summaryrefslogtreecommitdiff
path: root/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch29.ipynb
blob: 7c95dcbecb3b3835f6e1c53e4b6e2bfaaa5c9cdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
 "metadata": {
  "name": "",
  "signature": "sha256:b5b2fcf9bb3d537cea245cafaa4a19d4d1dc42af6ab432d7e1ef22a8e48ae245"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 29 :  Humidity Charts and their Uses"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 29.1  page no. 895\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "DBT = 90. ;\t\t\t# Dry bulb temperature - [degree F]\n",
      "WBT = 70. ;\t\t\t# Wet bulb temperature - [degree F]\n",
      "\n",
      "#Get point A using DBT & WBT. Following information is obtained from humidity chart, fig. E29.1\n",
      "# Results\n",
      "print '(a) The Dew point is located at point B or about 60 degree F, using constant humidity line.'\n",
      "print ' (b) By interpolation between 40%% and 30%% RH , you can find point A is at 37%% relative humidity .'\n",
      "print ' (c) You can read humidity from the righthand ordinate as 0.0112 lb H2O/lb dry air .'\n",
      "print ' (d) By interpolation again between 14.0 cubic feet/lb and 14.5 cubic feet/lb lines , you can find humid volume to be 14.1 cubic feet/lb dry air.'\n",
      "print ' (e) The enthalpy value of saturated air with WBT 70 degree F is 34.1 Btu/lb dry air .'\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The Dew point is located at point B or about 60 degree F, using constant humidity line.\n",
        " (b) By interpolation between 40%% and 30%% RH , you can find point A is at 37%% relative humidity .\n",
        " (c) You can read humidity from the righthand ordinate as 0.0112 lb H2O/lb dry air .\n",
        " (d) By interpolation again between 14.0 cubic feet/lb and 14.5 cubic feet/lb lines , you can find humid volume to be 14.1 cubic feet/lb dry air.\n",
        " (e) The enthalpy value of saturated air with WBT 70 degree F is 34.1 Btu/lb dry air .\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 29.2  page no. 897\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "DBT1 = 38 ;\t\t\t# Initial dry bulb temperature - [degree C]\n",
      "DBT2 = 86 ;\t\t\t# Final dry bulb temperature - [degree C]\n",
      "RH1 = 49 ;\t\t\t# Relative humidity - [%]\n",
      "\n",
      "#A is initial and B is final  point , see fig. E29.2 . Dew point is obtained graphically and it is 24.8 degree C,therefore\n",
      "print 'The Dew point is unchanged in the process because humidity is unchanged, and it is located at 24.8 degree C.'\n",
      "\n",
      "# Calculations\n",
      "# Additional data is obtained from humidity chart , according to book data is as follows\n",
      "A_Hsat = 90.0 ;\t\t\t# Enthalpy of saturation at point A- [kJ/kg]\n",
      "A_dH = -0.5 ;\t\t\t#Enthalpy deviation-[kJ/kg]\n",
      "A_Hact = A_Hsat + A_dH ;\t\t\t# Actual enthalpy at point A -[kJ/kg]\n",
      "B_Hsat = 143.3 ;\t\t\t# Enthalpy of saturation at point B- [kJ/kg]\n",
      "B_dH = -3.3 ;\t\t\t#Enthalpy deviation -[kJ/kg]\n",
      "B_Hact = B_Hsat + B_dH ;\t\t\t# Actual enthalpy at point B -[kJ/kg]\n",
      "\n",
      "\t\t\t# Energy balance reduces to Q = del_H \n",
      "del_H = B_Hact - A_Hact ;\t\t\t# Total change in enthalpy - [kJ/kg]\n",
      "v = 0.91 ;\t\t\t# Specific volume of moist air at point A -[cubic metre / kg]\n",
      "Q = del_H/v ;\t\t\t# Heat added per cubic metre of inital moist air -[kJ]\n",
      "\n",
      "# Results\n",
      "print ' Heat added per cubic metre of inital moist air is %.1f kJ.'%Q\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Dew point is unchanged in the process because humidity is unchanged, and it is located at 24.8 degree C.\n",
        " Heat added per cubic metre of inital moist air is 55.5 kJ.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 29.3  page no. 898\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "DBT1 = 40 ;\t\t\t# Initial dry bulb temperature - [degree C]\n",
      "DBT2 = 27 ;\t\t\t# Final dry bulb temperature - [degree C]\n",
      "\n",
      "# Process is assumed to be adiabatic, therefore  wet bulb temperature is constant\n",
      "WBT1 = 22 ;\t\t\t# Initial wet bulb temperature - [degree C]\n",
      "WBT2 = WBT1 ;\t\t\t# Final wet bulb temperature - [degree C]\n",
      "\n",
      "# Calculations\n",
      "#A is initial and B is final  point , see fig. E29.3b . Humidity is obtained from humidity chart, according to book the respective humidities are as follows\n",
      "H_B = 0.0145 ;\t\t\t# Humidity at point B -[kg H2O/kg dry air]\n",
      "H_A = 0.0093 ;\t\t\t# Humidity at point A -[kg H2O/kg dry air]\n",
      "Diff = H_B - H_A ;\t\t\t# Moisture added in kg per kilogram of dry air going through humidifier -[kg H2O/kg dry air] \n",
      "\n",
      "# Results\n",
      "print 'Moisture added per kilogram of dry air going through humidifier is %.4f kg H2O.'%Diff\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Moisture added per kilogram of dry air going through humidifier is 0.0052 kg H2O.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 29.4  page no. 900\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "c_bl = 8.30 * 10**6 ;\t\t\t# Capacity of blower - [cubic feet/hr]\n",
      "DBT_A = 80 ;\t\t\t# Initial dry bulb temperature of moist air - [degree F]\n",
      "DBT_B = 95 ;\t\t\t# Final dry bulb temperature of exit air - [degree F]\n",
      "WBT_A = 65 ;\t\t\t# Initial wet bulb temperature of moist air - [degree F]\n",
      "WBT_B = 90 ;\t\t\t# Final wet bulb temperature of exit air - [degree F]\n",
      "T1_H2O = 120 ;\t\t\t# Initial temperature of water - [degree F]\n",
      "T2_H2O = 90 ;\t\t\t# Final temperature of water - [degree F]\n",
      "\n",
      "#A is initial and B is final  point , see fig. E29.4 . Humidity is obtained from humidity chart, according to book the respective humidities are as follows\n",
      "H_A = 0.0098; \t\t\t# Humidity of air at A - [lb H2O / lb dry air]\n",
      "H1_A = 69 ;\t\t\t# Humidity of air at A - [grains H2O / lb dry air]\n",
      "\n",
      "# Calculations\n",
      "delH_A = 30.05 - 0.12; \t\t\t# Enthalpy of entering air -[Btu/lb dry air]\n",
      "v_A = 13.82 ;\t\t\t# Specific volume of entering air -[cubic feet/lb dry air]\n",
      "H_B = 0.0297;\t\t\t# Humidity of air at B - [lb H2O / lb dry air]\n",
      "H1_B = 208 ;\t\t\t# Humidity of air at B - [grains H2O / lb dry air]\n",
      "delH_B = 55.93 - 0.10  ;\t\t\t# Enthalpy of exit air -[Btu/lb dry air]\n",
      "v_B = 14.65 ;\t\t\t# Specific volume of exit air -[cubic feet/lb dry air]\n",
      "Eq_A = c_bl /v_A ;\t\t\t# Entering dry air equivalent of capacity of blower -[lb dry air]\n",
      "\n",
      "# Reference temperature for water stream is 32 degree F \n",
      "del_H1_H2O = 1*(T1_H2O - 32) ;\t\t\t#Enthalpy of entering water -[Btu/lb H2O]\n",
      "del_H2_H2O = 1*(T2_H2O - 32) ;\t\t\t#Enthalpy of exit water -[Btu/lb H2O]\n",
      "tr_H2O = H_B - H_A ;\t\t\t# Transfer of water to air -[lb H2O / lb dry air] \n",
      "\n",
      "# Energy balance around the entire process yields W -\n",
      "W = (delH_B - del_H2_H2O*tr_H2O - delH_A)/(del_H1_H2O - del_H2_H2O) ;\t\t\t# Water entering tower - [lb H2O/lb dry air]\n",
      "W1 = W - tr_H2O ;\t\t\t# Water leaving tower -[lb H2O/lb dry air]\n",
      "Total_W1 = W1* Eq_A ;\t\t\t# Total water leaving tower -[lb/hr]\n",
      "\n",
      "# Results\n",
      "print 'Amount of water cooled per hour is %.2e lb/hr .'%Total_W1\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Amount of water cooled per hour is 4.83e+05 lb/hr .\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 29.5  page no. 902\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "W = 100 ;\t\t\t# Amount of entering water -[lb/hr]\n",
      "H1 = .020 ;\t\t\t# Humidity of entering air -[lb H2O / lb dry air]\n",
      "T1 = 155 ;\t\t\t#Temperature of entering air -[degree F]\n",
      "DTB = 110 ;\t\t\t# Dry bulb temperature of exit air -[degree F]\n",
      "WTB = 100 ;\t\t\t# Wet bulb temperature of exit air -[degree F]\n",
      "\n",
      "# Additional data is obtained from humidity chart, it is as follows\n",
      "H2 = .0405 ;\t\t\t#Humidity of exit air -[lb H2O / lb dry air]\n",
      "\n",
      "# Calculations\n",
      "del_H = H2 - H1 ;\t\t\t# Change in humidity betwween two states -[lb H2O / lb dry air]\n",
      "air_in = (W*1.02)/(del_H * 1)   ;\t\t\t# Amount of wet air entering -[lb]\n",
      "\n",
      "mol_air = 29. ;\t\t\t# Molecular wt. of air -[lb]\n",
      "Ref_T = 32 + 460. ;\t\t\t# Reference temperature - [ degree R]\n",
      "gi_T = 90 + 460.; \t\t\t# Given temperature on which calculation is based - [degree R] \n",
      "air = (air_in *359*gi_T)/( mol_air*Ref_T) ;\t\t\t# Air consumption of dryer at 90 degree F and 1 atm -[cubic feet]\n",
      "\n",
      "# Results\n",
      "print 'Air consumption of dryer at 90 degree F and 1 atm  is %.2e cubic feet .'%air\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Air consumption of dryer at 90 degree F and 1 atm  is 6.89e+04 cubic feet .\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "code",
     "collapsed": true,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}