1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 28 : Heats of Solution and Mixing"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
" Example 28.1 page no. 869\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Application of Heats of Solution data\n",
"\n",
"# Solution \n",
"# Variables\n",
"Ref_T = 77. ;\t\t\t#Reference temperature-[degree F]\n",
"\n",
"#(a)\n",
"mol_NH3 = 1. ;\t\t\t# Moles of NH3 - [lb mol]\n",
"mw_NH3 = 17. ;\t\t\t#Molecular t. of NH3 -[lb]\n",
"mw_H2O = 18. ;\t\t\t#Molecular t. of H2O -[lb]\n",
"\n",
"# Calculations and Results\n",
"f1_NH3 = 3./100 ;\t\t\t# Fraction of NH3 in solution \n",
"m_H2O = (mw_NH3/f1_NH3) - mw_NH3 ;\t\t\t# Mass of water in solution -[lb]\n",
"mol_H2O = m_H2O/mw_H2O ;\t\t\t# Moles of H2O in solution -[lb mol]\n",
"\n",
"print '(a) Moles of H2O in solution is %.1f lb mol . '%mol_H2O\n",
"print ' As we can see that moles of water is 30 lb mol(approx), hence we will see H_soln from table corresponding to 30 lb mol water . '\n",
"H_soln = -14800. ;\t\t\t# From table given in question in book -[Btu/lb mol NH3]\n",
"print ' The amount of cooling needed is, %.0f Btu heat removed. '%(abs(H_soln))\n",
"\n",
"#(b)\n",
"V = 100. ;\t\t\t# Volume of solution produced -[gal]\n",
"f2_NH3 = 32./100 ;\t\t\t# Fraction of NH3 in solution \n",
"sg_NH3 = .889 ;\t\t\t# Specific gravity of NH3 \n",
"sg_H2O = 1.003 ;\t\t\t# Specific gravity of H2O\n",
"d_soln = sg_NH3*62.4*sg_H2O*100/7.48 ;\t\t\t# Density of solution - [lb / 100 gal]\n",
"NH3 = d_soln*f2_NH3/mw_NH3 ;\t\t\t# Mass of NH3 - [ lb mol/ 100 gal]\n",
"m1_H2O = (mw_NH3/f2_NH3) - mw_NH3 ;\t\t\t# Mass of water in solution -[lb]\n",
"mol1_H2O = m1_H2O/mw_H2O ;\t\t\t# Moles of H2O in solution -[lb mol]\n",
"\n",
"print ' (b) Moles of H2O in solution is %.1f lb mol . '%mol1_H2O\n",
"print ' As we can see that moles of water is 2 lb mol , hence we will see H_soln from table corresponding to 2 lb mol water . '\n",
"H_soln = -13700 ;\t\t\t# From table given in question in book -[Btu/lb mol NH3]\n",
"total_H = abs(NH3*H_soln) ;\t\t\t# Total heat removed from solution -[Btu]\n",
"print ' The amount of cooling needed is, %.0f Btu heat removed. '%total_H\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Moles of H2O in solution is 30.5 lb mol . \n",
" As we can see that moles of water is 30 lb mol(approx), hence we will see H_soln from table corresponding to 30 lb mol water . \n",
" The amount of cooling needed is, 14800 Btu heat removed. \n",
" (b) Moles of H2O in solution is 2.0 lb mol . \n",
" As we can see that moles of water is 2 lb mol , hence we will see H_soln from table corresponding to 2 lb mol water . \n",
" The amount of cooling needed is, 191826 Btu heat removed. \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 28.2 page no. 872"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Application of the heat of solution data\n",
"\n",
"from scipy.integrate import quad\n",
"# Variables\n",
"p = 100. ;\t\t\t# Mass of product - [kg]\n",
"f_HCl = 25./100 ;\t\t\t#Fraction of HCl in product \n",
"HCl = f_HCl*p ;\t\t\t# Mass of HCl in product - [kg]\n",
"H2O = (1.-f_HCl)*p ;\t\t\t# Mass of H2O in product -[kg]\n",
"mw_HCl = 36.37 ;\t\t\t# Molecular weight of HCl -[kg]\n",
"mw_H2O = 18.02 ;\t\t\t# Molecular weight of H2O -[kg]\n",
"\n",
"# Calculations\n",
"mol_HCl = HCl /mw_HCl ;\t\t\t# Moles of HCl - [kg mol]\n",
"mol_H2O = H2O /mw_H2O; \t\t\t# Moles of H2O - [kg mol]\n",
"total_mol = mol_HCl + mol_H2O ;\t\t\t# Total no. of moles -[kg mol]\n",
"mf_HCl = mol_HCl / total_mol ;\t\t\t# mole fraction of HCl \n",
"mf_H2O = mol_H2O / total_mol ; \t\t\t# mole fraction of H2O\n",
"mr = mol_H2O/mol_HCl ;\t\t\t# Mole ratio of H2O to HCl \n",
"MW = mf_HCl*mw_HCl + mf_H2O*mw_H2O ;\t\t\t# Molecular t. of solution-[kg]\n",
"Ref_T = 25. ;\t\t\t#Reference temperature-[degree C]\n",
"\n",
"mol1_HCl = total_mol ;\t\t\t# Moles of HCl \t\t\t# Moles of HCl output -[g mol]\n",
"Hf1_HCl = -157753. ;\t\t\t# Heat of formation of HCl output-[J/ g mol HCl ]\n",
"Hf_HCl = -92311. ;\t\t\t# Heat of formation of HCl input-[J/ g mol HCl ]\n",
"Hf_H2O = 0 ;\t\t\t# Heat of formation of H2O input-[J/ g mol HCl ]\n",
"H1_HCl = 556. ;\t\t\t# Change in enthalpy during temperature change from 25 C to 35 C of HCl - [J/g mol] \n",
"\n",
"def f(T):\n",
" return (29.13 - 0.134*.01*T)\n",
"\n",
"H_HCl = quad(f,298,393)[0]\t# Change in enthalpy during temperature change from 25 C to 120 C of HCl - [J/g mol] \n",
"\n",
"H_H2O = 0 ;\t\t\t# Change in enthalpy during temperature change from 25 C to 25 C of H2O - [J/g mol] \n",
"\n",
"H_in = (Hf_HCl + H_HCl)*mol_HCl + (Hf_H2O + H_H2O)*mol_H2O ;\t\t\t# Enthalpy change of input -[J]\n",
"H_out = Hf1_HCl*mol_HCl +H1_HCl*mol1_HCl ;\t\t\t# Enthalpy change of output -[J]\n",
"\n",
"del_H = H_out - H_in ;\t\t\t# Net enthalpy change n process - [J]\n",
"Q = del_H; \t\t\t# By energy balance - [J]\n",
"\n",
"# Results\n",
"print 'The amount of heat removed from the absorber by cooling water is, %.0f J. '%Q\n",
"print 'It Seems answer is wrong in book'\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The amount of heat removed from the absorber by cooling water is, -44159 J. \n",
"It Seems answer is wrong in book\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
" Example 28.3 page no. 875\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Application of an Enthalpy Concentration Chart\n",
"\n",
"# Solution fig. 28.3\n",
"\n",
"# Variables\n",
"soln1 = 600. ; \t\t\t# Mass flow rate of entering solution 1 -[lb/hr]\n",
"c1_NaOH = 10./100 ;\t\t\t# Fraction of NaOH in entering solution 1\n",
"T1 = 200. ;\t\t\t# Temperature at entry \n",
"soln2 = 400. ;\t\t\t# Mass flow rate of another solution 2 entering -[lb/hr]\n",
"c2_NaOH = 50./100 ;\t\t\t# Fraction of NaOH in another entering solution 2\n",
"\n",
"# Calculations\n",
"F = soln1 + soln2; \t\t\t# Mass flow rate of final solution - [lb/hr]\n",
"F_NaOH = c1_NaOH * soln1 + c2_NaOH * soln2 ;\t\t\t# Mass of NaOH in final solution-[lb]\n",
"F_H2O = F - F_NaOH ;\t\t\t# Mass of H2O in final solution-[lb]\n",
"H_soln1 = 152. ;\t\t\t# Specific enthalpy change for solution 1-[Btu/lb]\n",
"H_soln2 = 290. ;\t\t\t# Specific enthalpy change for solution 2-[Btu/lb]\n",
"H_F = (soln1*H_soln1 + soln2*H_soln2)/F ;\t\t\t# Specific enthalpy change for final solution -[Btu/lb]\n",
"\n",
"# Results\n",
"print ' (a) The final temperature of the exit solution from figure E28.3 using the obtained condition of final solution is 232 degree F '\n",
"\n",
"cF = F_NaOH*100/F; \t\t\t# Concentration of final solution -[wt % NaOH ]\n",
"print ' (b) The concentration of final solution is %.0f wt.%% NaOH . '%cF\n",
"\n",
"x = (F*H_F - F*175)/(1158.0 - 175) ;\t\t\t# H2O evaporated per hour -[lb]\n",
"print ' (c) H2O evaporated per hour is %.1f lb . '%x\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" (a) The final temperature of the exit solution from figure E28.3 using the obtained condition of final solution is 232 degree F \n",
" (b) The concentration of final solution is 26 wt.% NaOH . \n",
" (c) H2O evaporated per hour is 32.8 lb . \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": true,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|