finally we have the exergy due to system at state 2,the stirrer work is spent,thus availability is given by\n",
"delta_phi_b = (-delta_U) + P_0*(((R*T_1)/P_1)-((R*T_2)/P_1)) - T_0*(-delta_S) + W_stir;\t\t\t#[J/mol]\n",
"W_rev_use_b = delta_phi_b;\t\t\t# reversible useful work done\n",
"W_use_b = W_use;\t\t\t# useful work done\n",
"\t\t\t#Now the irreversibility is given by,\n",
"i_b = W_rev_use_b - W_use_b;\t\t\t#[J/mol]\n",
"print \" b).When the system is confined at constant pressure by a piston and is stirred until it's volume is doubled \\n the ireversibility value is %f J/mol\"%(i_b);\n",
"\n",
"\t\t\t#The irreversibility can also be calculated using \n",
"\t\t\t# i_b = T_0*S_gen\n",
"\t\t\t#S_gen = delta_S - (q/T_R) and here, q = 0\n",
"\n",
"\t\t\t#(c)\n",
"P_2_c = 10;\t\t\t#[bar] - Final pressure, (Given)\n",
"P_2_c = P_2_c*10**(5);\t\t\t#[Pa]\n",
"\t\t\t#(P_1**(1-Y))*(T_1**(Y)) = (P_2**(1-Y))*(T_2**(Y))\n",
"T_2_c = T_1*((P_1/P_2_c)**((1-Y)/Y));\t\t\t#[K]\n",
"\t\t\t#Work done is given by, W = -delta_U = -Cv_0*(T_2_c - T_1)\n",
"W_c = -Cv_0*(T_2_c - T_1);\t\t\t#[J/mol]\n",
"\t\t\t#The final molar volume is calculated using P_1*V_1**(Y) = P_2*V_2**(Y)\n",
"\t\t\t#V_2 = V_1*((P_1/P_2_c)**(1/Y))\n",
"V_1 = (R*T_1)/P_1;\t\t\t#[cubic metre/mol] - Initial molar volume\n",
"V_2 = V_1*((P_1/P_2_c)**(1/Y));\t\t\t#[cubic metre/mol] - Final molar volume\n",
"\t\t\t#Now let us determine the work done to print lace the atmosphere,\n",
"W_atm_c = P_0*(V_2 - V_1);\t\t\t#[J/mol] - work done to print lace the atmosphere\n",
"\t\t\t#Thus useful work is given by,\n",
"W_use_c = W - W_atm_c;\t\t\t#[J/mol] - useful work done\n",
"\t\t\t#Here delta_S = 0,for reversible adiabatic process.Therefore,\n",
"W_rev_use_c = W_use_c;\n",
"\t\t\t#Now finally the irreversibility is given by,\n",
"i_c = W_rev_use_c - W_use_c;\t\t\t#[J/mol]\n",
"print \" c).When the system expands reversibly and adiabatically behind a piston \\n the ireversibility value is %f J/mol\"%(i_c);\n",
"\n",
"\t\t\t#(d)\n",
"\t\t\t#Here temperature is constant,but V_2 = 2*V_1, therefore P_2 = P_1/2\n",
"V_2_d = 2*V_1;\n",
"P_2_d = P_1/2;\n",
"\t\t\t#Under isothermal conditions work done is\n",
"W_d = R*T_1*math.log(V_2_d/V_1);\t\t\t#[J/mol]\n",
"\t\t\t#Work done to print lace the atmosphere is given by,\n",
"W_atm_d = P_0*(V_2_d - V_1);\t\t\t#[J/mol] - work done to print lace the atmosphere\n",
"\t\t\t#Thus useful work is given by,\n",
"W_use_d = W_d - W_atm_d;\t\t\t#[J/mol] - useful work done\n",
"delta_U_d = 0;\t\t\t#isothermal conditions\n",
"q_d = W_d;\t\t\t# since, delta_U_d = 0\n",
"\t\t\t#delta_S_d = Cp_0*math.log(T_2/T_1) - R*math.log(P_2/P_1), and T_1 = T_2, Therefore\n",
"delta_S_d = -R*math.log(P_2_d/P_1);\t\t\t#[J/mol-K] - Entropy change\n",
"\t\t\t#The reversible useful work is given by,\n",
"W_rev_use_d = P_0*(V_1 - V_2_d) - T_0*(-delta_S_d) + q_d*(1-(T_0/T_R));\t\t\t#[J/mol] - Reversible useful work done.\n",
"\t\t\t#The irreversibility is given by,\n",
"i_d = W_rev_use_d - W_use_d;\t\t\t#[J/mol]\n",
"print \" d).When the system expands reversibly and isothermally behind a piston until it's volume is doubled \\n the ireversibility value is %f J/mol\"%(i_d);\n",
"\n",
"\t\t\t#(e)\n",
"P_2_e = 10;\t\t\t#[bar] - Final pressure, (Given)\n",
"P_2_e = P_2_e*10**(5);\t\t\t#[Pa]\n",
"\t\t\t#During the expansion of an ideal gas in into vacuum the temperature of the gas remains the same,\n",
"T_2_e = T_1;\t\t\t# Final temperature\n",
"\t\t\t#Since boundary of the system is fixed so no net work is done, W = 0 and thus\n",
"W_use_e = 0;\t\t\t#[J/mol] - Useful work done\n",
"\t\t\t#Here, delta_U = 0,as temperature is same and\n",
"\t\t\t#(V_1-V_2) = 0,as for overall system there is no change in volume\n",
"delta_S_e = - R*math.log(P_2_e/P_1);\t\t\t#[J/mol-K] - Entropy change\n",
"\t\t\t#The reversible useful work is given by,\n",
"W_rev_use_e = - T_0*(-delta_S_e);\t\t\t#[J/mol] - Reversible useful work done.\n",
"\t\t\t#The irreversibility is given by,\n",
"i_e = W_rev_use_e - W_use_e;\t\t\t#[J/mol]\n",
"print \" e).When the system expands adiabatically into an adjacent chamber \\n the ireversibility value is %f J/mol\"%(i_e);\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" a).When the system is confined at constant pressure by a piston and is heated until it's volume is doubled \n",
" the ireversibility value is 1869.841742 J/mol\n",
" b).When the system is confined at constant pressure by a piston and is stirred until it's volume is doubled \n",
" the ireversibility value is 6013.652646 J/mol\n",
" c).When the system expands reversibly and adiabatically behind a piston \n",
" the ireversibility value is 0.000000 J/mol\n",
" d).When the system expands reversibly and isothermally behind a piston until it's volume is doubled \n",
" the ireversibility value is 897.537657 J/mol\n",
" e).When the system expands adiabatically into an adjacent chamber \n",
" the ireversibility value is 1005.074654 J/mol\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.4 Page Number : 194"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of useful work and irreversibility\n",
"\n",
"# Variables\n",
"T_1 = 150+273.15;\t\t\t#[K] - Initial temperature.\n",
"m = 4.6;\t\t\t#[kg] - mass of water\n",
"P_1 = 1;\t\t\t#[MPa] - Initial pressure\n",
"Q = 11000;\t\t\t#[kJ] - Heat transferred to the system.\n",
"T_R = 600+273.15;\t\t\t#[K] - Temperature of the reservior.\n",
"T_0 = 298;\t\t\t#[K] - Temperature of the environment\n",
"P_0 = 100;\t\t\t#[kPa] - Pressure of the environment\n",
"\n",
"# Calculations\n",
"\t\t\t#(1)\n",
"\t\t\t#The entropy change of an isothermal system undergoing an internally reversible process is given by,\n",
"delta_S_t = (Q/T_1);\t\t\t#[kJ] - Entropy change\n",
"delta_S = delta_S_t/m;\t\t\t#[kJ/kg-K] - \n",
"\n",
"\t\t\t#At 150 C,it has been reported in the book that, P_sat - 0.4758 kPa, V_liq = 0.001091 m**(3)/kg, U_liq = 631.68 kJ/kg, S_liq = 1.8418 kJ/kg-K, S_vap = 6.8379 kJ/kg-K\n",
"V_1 = 0.001091;\t\t\t#[m**(3)/kg] - initial specific volume\n",
"U_1 = 631.68;\t\t\t#[kJ/kg] - initial specific internal energy\n",
"S_1 = 1.8418;\t\t\t#[kJ/kg-K] - initial entropy\n",
"\t\t\t#The initial state of the water is a compressed liquid state,and S_1 is therefore equal to the entropy of the saturated liquid of the saturated liquid at the same temperature.\n",
"S_2 = S_1 + delta_S;\t\t\t#[kJ/kg-K] - Final entropy\n",
"\n",
"\t\t\t#At the final state the temperature is 150 C and S = 7.499 kJ/kg-K which is more than S_vap therefore it is superheated steam.\n",
"S_final = 7.494;\t\t\t#[kJ/kg-K]\n",
"\t\t\t#At 150 C, and 0.1 MPa: V = 1.9364 m**(3)/kg, U = 2582.8 kJ/kg, S = 7.6134 kJ/kg-K\n",
"\t\t\t#At 150 C, and 0.2 MPa: V = 0.9596 m**(3)/kg, U = 2576.9 kJ/kg, S = 7.2795 kJ/kg-K\n",
"U_t_1 = 2582.8;\t\t\t#[kJ/kg] - Internal energy\n",
"U_t_2 = 2576.9;\t\t\t#[kJ/kg]\n",
"V_t_1 = 1.9364;\t\t\t#[m**(3)/kg] - Specific volume\n",
"V_t_2 = 0.9596;\t\t\t#[m**(3)/kg]\n",
"S_t_1 = 7.6134;\t\t\t#[kJ/kg-K] - Entropy\n",
"S_t_2 = 7.2795;\t\t\t#[kJ/kg-K]\n",
"\t\t\t#The pressure at exit is given by,\n",
"P_2 = ((S_final - S_t_1)/(S_t_2 - S_t_1))*(0.2 - 0.1) + 0.1;\t\t\t#[Mpa] - Final pressure\n",
"\t\t\t#At final state\n",
"U_2 = U_t_1 + (U_t_2 - U_t_1)*((S_final - S_t_1)/(S_t_2 - S_t_1));\t\t\t#[kJ/kg] - Final specific internal energy\n",
"V_2 = V_t_1 + (V_t_2 - V_t_1)*((S_final - S_t_1)/(S_t_2 - S_t_1));\t\t\t#[m**(3)/kg] - Final specific volume\n",
"\n",
"q = Q/m;\t\t\t#[kJ/kg] - Heat supplied per unit kg of mass.\n",
"W_rev_use = U_1 - U_2 + P_0*(V_1 - V_2) - T_0*(S_1 - S_2) + q*(1 - (T_0/T_R));\t\t\t#[kJ/kg] - Reversible useful work done.\n",
"\n",
"\t\t\t#Now let us calculate the actual work done. We know q - W = delta_U, therefore\n",
"W = q - (U_2 - U_1);\t\t\t#[kJ/kg] - Work done\n",
"W_use = W - P_0*(V_2 - V_1);\t\t\t#[kJ/kg]\n",
"i = W_rev_use - W_use;\t\t\t#[kJ/kg] - Irreversibility\n",
"\t\t\t#Since the system contains 4.6 g therefore, \n",
"W_use_new = W_use*m;\t\t\t#[kJ]\n",
"W_rev_use_new = W_rev_use*m;\t\t\t#[kJ]\n",
"I = W_rev_use_new - W_use_new;\t\t\t#[kJ]\n",
"\n",
"# Results\n",
"print \" 1).The useful work obtained is %f kJ\"%(W_use_new);\n",
"print \" 2).The reversible usefuk work done is %f kJ\"%(W_rev_use_new);\n",
"print \" 3).The irreversibility is %f kJ\"%(I);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1).The useful work obtained is 1304.987050 kJ\n",
" 2).The reversible usefuk work done is 5297.425775 kJ\n",
" 3).The irreversibility is 3992.438725 kJ\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.5 Page Number : 197"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of reversible work and irreversibility\n",
"\n",
"# Variables\n",
"T_1 = 700+273.15;\t\t\t#[K] - Initial temperature.\n",
"P_1 = 12;\t\t\t#[MPa] - Initial pressure\n",
"P_2 = 0.6;\t\t\t#[MPa] - Final pressure\n",
"\t\t\t#At 12 MPa and 700 C,\n",
"H_1 = 3858.4;\t\t\t#[kJ/kg] - initial enthalpy\n",
"S_1 = 7.0757;\t\t\t#[kJ/kg-K] - initial entropy\n",
"\n",
"\t\t\t#At 0.6 MPa and 200 C,\n",
"H_2 = 2850.1;\t\t\t#[kJ/kg]\n",
"S_2 = 6.9673;\t\t\t#[kJ/kg-K]\n",
"\n",
"\t\t\t#At 0.6 MPa and 250 C,\n",
"H_3 = 2957.2;\t\t\t#[kJ/kg]\n",
"S_3 = 7.1824;\t\t\t#[kJ/kg-K]\n",
"\n",
"\t\t\t#At 0.6 MPa and 300 C,\n",
"H_4 = 3061.6;\t\t\t#[kJ/kg]\n",
"S_4 = 7.3732;\t\t\t#[kJ/kg-K]\n",
"\n",
"# Calculations and Results\n",
"\t\t\t#(1)\n",
"\t\t\t#In the case of ideal turbine the entropy change does not take place,therefore the exit conditions are\n",
"P_exit = P_2;\t\t\t#[MPa] - exit pressure\n",
"T_exit = ((S_1 - S_2)/(S_3 - S_2))*(250 - 200) + 200;\t\t\t#[C] - exit temperature\n",
"H_exit = ((S_1 - S_2)/(S_3 - S_2))*(H_3 - H_2) + H_2;\t\t\t#[kJ/kg] - exit enthalpy\n",
"\n",
"\t\t\t#Snce it is a flow pocess,therfore\n",
"\t\t\t#W_rev = H_1 - H_exit - T_0*(S_1 - S_2)\n",
"\t\t\t#As S_1 = S_2,the above equation becomes\n",
"W_rev_1 = H_1 - H_exit;\t\t\t#[kJ/kg] - reversible work done\n",
"\n",
"\t\t\t#From the first law the actual work done can be calculated using, delta_H = q - W\n",
"\t\t\t#Since the turbine does not exchange heat,therefore W = - delta_H.\n",
"W_1 = - (H_exit - H_1);\t\t\t#[kJ/kg]\n",
"\n",
"print \" 1).The reversible work done is %f kJ/kg\"%(W_1);\n",
"print \" And since the maximum work is same as the actual work ,therefore irreversibility is zero\"\n",
"\n",
"\t\t\t#(2)\n",
"\t\t\t# Variables\n",
"T_0 = 298.15;\t\t\t#[K] - Environment temperature\n",
"P_0 = 1;\t\t\t#[atm] - Environment pressure\n",
"adi_eff = 0.88;\t\t\t#adiabatc efficiency\n",
"\n",
"\t\t\t#(H_1 - H_exit_actual)/(H_1 - H_exit) = 0.88, therefore\n",
"H_exit_actual = H_1 - 0.88*(H_1 - H_exit);\t\t\t# - Actual exit enthalpy\n",
"\n",
"\t\t\t#Now two properties i.e pressure = 0.6 MPa and enthalpy = H_exit_actual is fixed at the exit. The exit temperature is given by,\n",
"T_exit_actual = ((H_exit_actual - H_3)/(H_4 - H_3))*(300 - 250) + 250;\t\t\t#[C]\n",
"S_exit_actual = ((H_exit_actual - H_3)/(H_4 - H_3))*(S_4 - S_3) + S_3;\t\t\t#[kJ/kg]\n",
"\n",
"\t\t\t#Now reversible work done is given by,\n",
"W_rev_2 = H_1 - H_exit_actual - T_0*(S_1 - S_exit_actual);\t\t\t#[kJ/kg]\n",
"print \" 2).The reversible work done is %f kJ/kg\"%(W_rev_2);\n",
"\n",
"\t\t\t#The actual work is given by the first law,\n",
"W_2 = H_1 - H_exit_actual;\t\t\t#[kJ/kg] - Actual work done\n",
"i = W_rev_2 - W_2;\t\t\t#[kJ/kg] - irreversibility\n",
"print \" The value of irreversibility is %f kJ/kg\"%(i);\n",
"\n",
"\t\t\t#The irreversibility can also be determined using\n",
"\t\t\t# i = T_0*S_gen, and S_gen is given by\n",
"\t\t\t# S_gen = (q/T_R) - delta_S\n",
"\n",
"\t\t\t#The second law efficiency of the turbine is actual work done divided by reversible work,therefore\n",
"sec_eff = W_2/W_rev_2;\n",
"print \" The second law efficiency of the turbine is %f\"%(sec_eff);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1).The reversible work done is 954.326778 kJ/kg\n",
" And since the maximum work is same as the actual work ,therefore irreversibility is zero\n",
" 2).The reversible work done is 905.072590 kJ/kg\n",
" The value of irreversibility is 65.265025 kJ/kg\n",
" The second law efficiency of the turbine is 0.927890\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.6 Page Number : 198"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of maximum obtainable work and efficiency\n",
"\n",
"# Variables\n",
"P_1 = 8.;\t\t\t#[bar] - Initial pressure\n",
"T_1 = 93. + 273.15;\t\t\t#[C] - Initial temperature\n",
"V_1 = 100.;\t\t\t#[m/s] - Initial velocity\n",
"P_2 = 1.25;\t\t\t#[bar] - Exit pressure\n",
"T_2 = 27. + 273.15;\t\t\t#[C] - Exit temperature\n",
"V_2 = 60.;\t\t\t#[m/s] - Exit velocity \n",
"Y = 1.4;\t\t\t#Ratio of specific heat capacities\n",
"T_0 = 298.15;\t\t\t#[K] - surrounding temperature\n",
"P_0 = 1.;\t\t\t#[bar] - surrounding pressure\n",
"R = 8.314;\t\t\t#[J/mol*K] - Gas constant\n",
"Cp_0 = (R*Y)/(Y-1);\t\t\t#[J/mol-K] - Heat capacity at constant pressure\n",
"\n",
"# Calculations and Results\n",
"\t\t\t#Since the amount of heat transfer is negligible,therefore from first law the actual work done is given by,\n",
"\t\t\t#W = delta_H + (delta_V_square)/2\n",
"delta_H = Cp_0*(T_2 - T_1);\t\t\t#[J/mol] - enthalpy change\n",
"delta_H = (delta_H/28.84);\t\t\t#[kJ/kg] - (1 mole = 28.84 g).\n",
"delta_V_square = V_2**(2) - V_1**(2);\n",
"\n",
"W = - delta_H - ((delta_V_square)/2)/1000;\t\t\t#[kJ/kg] - Actual work done\n",
"print \" The actual work done is %f kJ/kg\"%(W);\n",
"\n",
"\t\t\t#Now let us calculate the maximum work that can be obtained\n",
"\t\t\t#W_rev = (H_1 + (V_1**(2))/2) - (H_2 + (V_2**(2))/2) - T_0*(S_1 - S_2)\n",
"delta_S = Cp_0*math.log(T_2/T_1) - R*math.log(P_2/P_1);\t\t\t#[J/mol-K] - Entropy change\n",
"delta_S = delta_S/28.84;\t\t\t#kJ/kg-K]\n",
"W_rev = -delta_H - ((delta_V_square/2)/1000) + T_0*delta_S;\t\t\t#[kJ/kg]\n",
"print \" The maximum work obtainable per kg of air is %f kJ/kg\"%(W_rev);\n",
"\n",
"\t\t\t#The second law efficiency of the turbine is actual work done divided by reversible work,therefore\n",
"sec_eff = W/W_rev;\n",
"print \" The second law efficiency of the turbine is %f\"%(sec_eff);\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The actual work done is 69.792718 kJ/kg\n",
" The maximum work obtainable per kg of air is 169.550182 kJ/kg\n",
" The second law efficiency of the turbine is 0.411635\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.7 Page Number : 200"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of entropy generation rate and irreversibility\n",
"\n",
"# Variables\n",
"m_cold_water = 60;\t\t\t#[kg/s] - mass flow rate of cold water\n",
"P_1 = 50;\t\t\t#[kPa]\n",
"T_2 = 250;\t\t\t#[C]\n",
"T_water_1 = 1000 + 273.15;\t\t\t#[K] - Entering temperature of water\n",
"T_water_2 = 450 +273.15;\t\t\t#[K] - Exit temperature of water\n",
"T_0 = 298.15;\t\t\t#[K] - surrounding temperature\n",
"P_0 = 1;\t\t\t#[atm] - surrounding pressure\n",
"Cp_0 = 1.005;\t\t\t#[kJ/kg-K]\n",
"\n",
"\t\t\t#For water at 50 kPa under saturated conditions,T_sat = 81.33 C, \n",
"H_liq_1 = 340.49;\t\t\t#[kJ/kg] - Enthalpy\n",
"S_liq_1 = 1.0910;\t\t\t#[kJ/kg-K] - Entropy\n",
"\n",
"\t\t\t#For steam at 50 kPa and 250 C,\n",
"H_2 = 2976.0;\t\t\t#[kJ/kg]\n",
"S_2 = 8.3556;\t\t\t#[kJ/kg-K]\n",
"\n",
"# Calculations and Results\n",
"\t\t\t#The cold stream is water which enters as saturated liquid at 50 kPa and exits as superheated vapour at 50 kPa and 250 C,since pressure drop is neglected.\n",
"\t\t\t#The mass flow rate of hot stream can be obtained from energy balance\n",
"m_hot_water = (m_cold_water*(H_2 - H_liq_1))/(Cp_0*(T_water_1 - T_water_2));\t\t\t#[kg/s] - mass flow rate of hot water\n",
"\n",
"\t\t\t#Since there is no heat exchange with the surrounding therefore the total entropy generation is given by\n",
"\t\t\t#S_gen = delta_S_hot + delta_S_cold\n",
"delta_S_cold = S_2 - S_liq_1;\t\t\t#[kJ/kg-K] - change of entropy of cold water\n",
"\t\t\t#delta_S_hot = Cp_0*math.log(T_2/T_1)-R*math.log(P_2/P_1), But pressure drop is zero,therfore\n",
"delta_S_hot = Cp_0*math.log(T_water_2/T_water_1);\t\t\t#[kJ/kg-K] - change of entropy of hot water\n",
"\n",
"S_gen = m_cold_water*delta_S_cold + m_hot_water*delta_S_hot;\t\t\t#[kW/K] - Entropy generated\n",
"print \" The entropy generation rate is %f kW/K\"%(S_gen);\n",
"\n",
"\t\t\t#The irreversibility rete is given by\n",
"I = T_0*S_gen;\t\t\t#[kW]\n",
"print \" The irreversibility rate of the heat exchanger is %f kW\"%(I);\n",
"\n",
"\t\t\t#The irreversibility can also be determined using the exergy approach\n",
"\t\t\t#We know that, I = W_rev - , but since actual work done zero in heat exchangers,therefore I = W_rev = exergy change\n",
"\t\t\t#(si_1 - si_2)_cold = H_1 - H_2 - T_0*(S_1 - S_2)\n",
"\t\t\t#(si_1 - si_2)_hot = Cp_0*(T_1 - T_2)- T_0*(S_1 - S_2)\n",
"\t\t\t# I = (si_1 - si_2)_cold - (si_1 - si_2)_hot.\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The entropy generation rate is 273.250824 kW/K\n",
" The irreversibility rate of the heat exchanger is 81469.733193 kW\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.8 Page Number : 201"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of exit temperature entropy and irreversibility rate\n",
"\n",
"# Variables\n",
"m_water = 10000.;\t\t\t#[kg/h] - Mass flow rate of cold water\n",
"m_water = m_water/3600;\t\t\t#[kg/s]\n",
"T_1_water = 30. + 273.15;\t\t\t#[K] - Cold water entering temperature\n",
"m_HC = 5000.;\t\t\t#[kg/h] - mass flow rate of hot hydrocarbon\n",
"m_HC = m_HC/3600;\t\t\t#[kg/s]\n",
"T_1_HC = 200. + 273.15;\t\t\t#[K] - Hot hydrocarbon entering temperature\n",
"T_2_HC = 100. + 273.15;\t\t\t#[K] - Hot hydrocarbon leaving temperature\n",
"Cp_0_water = 1.0;\t\t\t#[kcal/kg-K] - Mean heat capacity of cooling water\n",
"Cp_0_HC = 0.6;\t\t\t#[kcal/kg-K] - Mean heat capacity of hydrocarbon\n",
"\n",
"\n",
"# Calculations and Results\n",
"\t\t\t#(1)\n",
"\t\t\t#Applying energy balance to the heat exchanger,we get\n",
"\t\t\t#m_water*Cp_0_water*(T - T_1_water) = m_HC*Cp_0_HC*(T_1_HC - T_2_HC)\n",
"T_2_water = ((m_HC*Cp_0_HC*(T_1_HC - T_2_HC))/(m_water*Cp_0_water)) + T_1_water;\t\t\t#[K]\n",
"T_2 = T_2_water - 273.15;\t\t\t#[C]\n",
"print \" 1).The exit temperature of the cooling water is %f C\"%(T_2);\n",
"\n",
"\t\t\t#(2)\n",
"\t\t\t#delta_S_hot_HC = Cp_0*math.log(T_2/T_1)-R*math.log(P_2/P_1), But pressure drop is zero,therfore\n",
"delta_S_hot_HC = (Cp_0_HC*4.184)*math.log(T_2_HC/T_1_HC);\t\t\t#[kW/K] - change of entropy of hot hydrocarbon\n",
"delta_S_HC = m_HC*delta_S_hot_HC;\t\t\t#[kW/K] - Entropy change for hudrocarbon liquid \n",
"print \" 2).Entropy change rate of hydrocarbon liquid is %f kW/K\"%(delta_S_HC);\n",
"\n",
"delta_S_cold_water = (Cp_0_water*4.184)*math.log(T_2_water/T_1_water);\t\t\t#[kW/K] - change of entropy of cooling water\n",
"delta_S_water = m_water*delta_S_cold_water;\t\t\t#[kW/K] - Entropy change for water\n",
"print \" And entropy change rate of water is %f kW/K\"%(delta_S_water);\n",
"\n",
"\t\t\t#(3)\n",
"T_0 = 298.15;\t\t\t#[K] - Surrounding temperature\n",
"\t\t\t#S_gen = delta_S_cold_water + delta_S_hot_HC = m_water*delta_S_cold_water + m_HC*delta_S_hot_HC;\t\t\t#[kW/K] - Entropy generated\n",
"S_gen = delta_S_water + delta_S_HC;\t\t\t#[kW/K]\n",
"I = T_0*S_gen;\t\t\t#[kW]\n",
"print \" 3).The irreversibility rate of the heat exchanger is %f kW\"%(I);\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1).The exit temperature of the cooling water is 60.000000 C\n",
" 2).Entropy change rate of hydrocarbon liquid is -0.827846 kW/K\n",
" And entropy change rate of water is 1.096732 kW/K\n",
" 3).The irreversibility rate of the heat exchanger is 80.168382 kW\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5.9 Page Number : 202"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determinatio of exit temperature availability change and irreversibility\n",
"\n",
"# Variables\n",
"T_1_hotgas = 800.;\t\t\t#[K]\n",
"P_1_hotgas = 1.;\t\t\t#[bar]\n",
"T_2_hotgas = 700.;\t\t\t#[K]\n",
"P_2_hotgas = 1.;\t\t\t#[bar]\n",
"T_1_air = 470.;\t\t\t#[K]\n",
"P_1_air = 1.;\t\t\t#[bar]\n",
"P_2_air = 1.;\t\t\t#[bar]\n",
"Cp_0_hotgas = 1.08;\t\t\t#[kJ/kg-K] - Mean heat capacity of hot gas\n",
"Cp_0_air = 1.05;\t\t\t#[kcal/kg-K] - Mean heat capacity of air\n",
"T_0 = 298.15;\t\t\t#[K] - surrounding temperature\n",
"P_0 = 1.;\t\t\t#[bar] - surrounding pressure\n",
"\t\t\t#m_air = 2*m_hotgas\n",
"\n",
"# Calculations and Results\n",
"\t\t\t#(1)\n",
"\t\t\t#Assuming heat exchange only takes places in-between the streams,from energy balance we get,\n",
"\t\t\t#m_gas*Cp_0_hotgas*(T_2_hotgas - T_1_hotgas) + 2*m_gas*Cp_0_air*(T - T_1_air), \n",
"T_2_air = T_1_air - ((Cp_0_hotgas*(T_2_hotgas - T_1_hotgas))/(2*Cp_0_air));\t\t\t#[K] - Temp of emerging air\n",
"print \" 1).The temperature of emerging air is %f K\"%(T_2_air);\n",
"\n",
"\t\t\t#(2)\n",
"\t\t\t#Availability change of hot gas is given by,\n",
"\t\t\t#(si_1 - si_2)_hot = H_1 - H_2 - T_0*(S_1 - S_2)\n",
"delta_H_hotgas = (Cp_0_hotgas*(T_2_hotgas - T_1_hotgas));\t\t\t#[kJ/kg] - change in enthalpy of hotgas\n",
"\t\t\t#delta_S_hotgas = Cp_0_hotgas*math.log(T_2_hotgas/T_1_hotgas)- R*math.log(P_2/P_1), But pressure drop is zero (P_1 = P_2),therfore\n",
"delta_S_hotgas = Cp_0_hotgas*math.log(T_2_hotgas/T_1_hotgas);\t\t\t#[kJ/kg-K] - change of entropy of hot gas\n",
"delta_si_hotgas = (-delta_H_hotgas) - (-T_0*delta_S_hotgas);\t\t\t#[kJ/kg]\n",
"print \" 2).The availability change of hot gas is %f kJ/kg\"%(delta_si_hotgas);\n",
"\n",
"\t\t\t#(3)\n",
"\t\t\t#Availability change of air is given by,\n",
"\t\t\t#(si_1 - si_2)_air = H_1 - H_2 - T_0*(S_1 - S_2)\n",
"delta_H_air = (Cp_0_air*(T_2_air - T_1_air));\t\t\t#[kJ/kg] - change in enthalpy of air\n",
"\t\t\t#delta_S_air = Cp_0_air*math.log(T_2_air/T_1_air)- R*math.log(P_2/P_1), But pressure drop is zero (P_1 = P_2),therfore\n",
"delta_S_air = Cp_0_air*math.log(T_2_air/T_1_air);\t\t\t#[kJ/kg-K] - change of entropy of air\n",
"delta_si_air = (-delta_H_air) - (-T_0*delta_S_air);\t\t\t#[kJ/kg]\n",
"print \" 3).The availability change of air is %f kJ/kg\"%(delta_si_air);\n",
"\n",
"\t\t\t#(4)\n",
"\t\t\t#For the heat exchanger (Q = 0, W = 0)\n",
"\t\t\t#Basis : 1 kg of hot gas flowing through heat exchanger\n",
"S_gen = delta_S_hotgas + 2*delta_S_air;\t\t\t#[kJ/kg-K] - (as m_air = 2*m_hotgas)\n",
"I = T_0*S_gen;\t\t\t#[kJ/kg]\n",
"print \" 4).The irreversibility of thr exchanger per kg of hot gas flowing is %f kJ/kg\"%(I);\n",
"\n",
"\t\t\t#Irreversibility can also be obtained using\n",
"\t\t\t#I = 2*(si_1 - si_2)_air + (si_1 - si_2)_hotgas\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1).The temperature of emerging air is 521.428571 K\n",
" 2).The availability change of hot gas is 65.002625 kJ/kg\n",
" 3).The availability change of air is -21.492234 kJ/kg\n",
" 4).The irreversibility of thr exchanger per kg of hot gas flowing is 22.018157 kJ/kg\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|