1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1 : Introduction"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.1 Page number - 6"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of pressure and heat transfer in piston cylinder assembly\n",
"\n",
"# Variables\n",
"#(a)\n",
"# The pressure in the cylinder is due to the weight of the piston and due to surroundings pressure\n",
"m = 50.;\t\t\t#[kg] - Mass of piston\n",
"A = 0.05;\t\t\t#[m**(2)] - Area of piston\n",
"g = 9.81;\t\t\t#[m/s**(2)] - Acceleration due to gravity\n",
"Po = 101325;\t\t\t#[N/m**(2)] - Atmospheric pressure\n",
"\n",
"# Calculations and Results\n",
"P = (m*g/A)+Po;\t\t\t#[N/m**(2)]\n",
"P = P/100000.;\t\t\t#[bar]\n",
"print \" (a).Pressure = %f bar\"%P\n",
"\n",
"#(b)\n",
"print \" (b).Since the piston weight and surroundings pressure are the same, \\\n",
"the gas pressure in the piston-cylinder assembly remains %f bar\"%P\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" (a).Pressure = 1.111350 bar\n",
" (b).Since the piston weight and surroundings pressure are the same, the gas pressure in the piston-cylinder assembly remains 1.111350 bar\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.2 Page number - 8\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of mass of air contained in a room\n",
"\n",
"# Variables\n",
"P = 1.;\t\t\t#[atm] - Atmospheric pressure\n",
"P = 101325.;\t\t\t#[N/m**(2)]\n",
"R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
"T = 30.;\t\t\t#[C] - Temperature of air\n",
"T = 30.+273.15;\t\t\t#[K]\n",
"V = 5.*5*5;\t\t\t#[m**(3)] - Volume of the room\n",
"\n",
"# Calculations\n",
"#The number of moles of air is given by\n",
"n = (P*V)/(R*T)\t\t\t#[mol]\n",
"\n",
"#Molecular weight of air(21 vol% O2 and 79 vol% N2)=(0.21*32)+(0.79*28)= 28.84 g/mol\n",
"m = n*28.84;\t\t\t#[g]\n",
"m = m/1000.;\t\t\t#[kg]\n",
"\n",
"# Results\n",
"print \"The mass of air is, m = %f kg\"%m\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mass of air is, m = 144.928664 kg\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.3 Page number - 13\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of work done\n",
"\n",
"# Variables\n",
"P1 = 3.;\t\t\t# [bar] - initial pressure\n",
"V1 = 0.5;\t\t\t# [m**(3)] - initial volume\n",
"V2 = 1.0;\t\t\t# [m**(3)] - final volume\n",
"import math\n",
"#(a)\n",
"n = 1.5;\n",
"\n",
"# Calculations and Results\n",
"#Let P*V**(n)=C \t\t\t# Variables relation\n",
"#W (work done per mole)= (integrate('P'%'V'%V1%V2))\n",
"#W = (integrate('(C/V**(n))'%'V'%V1%V2)) = (C*((V2***(1-n))-(V1***(1-n))))/(1-n)\n",
"#Where C=P*V**(n)=P1*V1**(n)=P2*V2**(n)\n",
"#Thus w=((P2*V2**(n)*V2**(1-n))-(P1*V1**(n)*V1**(1-n)))/(1-n)\n",
"#w = ((P2*V2**(n))-(P1*V1**(n)))/(1-n)\n",
"#and thus W=((P2*V2)-(P1*V1))/(1-n)\n",
"#The above math.expression is valid for all values of n%except n=1.0\n",
"P2 = (P1*((V1/V2)**(n)))\t\t\t#[bar] \t\t\t#pressure at state 2\n",
"\n",
"#we have%(V1/V2)=(V1t/(V2t)%since the number of moles are constant.Thus\n",
"W = ((P2*V2)-(P1*V1))/(1-n)*10**(5)\t\t\t#[J]\n",
"W = W/1000.;\t\t\t#[kJ]\n",
"print \" (a).The work done (for n=1.5) is %f kJ\"%W\n",
"\n",
"#(b)\n",
"#For n=1.0%we have% PV=C.\n",
"# w(wok done per mol)= (integrate('P'%'V'%V1%V2)) = (integrate('C/V'%'V'%V1%V2)) = C*ln(V2/V1)=P1*V1*ln(V2/V1)\n",
"W1 = P1*V1*math.log(V2/V1)*10**(5)\t\t\t#[J]\n",
"W1 = W1/1000.;\t\t\t#[kJ]\n",
"print \" (b).The work done (for n=1.0) is %f kJ\"%W1\n",
"\n",
"#(c)\n",
"#For n=0%we get P=Constant and thus\n",
"P = P1;\t\t\t#[bar]\n",
"# w =(integrate('P'%'V'%V1%V2)) = P*(V2-V1)\n",
"W2 = P*(V2-V1)*10**(5)\t\t\t#[J]\n",
"W2 = W2/1000.;\t\t\t#[kJ]\n",
"print \" (c).The work done (for n=0) is %f kJ\"%W2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" (a).The work done (for n=1.5) is 87.867966 kJ\n",
" (b).The work done (for n=1.0) is 103.972077 kJ\n",
" (c).The work done (for n=0) is 150.000000 kJ\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.4 Page number - 17\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of wind energy per unit mass and diameter of the wind turbine\n",
"\n",
"# Variables\n",
"#(a)\n",
"# Variables\n",
"V = 9.;\t\t\t# [m/s] - velocity\n",
"d = 1.;\t\t\t#[m] - diameter\n",
"A = 3.14*(d/2)**(2)\t\t\t#[m**(2)] - area\n",
"P = 1.;\t\t\t#[atm] - pressure\n",
"P = 101325.;\t\t\t# [N/m**(2)]\n",
"T = 300.;\t\t\t#[K] - Temperature\n",
"R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
"\n",
"# Calculations and Results\n",
"E = (V**(2))/2.;\t\t\t#[J/kg]\n",
"print \" (a).The wind energy per unit mass of air is %f J/kg\"%E\n",
"\n",
"#(b)\n",
"# Molecular weight of air(21 vol% O2 and 79 vol% N2)=(0.21*32)+(0.79*28)= 28.84 g/mol\n",
"M = 28.84*10**(-3)\t\t\t#[kg/mol]\n",
"r = (P*M)/(R*T)\t\t\t#[kg/m**(3)] - density\n",
"m = r*V*A;\t\t\t# [kg/s] - mass flow rate of air\n",
"pi = m*E;\t\t\t#[Watt] - power input\n",
"print \" (b).The wind power input to the turbine is %f Watt\"%pi\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" (a).The wind energy per unit mass of air is 40.500000 J/kg\n",
" (b).The wind power input to the turbine is 335.233787 Watt\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.5 Page number - 23\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of temperature\n",
"\n",
"# Given\n",
"P = 1.;\t\t\t # [bar] - atospheric pressure\n",
"P1guz = 0.75;\t\t\t# [bar] - gauze pressure in 1st evaporator\n",
"P2Vguz = 0.25;\t\t\t# [bar] - vaccum gauze pressure in 2nd evaporator\n",
"\n",
"# Calculations\n",
"P1abs = P + P1guz;\t\t\t# [bar] - absolute pressure in 1st evaporator\n",
"P2abs = P - P2Vguz;\t\t\t# [bar] -absolute pressure in 2nd evaporator\n",
"\n",
"# Results\n",
"#From saturated steam table as reported in the book\n",
"print \" For P1abs (absolute pressure) = %f bar\"%P1abs\n",
"print \" The saturation temperature in first evaporator is 116.04 C\"\n",
"print \" For P2abs (absolute pressure) = %f bar\"%P2abs\n",
"print \" The saturation temperature in second evaporator is 91.76 C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" For P1abs (absolute pressure) = 1.750000 bar\n",
" The saturation temperature in first evaporator is 116.04 C\n",
" For P2abs (absolute pressure) = 0.750000 bar\n",
" The saturation temperature in second evaporator is 91.76 C\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.6 Page number - 23\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of dryness fraction of steam\n",
"\n",
"# Variables\n",
"V = 1.;\t\t\t # [kg] - volume of tank\n",
"P = 10.;\t\t\t# [bar] - pressure\n",
"\n",
"#Here degree of freedom =1(C=1%P=2%threfore F=1)\n",
"#From steam table at 10 bar as reported in the book\n",
"V_liq = 0.001127;\t\t\t# [m**(3)/kg] - volume in liquid phase\n",
"V_vap = 0.19444;\t\t\t# [m**(3)/kg] - volume in vapour phase\n",
"\n",
"# Calculations\n",
"#x*Vv=(1-x)*Vl \t\t\t# since two volumes are equal\n",
"x = (V_liq/(V_liq+V_vap))\t\t\t# [kg]\n",
"y = (1-x)\t\t\t#[kg]\n",
"\n",
"# Results\n",
"print \" Mass of saturated vapour is %f kg\"%x\n",
"print \" Mass of saturated liquid is %f kg\"%y\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Mass of saturated vapour is 0.005763 kg\n",
" Mass of saturated liquid is 0.994237 kg\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.7 Page number - 23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of pressure mass and volume\n",
"\n",
"# Variables\n",
"V = 1.;\t\t\t# [m**(3)] - volume of tank\n",
"M = 10.;\t\t\t# [m**(3)] - total mass\n",
"T = (90+273.15)\t\t\t#[K] - temperature\n",
"\n",
"#From steam table at 90 C as reported in the book\n",
"#vapour pressure(pressure of rigid tank) = 70.14[kPa] = 0.7014[bar]\n",
"print \" Pressure of tank = 0.7014 bar\"\n",
"\n",
"# Calculations and Results\n",
"V_liq_sat=0.001036;\t\t\t# [m**(3)/kg] - saturated liquid specific volume\n",
"V_vap_sat=2.36056;\t\t\t# [m**(3)/kg] - saturated vapour specific volume\n",
"\n",
"#1=(V_liq_sat*(10-x))+(V_vap_sat*x)\n",
"x = (1-(10*V_liq_sat))/(V_vap_sat-V_liq_sat)\t\t\t#[kg]\n",
"y = (10-x)\t\t\t#[kg]\n",
"\n",
"print \" The amount of saturated liquid is %f kg\"%y\n",
"print \" The amount of saturated vapour is %f kg \"%x\n",
"\n",
"z = y*V_liq_sat;\t\t\t#[m**(3)] - Volume of saturated liquid \n",
"w = x*V_vap_sat;\t\t\t#[m**(3)] - Volume of saturated vapour\n",
"\n",
"print \" Total volume of saturated liquid is %f m**(3)\"%z\n",
"print \" Total volume of saturated vapour is %f m**(3)\"%w\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Pressure of tank = 0.7014 bar\n",
" The amount of saturated liquid is 9.580576 kg\n",
" The amount of saturated vapour is 0.419424 kg \n",
" Total volume of saturated liquid is 0.009925 m**(3)\n",
" Total volume of saturated vapour is 0.990075 m**(3)\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.8 Page number - 24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of heat supplied\n",
"\n",
"# Variables\n",
"V = 10.;\t\t\t# [m**(3)] - volume of vessel\n",
"P_1 = 1.;\t\t\t# [bar] - initial pressure\n",
"V_liq_sat = 0.05;\t\t\t# [m**(3)] - saturated liquid volume\n",
"V_gas_sat = 9.95;\t\t\t# [m**(3)] - saturated vapour volume\n",
"\n",
"#At 1 bar pressure\n",
"V_liq_1 = 0.001043;\t\t\t# [m**(3/kg)] - specific saturated liquid volume\n",
"U_liq_1 = 417.33;\t\t\t# [kJ/kg] - specific internal energy\n",
"V_gas_1 = 1.69400;\t\t\t# [m**(3/kg)] - specific saturated vapour volume\n",
"U_gas_1 = 2506.06;\t\t\t# [kJ/kg]\n",
"\n",
"# Calculations\n",
"M_liq_1 = V_liq_sat/V_liq_1;\t\t\t# [kg] - mass of saturated liqid\n",
"M_gas_1 = V_gas_sat/V_gas_1;\t\t\t# [kg] - mass of saturated vapour\n",
"M = (M_liq_1+M_gas_1)\t\t\t# [kg] - total mass\n",
"U_1t = (M_liq_1*U_liq_1)+(M_gas_1*U_gas_1)\t\t\t# [kJ] - initial internal energy\n",
"V_gas_2 = (V/M)\t\t\t#[m**(3/kg)]\n",
"\n",
"#from steam table at 10 bar pressure as reported in the book\n",
"V_vap_2 = 0.19444;\t\t\t# [m**(3/kg)]\n",
"U_vap_2 = 2583.64;\t\t\t# [kJ/kg]\n",
"\n",
"#from steam table at 11 bar pressure as reported in the book\n",
"V_vap_3 = 0.17753;\t\t\t#[m**(3/kg)]\n",
"U_vap_3 = 2586.40;\t\t\t#[kJ/kg]\n",
"\n",
"#Now computing pressure when molar volume of saturated vapour=Vg_2\n",
"#By interpolation (P2-10)/(11-10)=(Vg_2-Vv_2)/(Vv_3-Vv_2)\n",
"P_2 = (((V_gas_2 - V_vap_2)/(V_vap_3 - V_vap_2)*1)+10)\t\t\t# [bar] - final pressure\n",
"\n",
"#By interpolation calculating internal energy at state 2\n",
"#(P2-10)/(11-10)=(U2-Uv_2)/(Uv_3-Uv_2)\n",
"U_2 = (((P_2-10)/(11-10))*(U_vap_3 - U_vap_2))+U_vap_2;\t\t\t#[kJ/kg]\n",
"U_2t = U_2*M;\t\t\t#[kJ]\n",
"H = U_2t - U_1t;\t\t\t#[kJ] - Heat supplied\n",
"H = H/1000;\t\t\t#[MJ]\n",
"\n",
"# Results\n",
"print \" Total heat supplied is %f MJ\"%H\n",
"# since volume is constant%no work is done by the system and heat supplied is used in increasing the internal energy of the system.\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Total heat supplied is 104.381244 MJ\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.9 Page number - 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of saturation temperature\n",
"\n",
"# Variables\n",
"#Antoine equation for water ln(Psat)=16.262-(3799.89/(T_sat + 226.35))\n",
"P = 2.;\t\t\t#[atm] - Pressure\n",
"P = (2.*101325)/1000;\t\t\t#[kPa]\n",
"\n",
"# Calculations\n",
"P_sat = P;\t\t\t# Saturation pressure\n",
"T_sat = (3799.89/(16.262-math.log(P_sat)))-226.35;\t\t\t#[C] - Saturation temperature\n",
"#Thus boiling at 2 atm occurs at Tsat = 120.66 C.\n",
"\n",
"#From steam tables%at 2 bar%Tsat = 120.23 C and at 2.25 bar%Tsat = 124.0 C\n",
"#From interpolation for T_sat = 120.66 C%P = 2.0265 bar\n",
"#For P_= 2.0265 bar%T_sat% from steam table by interpolation is given by\n",
"#((2.0265-2)/(2.25-2))=((Tsat-120.23)/(124.0-120.23))\n",
"T_sat_0 = (((2.0265-2)/(2.25-2))*(124.0-120.23))+120.23;\t\t\t#[C]\n",
"\n",
"# Results\n",
"print \" Saturation temperature (Tsat) = %f C which is close \\\n",
"to %f C as determined from Antoine equation\"%(T_sat_0,T_sat)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Saturation temperature (Tsat) = 120.629620 C which is close to 120.655450 C as determined from Antoine equation\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.10 Page number - 27"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of pressure and temperature at triple point\n",
"\n",
"# Variables\n",
"# math.log(P)=-(1640/T)+10.56 (solid)\n",
"# math.log(P)=-(1159/T)+7.769 (liquid)%where T is in K\n",
"# F+P=C+2% at triple point F+3=1+2 or%F=0 i.e%vapour pressure of liquid and solid at triple point are same%we get\n",
"# -(1640/T)+10.56 = -(1159/T)+7.769\n",
"\n",
"# Calculations\n",
"T = (1640-1159)/(10.56-7.769)\t\t\t#[K]\n",
"P = 10**((-1640/T)+10.56)\t\t\t#[torr]\n",
"\n",
"# Results\n",
"print \" The temperature is %f K\"%T\n",
"print \" The pressure is %f torr (or mm Hg)\"%P\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The temperature is 172.339663 K\n",
" The pressure is 11.063907 torr (or mm Hg)\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.11 Page number - 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of value of R Cp0 and Cv0\n",
"\n",
"# Variables\n",
"M_O2 = 31.999;\t\t\t#molecular weight of oxygen\n",
"M_N2 = 28.014;\t\t\t#molecular weight of nitrogen\n",
"Y = 1.4;\t\t\t#molar heat capacities ratio for air\n",
"\n",
"# Calculations and Results\n",
"#Molecular weight of air(21 vol% O2 and 79 vol% N2)is given by\n",
"M_air = (0.21*M_O2)+(0.79*M_N2)\t\t\t#(vol% = mol%)\n",
"\n",
"R = 8.314;\t\t\t#[J/mol*K] - Universal gas constant\n",
"R = (R*1/M_air)\t\t\t#[kJ/kg*K]\n",
"\n",
"print \" The value of universal gas constant (R) = %f kJ/kg-K \"%R\n",
"\n",
"#Y=Cp0/Cv0 and Cp0-Cv0=R\n",
"Cv_0 = R/(Y-1)\t\t\t#[kJ/kg*K] \n",
"Cp_0 = Y*Cv_0;\t\t\t#[kJ/kg*K]\n",
"print \" The value of Cp_0 for air is %f kJ/kg-K\"%Cp_0\n",
"print \" The value of Cv_0 for air is %f kJ/kg-K\"%Cv_0\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The value of universal gas constant (R) = 0.288172 kJ/kg-K \n",
" The value of Cp_0 for air is 1.008601 kJ/kg-K\n",
" The value of Cv_0 for air is 0.720429 kJ/kg-K\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.12 Page number - 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of molar heat capacity\n",
"\n",
"# Variables\n",
"Y = 1.4;\t\t\t#molar heat capacities ratio for air\n",
"R = 8.314;\t\t\t# [J/mol*K] - Universal gas constant\n",
"\n",
"# Calculations\n",
"Cv_0 = R/(Y-1)\t\t\t# [J/mol*K]\n",
"Cp_0 = Y*Cv_0;\t\t\t# [J/mol*K]\n",
"\n",
"# Results\n",
"print \" The molar heat capacity at constant volume (Cv_0) is %f J/mol-K\"%Cv_0\n",
"print \" The molar heat capacity at constant pressure (Cp_0) is %f J/mol-K\"%Cp_0\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The molar heat capacity at constant volume (Cv_0) is 20.785000 J/mol-K\n",
" The molar heat capacity at constant pressure (Cp_0) is 29.099000 J/mol-K\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.13 Page number - 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Determination of mean heat capacity\n",
"\n",
"from scipy.integrate import quad\n",
"\n",
"# Variables\n",
"# Cp0=7.7+(0.04594*10**(-2)*T)+(0.2521*10**(-5)*T**(2))-(0.8587*10**(-9)*T**(3))\n",
"T_1 = 400.;\t\t\t#[K]\n",
"T_2 = 500.;\t\t\t#[K]\n",
"\n",
"# Calculations\n",
"def f(T):\n",
" return 7.7+(0.04594*10**(-2)*T)+(0.2521*10**(-5)*T**(2))-(0.8587*10**(-9)*T**(3))\n",
"#(C)avg = q/(T_2 - T_1) = 1/(T_2 - T_1)*{(integrate('C'%'T'%T_1%T_2))}\n",
"#(Cp0)avg = 1/(T_2 - T_1)*{(integrate('Cp0'%'T'%T_1%T_2))}\n",
"Cp0_avg = (1/(T_2 - T_1))*quad(f,T_1,T_2)[0]\n",
"\n",
"# Results\n",
"print \" The mean heat capacity (Cp0_avg) for temerature range of 400 to 500 K is %f cal/mol-K\"%Cp0_avg\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The mean heat capacity (Cp0_avg) for temerature range of 400 to 500 K is 8.340118 cal/mol-K\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example - 1.14 Page number - 31"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of enthalpy of water\n",
"\n",
"# Variables\n",
"#(a)\n",
"P_1 = 0.2;\t\t\t# [MPa] - pressure\n",
"x_1 = 0.59;\t\t\t# mole fraction\n",
"\n",
"# Calculations and Results\n",
"#From saturated steam tables at 0.2 MPa\n",
"H_liq_1 = 504.7;\t\t\t# [kJ/kg] - Enthalpy of saturated liquid\n",
"H_vap_1 = 2706.7;\t\t\t# [kJ/kg]- Enthalpy of saturated vapour\n",
"H_1 = (H_liq_1*(1-x_1))+(x_1*H_vap_1)\t\t\t# [kJ/kg]\n",
"print \" (a).Enthalpy of 1 kg of water in tank is %f kJ/kg\"%H_1\n",
"\n",
"#(b)\n",
"T_2 = 120.23;\t\t\t# [C] - temperature\n",
"V_2 = 0.6;\t\t\t# [m**(3)/kg] - specific volume\n",
"\n",
"#From saturated steam tables at 120.23 C% as reported in the book\n",
"V_liq_2=0.001061;\t\t\t# [m**(3)/kg]\n",
"V_vap_2=0.8857;\t\t\t# [m**(3)/kg]\n",
"#since V_2 < Vv_2%dryness factor will be given by% V = ((1-x)*V_liq)+(x*V_vap)\n",
"x_2 = (V_2- V_liq_2)/(V_vap_2 - V_liq_2)\n",
"\n",
"#From steam table%at 120.2 C%the vapour pressure of water is 0.2 MPa.So%enthalpy is given by\n",
"H_2 = (H_liq_1*(1-x_2))+(H_vap_1*x_2)\t\t\t#kJ/kg]\n",
"print \" (b).Enthalpy of saturated steam is %f kJ/kg\"%H_2\n",
"\n",
"#(c)\n",
"P_3 = 2.5;\t\t\t#[MPa]\n",
"T_3 = 350;\t\t\t#[C]\n",
"#From steam tables at 2.5 MPa%T_sat = 223.99 C%as reported in the book\n",
"#since%T_3 > Tsat% steam is superheated\n",
"print \" (c).As steam is superheated%from steam table%enthalpy (H) is 3126.3 kJ/kg\"\n",
"\n",
"#(d)\n",
"T_4 = 350;\t\t\t#[C]\n",
"V_4 = 0.13857;\t\t\t#[m**(3)/kg]\n",
"#From steam table%at 350 C% V_liq = 0.001740 m**(3)/kg and V_vap = 0.008813 m**(3)/kg.Since%V > V_vap%therefore it is superheated.\n",
"#From steam table at 350 C and 1.6 MPa% V = 0.17456 m**(3)/kg\n",
"#At 350 C and 2.0 MPa% V = 0.13857 m**(3)/kg. So%\n",
"print \" (d).The enthalpy of superheated steam (H) is 3137.0 kJ/kg\"\n",
"\n",
"#(e)\n",
"P_4 = 2.0;\t\t\t#[MPa]\n",
"U_4 = 2900;\t\t\t# [kJ/kg] - internal energy\n",
"#From saturated table at 2.0 MPa% U_liq = 906.44kJ and U_vap = 2600.3 kJ/kg\n",
"#scince%U_4 > Uv% it is saturated.\n",
"#From superheated steam table at 2.0 MPa and 350 C% as reported in the book\n",
"U_1 = 2859.8;\t\t\t#[kJ/kg]\n",
"H_1 = 3137.0;\t\t\t#[kJ/kg]\n",
"#At 2.0 MPa and 400 C%\n",
"U_2 = 2945.2;\t\t\t#[kJ/kg]\n",
"H_2 = 3247.6;\t\t\t#[kJ/kg]\n",
"T = (((U_4 - U_1)/(U_2 - U_1))*(400 - 350)) + 350;\t\t\t#[C] - By interpolation\n",
"H = (((T - 350)/(400 - 350))*(H_2 - H_1)) + H_1;\t\t\t#[kJ/kg]\n",
"print \" (e).The enthalpy value (of superheated steam) obtained after interpolation is %f kJ/kg\"%H\n",
"\n",
"#(f)\n",
"P_5 = 2.5;\t\t\t#[MPa]\n",
"T_5 = 100;\t\t\t#[C]\n",
"#At 100 C%P_sat=101350 N/m**(2). Since P_5 > P_sat%it is compressed liquid\n",
"P_sat = 0.101350;\t\t\t#[MPa]\n",
"H_liq = 419.04;\t\t\t#[kJ/kg] - At 100 C and 0.10135 MPa\n",
"V_liq = 0.001044;\t\t\t#[m**(3)/kg] - At 100 C and 0.10135 MPa\n",
"H_0 = H_liq + (V_liq*(P_5 - P_sat))*1000;\t\t\t#kJ/kg]\n",
"print \" (f).The enthalpy of compressed liquid is %f kJ/kg\"%H_0\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" (a).Enthalpy of 1 kg of water in tank is 1803.880000 kJ/kg\n",
" (b).Enthalpy of saturated steam is 1995.549576 kJ/kg\n",
" (c).As steam is superheated%from steam table%enthalpy (H) is 3126.3 kJ/kg\n",
" (d).The enthalpy of superheated steam (H) is 3137.0 kJ/kg\n",
" (e).The enthalpy value (of superheated steam) obtained after interpolation is 3189.062295 kJ/kg\n",
" (f).The enthalpy of compressed liquid is 421.544191 kJ/kg\n"
]
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|