summaryrefslogtreecommitdiff
path: root/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch8.ipynb
blob: 350e939159fd3481be17e27eb83f1ac4d541ecc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
{
 "metadata": {
  "name": "",
  "signature": "sha256:db3a394cd915f3675da3a1ec91e93913eb152d495576bd0a47778fe0952f79fb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8 : Solving Material Balance Problems for Single Units without Reaction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 8.1 Page no. 197\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "# Basis : 1 min\n",
      "d_w =  1.0 ;            # Density of aqueous solution-[g/cubic metre]\n",
      "d_sol =  0.6 ;          # Density of organic solvent-[g/cubic metre]\n",
      "n_un = 8 ;              # Number of unknowns in the given problem\n",
      "n_ie  = 8 ;             # Number of independent equations\n",
      "\n",
      "# Calculation and Results\n",
      "d_o_f =  n_un-n_ie ;    # Number of degree of freedom\n",
      "print 'Number of degree of freedom for the given system is  %i .'%d_o_f\n",
      "\n",
      "# Material balance of Strep.\n",
      "x =  (200*10+10*0-200*0.2)/10;        #[g]\n",
      "print 'Strep per litre of solvent is  %.1f g .'%x\n",
      "\n",
      "cnc = x/(1000*d_sol) ;                #[g Strep/g of S]\n",
      "print 'Strep per gram of solvent is  %.4f g Strep/g of S .'%cnc\n",
      "\n",
      "m_fr = cnc/(1+cnc) ;                  #Mass fraction\n",
      "print 'Mass fraction of Strep is  %.3f g .'%m_fr"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 .\n",
        "Strep per litre of solvent is  196.0 g .\n",
        "Strep per gram of solvent is  0.3267 g Strep/g of S .\n",
        "Mass fraction of Strep is  0.246 g .\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 8.2  Page no. 199\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "F_O2 = 0.21 ;         # fraction of O2 in feed(F) \n",
      "F_N2 = 0.79 ;         # fraction of N2 in feed(F) \n",
      "P_O2 = 0.25 ;         # fraction of O2 in product(P)\n",
      "P_N2 = 0.75 ;         # fraction of N2 in  product(P)\n",
      "F = 100 ;             # Feed - [g mol]\n",
      "w = 0.80 ;            # Fraction of waste\n",
      "W = w*F ;             # Waste -[g mol]\n",
      "\n",
      "# Calculation\n",
      "# By analysis for degree of freedom , DOF comes to be zero \n",
      "P = F - W ;           # By overall balance - [g mol]\n",
      "W_O2 = (F_O2*F - P*P_O2)/100       # Fraction of O2 in waste stream by O2 balance \n",
      "W_N2 = (W - W_O2*100)/100 ;        #Fraction of N2 in waste stream\n",
      " \n",
      "# Results    \n",
      "print 'Composition of Waste Stream' \n",
      "print '  Component             Fraction in waste stream' \n",
      "print '  O2                    %.2f'%W_O2 \n",
      "print '  N2                    %.2f'%W_N2 "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Composition of Waste Stream\n",
        "  Component             Fraction in waste stream\n",
        "  O2                    0.16\n",
        "  N2                    0.64\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 8.3  Page no. 202\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "# Basis : 1 hr so F  = 1000 kg\n",
      "F = 1000 ;        # feed rate-[kg/hr]\n",
      "P = F/10.0 ;      # product mass flow rate -[kg/hr]\n",
      "\n",
      "n_un = 9 ;        # Number of unknowns in the given problem\n",
      "n_ie  = 9 ;       # Number of independent equations\n",
      "\n",
      "# Calculation and Result\n",
      "d_o_f =  n_un-n_ie ;        # Number of degree of freedom\n",
      "print 'Number of degree of freedom for the given system is  %i .'%d_o_f\n",
      "\n",
      "#  Overall mass balance: F  =  P+B\n",
      "B =  F-P ;                  # bottom mass flow rate -[kg/hr]\n",
      "print ' Bottom mass flow rate -              %.1f kg '%B\n",
      "\n",
      "# Composition of bottoms by material balances\n",
      "m_EtOH = 0.1*F-0.6*P ;      # By EtOH balance-[kg]\n",
      "m_H2O = 0.9*F - 0.4*P ;     # By H2O balance-[kg]\n",
      "total  = m_EtOH+m_H2O ;     #[kg]\n",
      "f_EtOH = m_EtOH/total ;     # Mass fraction of EtOH\n",
      "f_H2O = m_H2O/total ;       # Mass fraction of H2O\n",
      "\n",
      "print ' Mass of EtOH in bottom -             %.1f kg '%m_EtOH\n",
      "print ' Mass of H2O in bottom -              %.1f kg '%m_H2O\n",
      "print ' Mass fraction of EtOH in bottom -    %.3f '%f_EtOH\n",
      "print ' Mass fraction of H2O in bottom -     %.3f '%f_H2O"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 .\n",
        " Bottom mass flow rate -              900.0 kg \n",
        " Mass of EtOH in bottom -             40.0 kg \n",
        " Mass of H2O in bottom -              860.0 kg \n",
        " Mass fraction of EtOH in bottom -    0.044 \n",
        " Mass fraction of H2O in bottom -     0.956 \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 8.4  Page no. 205\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from numpy import matrix\n",
      "\n",
      "# Variables\n",
      "# Given\n",
      "A = 200 ;             # Mass of added solution [kg] \n",
      "P_H2SO4 = .1863 ;     #Fraction of H2SO4 in P(Final solution)\n",
      "P_H2O = .8137 ;       #Fraction of H2O in P(Final solution)\n",
      "A_H2SO4 = .777 ;      #Fraction of H2SO4 in A(Added solution)\n",
      "A_H2O = .223 ;        #Fraction of H2O in A(Added solution)\n",
      "F_H2SO4 = .1243 ;     #Fraction of H2SO4 in F(Original solution)\n",
      "F_H2O = .8757 ;       #Fraction of H2O in F(Original solution)\n",
      "\n",
      "# Calculations\n",
      "# P - F = A - By overall balance\n",
      "a = matrix([[P_H2O,-F_H2O],[1,-1]]) ;      # Matrix of coefficient\n",
      "b = matrix([[A*A_H2O],[A]]) ;              # Matrix of contants\n",
      "a = a.I\n",
      "x = a*b ;                                  # Matrix of solutions- P = x(1) and F = x(2)\n",
      "\n",
      "#Results\n",
      "print ' Original solution taken- %.0i kg'%x[1]\n",
      "print '  Final solution or kilograms of battery acid formed- %.0i kg'%x[0]"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Original solution taken- 1905 kg\n",
        "  Final solution or kilograms of battery acid formed- 2105 kg\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 8.5  Page no. 207\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from numpy import matrix\n",
      "\n",
      "# Variables\n",
      "# Given\n",
      "W = 100.0 ;      # Water removed - [kg]\n",
      "A_H2O = 0.80 ;   # Fraction of water in A(intial fish cake)\n",
      "A_BDC = 0.20 ;   #  Fraction of BDC(bone dry cake) in B(final dry fish cake)\n",
      "B_H2O = 0.40 ;   # Fraction of water in A(intial fish cake)\n",
      "B_BDC = 0.60 ;   #  Fraction of BDC(bone dry cake) in B(final dry fish cake)\n",
      "\n",
      "# Calculations\n",
      "a = matrix([[A_H2O, -B_H2O],[1, -1]]) ;       # Matrix of coefficient\n",
      "b = matrix([[W],[W]]) ;                       # Matrix of contants\n",
      "a = a.I\n",
      "x = a * b;                                    # Matrix of solutions- A = x(1) and B = x(2)\n",
      "\n",
      "# Results\n",
      "print 'Weight of the fish cake originally put into dryer -%.0i kg'%x[0]"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Weight of the fish cake originally put into dryer -150 kg\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 8.6  Page no. 209\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "# Composition of initial solution at 30 degree C\n",
      "s_30 = 38.8 ;                      #  solublity of Na2CO3 at 30 degree C, by using the table for solublity of Na2CO3-[g Na2CO3/100 g H2O]\n",
      "If_Na2CO3 =  s_30/(s_30+100) ;     # Initial mass fraction of Na2CO3\n",
      "If_H2O = 1-If_Na2CO3 ;             # Initial mass fraction of H2O\n",
      "\n",
      "# Composition of crystals\n",
      "# Basis : 1g mol Na2CO3.10H2O\n",
      "n_mol_Na2CO3 = 1 ;                 # Number of moles of Na2CO3\n",
      "n_mol_H2O = 10. ;                  # Number of moles of H2O\n",
      "mwt_Na2CO3 = 106. ;                # mol. wt of Na2CO3\n",
      "mwt_H2O = 18. ;                    # mol. wt of H2O\n",
      "\n",
      "# Calculation and Results\n",
      "m_Na2CO3 = mwt_Na2CO3*n_mol_Na2CO3 ;        # Mass of Na2CO3\n",
      "m_H2O = mwt_H2O*n_mol_H2O ;                 # Mass of H2O\n",
      "Cf_Na2CO3 =  m_Na2CO3/(m_Na2CO3+m_H2O) ;    # mass fraction of Na2CO3 \n",
      "Cf_H2O = 1-Cf_Na2CO3 ;                      # mass fraction of H2O\n",
      "\n",
      "n_un = 9. ;                     # Number of unknowns in the given problem\n",
      "n_ie  = 9. ;                    # Number of independent equations\n",
      "d_o_f =  n_un-n_ie ;            # Number of degree of freedom\n",
      "\n",
      "print 'Number of degree of freedom for the given system is  %i .'%d_o_f\n",
      "\n",
      "# Final composition of tank\n",
      "#Basis :I = 10000 kg\n",
      "# Material balance reduces to Accumulation  =  final -initial = in-out(but in = 0)\n",
      "I = 10000. ;               #initial amount of saturated solution-[kg]\n",
      "amt_C = 3000. ;            # Amount of crystals formed-[kg]\n",
      "Fm_Na2CO3 = I*If_Na2CO3-amt_C*Cf_Na2CO3 ;             # Mass balance of Na2CO3\n",
      "Fm_H2O = I*If_H2O-amt_C*Cf_H2O ;                      # Mass balance of H2O\n",
      "\n",
      "#To find temperature,T\n",
      "s_T =  (Fm_Na2CO3/Fm_H2O)*100 ;             # Solublity of Na2CO3 at temperature T\n",
      "s_20 = 21.5 ;                               #Solublity of Na2CO3 at temperature 20 degree C ,from given table-[g Na2CO3/100 g H2O]\n",
      "\n",
      "# Find T by interpolation\n",
      "T =  30-((s_30-s_T)/(s_30-s_20))*(30-20) ;       # Temperature -[degree C]\n",
      "print ' Temperature to which solution has to be cooled to get 3000 kg crystals is %.0f degree C .'%T"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 .\n",
        " Temperature to which solution has to be cooled to get 3000 kg crystals is 26 degree C .\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 8.7  Page no. 213\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "# Write given data\n",
      "B_in =  1.1 ;        # Flow rate in  of blood -[L/min]\n",
      "B_out = 1.2;         # Flow rate out of blood -[L/min]\n",
      "S_in = 1.7;          # Flow rate in  of solution -[L/min]\n",
      "\n",
      "# Composition of input blood\n",
      "B_in_CR = 2.72 ;     #[g/L]\n",
      "B_in_UR = 1.16 ;     #[g/L]\n",
      "B_in_U = 18 ;        #[g/L]\n",
      "B_in_P = 0.77 ;      #[g/L]\n",
      "B_in_K = 5.77 ;      #[g/L]\n",
      "B_in_Na = 13.0 ;     #[g/L]\n",
      "B_in_water = 1100 ;  #[mL/min]\n",
      "\n",
      "# Composition of output blood\n",
      "B_out_CR = 0.120 ;   #[g/L]\n",
      "B_out_UR = 0.060;    #[g/L]\n",
      "B_out_U = 1.51 ;     #[g/L]\n",
      "B_out_P = 0.040 ;    #[g/L]\n",
      "B_out_K = 0.120 ;    #[g/L]\n",
      "B_out_Na = 3.21 ;    #[g/L]\n",
      "B_out_water = 1200. ;     #[mL/min]\n",
      "\n",
      "# Calculation and Result\n",
      "n_un = 7. ;             # Number of unknowns in the given problem\n",
      "n_ie  = 7. ;            # Number of independent equations\n",
      "d_o_f =  n_un-n_ie ;    # Number of degree of freedom\n",
      "print 'Number of degree of freedom for the given system is  %i .'%d_o_f\n",
      "\n",
      "# Water balance in grams, assuming 1 ml is equivalent to 1 g\n",
      "S_in_water = 1700. ;              #[ml/min]\n",
      "S_out_water =  B_in_water+ S_in_water - B_out_water;\n",
      "S_out = S_out_water/1000. ;       #[L/min]\n",
      "print ' Flow rate of water in output solution is  %.2f L/min.'%S_out\n",
      "\n",
      "# The component balance in grams for CR,UR,U,P,K and Na are\n",
      "S_out_CR  =  (B_in*B_in_CR - B_out*B_out_CR)/S_out;\n",
      "S_out_UR  =  (B_in*B_in_UR - B_out*B_out_UR)/S_out;\n",
      "S_out_U  =  (B_in*B_in_U - B_out*B_out_U)/S_out;\n",
      "S_out_P  =  (B_in*B_in_P - B_out*B_out_P)/S_out;\n",
      "S_out_K  =  (B_in*B_in_K - B_out*B_out_K)/S_out;\n",
      "S_out_Na  =  (B_in*B_in_Na - B_out*B_out_Na)/S_out;\n",
      "print ' Component     Concentration(g/L) in output Dialysis solution   '\n",
      "print ' UR            %.2f    '%S_out_UR\n",
      "print ' CR            %.2f    '%S_out_CR\n",
      "print ' U             %.2f    '%S_out_U\n",
      "print ' P             %.2f    '%S_out_P\n",
      "print ' K             %.2f    '%S_out_K\n",
      "print ' Na            %.2f    '%S_out_Na"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of degree of freedom for the given system is  0 .\n",
        " Flow rate of water in output solution is  1.60 L/min.\n",
        " Component     Concentration(g/L) in output Dialysis solution   \n",
        " UR            0.75    \n",
        " CR            1.78    \n",
        " U             11.24    \n",
        " P             0.50    \n",
        " K             3.88    \n",
        " Na            6.53    \n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "code",
     "collapsed": true,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}