summaryrefslogtreecommitdiff
path: root/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch26.ipynb
blob: 5000414f799b8a4bed2d3a0f9624ac02444e95a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
{
 "metadata": {
  "name": "",
  "signature": "sha256:98deaafae63448982b8112f9e6ce85846fb35bc262bd2facf3329e5947fa2984"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 26 : Energy Balances that include the Effects of Chemical Reaction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 26.2 page no. 808\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "m1_CO = 1.; \t\t\t# Moles of CO input- [g mol]\n",
      "m1_O2 = 1. ;\t\t\t# Moles of O2 input - [g mol]\n",
      "m1_N2 = 3.76 ;\t\t\t# Moles of N2 input - [g mol]\n",
      "#Output compounds\n",
      "m2_CO2 = 1. ;\t\t\t# Moles of CO2 output - [g mol]\n",
      "m2_O2 = .50 ;\t\t\t# Moles of O2 output - [g mol]\n",
      "m2_N2 = 3.76 ;\t\t\t# Moles of N2 output - [g mol]\n",
      "\n",
      "H1_fCO = -110520 ;\t\t\t# Heat of formation of CO - [J/g mol] \n",
      "H1_fO2 = 0 ;\t\t\t# Heat of formation of O2 - [J/g mol] \n",
      "H1_fN2 = 0 ;\t\t\t# Heat of formation of N2 - [J/g mol] \n",
      "H1_CO = 2917. - 728 ;\t\t\t# Change in enthalpy during temperature change from 298K to 373 K of CO - [J/g mol] \n",
      "H1_O2 = 2953. - 732 ;\t\t\t# Change in enthalpy during temperature change from 298K to 373 K of input O2 - [J/g mol]\n",
      "H1_N2 = 2914. - 728 ;\t\t\t# Change in enthalpy during temperature change from 298K to 373 K of input N2 - [J/g mol]\n",
      "\n",
      "# Calculations\n",
      "H_in  = (H1_fCO + H1_CO)*m1_CO + (H1_fO2 + H1_O2)*m1_O2 + (H1_fN2 + H1_N2)*m1_N2;\t\t\t# Enthalpy change for inputs -[J]\n",
      "\n",
      "H2_fCO2 = -393510 ;\t\t\t# Heat of formation of CO2 - [J/g mol] \n",
      "H2_fO2 = 0 ;\t\t\t# Heat of formation of O2 - [J/g mol] \n",
      "H2_fN2 = 0 ;\t\t\t# Heat of formation of N2 - [J/g mol] \n",
      "H2_CO2 = 92466. - 912 ;\t\t\t# Change in enthalpy during temperature change from 298K to 2000 K of CO2 - [J/g mol] \n",
      "H2_O2 = 59914.-732 ;\t\t\t# Change in enthalpy during temperature change from 298K to 2000 K of output  O2 - [J/g mol] \n",
      "H2_N2 = 56902. - 728 ;\t\t\t# Change in enthalpy during temperature change from 298K to 2000 K of output  O2 - [J/g mol]   \n",
      "\n",
      "H1_out  = (H2_fCO2 + H2_CO2)*m2_CO2 + (H2_fO2 + H2_O2)*m2_O2 + (H2_fN2 + H2_N2)*m2_N2 ;\t\t\t# Enthalpy change for outputs at 2000 K -[J]\n",
      "\n",
      "del_H1 = H1_out - H_in ;\t\t\t# Net enthalpy change of process -[J]\n",
      "\n",
      "H2_fCO2 = -393510. ;\t\t\t# Heat of formation of CO2 - [J/g mol] \n",
      "H3_CO2 = 77455. - 912 ;\t\t\t# Change in enthalpy during temperature change from 298K to 1750 K of CO2 - [J/g mol] \n",
      "H3_O2 = 50555. -732 ;\t\t\t# Change in enthalpy during temperature change from 298K to 1750 K of output  O2 - [J/g mol] \n",
      "H3_N2 = 47940. - 728 ;\t\t\t# Change in enthalpy during temperature change from 298K to 1750 K of output  O2 - [J/g mol]   \n",
      "\n",
      "H2_out  = (H2_fCO2 + H3_CO2)*m2_CO2 + (H2_fO2 + H3_O2)*m2_O2 + (H2_fN2 + H3_N2)*m2_N2 ;\t\t\t# Enthalpy change for outputs at 1750 K -[J]\n",
      "\n",
      "del_H2 = H2_out - H_in ;\t\t\t# Net enthalpy change of process -[J]\n",
      "\n",
      "# Results\n",
      "print 'Heat of above reaction when output is assumed to be at 2000 K  is %.0f J.'%del_H1\n",
      "print ' Heat of above reaction  when output is assumed to be at 1750 K  is %.0f J.'%del_H2\n",
      "\t\t\t# Energy balance here reduce to del_H = 0 \n",
      "print ' So we can see that our desired result del_H = 0 is bracketed between 2000 K and 1750 K , hence we will use interpolation to get the theoretical flame temperature.'\n",
      "\t\t\t# Use interpolation to get the theoretical flame temperature\n",
      "del_H = 0. ;\t\t\t# Requred condition\n",
      "Ft = 1750 + ((del_H - del_H2)/(del_H1 - del_H2))*(2000 - 1750) ;\t\t\t# Interpolation to get Flame temperature(Ft)-[K]\n",
      "print ' Theoretical flame temperature by interpolation is %.0f K.'%Ft\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat of above reaction when output is assumed to be at 2000 K  is 36740 J.\n",
        " Heat of above reaction  when output is assumed to be at 1750 K  is -16648 J.\n",
        " So we can see that our desired result del_H = 0 is bracketed between 2000 K and 1750 K , hence we will use interpolation to get the theoretical flame temperature.\n",
        " Theoretical flame temperature by interpolation is 1828 K.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 26.3  page no. 811\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "v_CH4 = 1000. ;\t\t\t# Volume of CH4 taken - [ cubic feet]\n",
      "CH4 = 1. ;\t\t\t# assumed for convenience- [ g mol] \n",
      "ex_air = .5 ;\t\t\t# Fraction of excess O2 required \n",
      "hp_CaCO3 = 0.130 ;\t\t\t# Heat capacity of CaCO3 -[kJ/g mol]\n",
      "hp_CaO = 0.062 ;\t\t\t# Heat capacity of CaO -[kJ/g mol]\n",
      "w_CaCO3 = 100.09 ;\t\t\t# Mol. wt. of CaCO3 -[g]\n",
      "w_CaO = 56.08 ;\t\t\t# Mol. wt. ofCaO - [g]\n",
      "\n",
      "# Calculations\n",
      "req_O2 = 2. ;\t\t\t# By eqn. (b), O2 required by CH4 - [g mol]\n",
      "ex_O2 = ex_air*req_O2 ;\t\t\t# Excess O2 required - [ g mol]\n",
      "O2 = req_O2 + ex_O2 ;\t\t\t# Total O2 entering - [ g mol]\n",
      "N2 = O2 *(.79/.21) ;\t\t\t# Total N2 entering - [ g mol]\n",
      "\n",
      "nG_N2 = N2 ;\t\t\t# N2 balance - [ g mol]\n",
      "nG_H2O = 4*CH4/2. ;\t\t\t# H2O balance - [ g mol]\n",
      "nG_O2 = ex_O2 ;\t\t\t# [g mol]\n",
      "\n",
      "del_Hi_out = [ -393.250,0,0,-241.835,-635.6] ;\t\t\t# \t\t\t# Heat of formation  - [kJ/g mol] \n",
      "del_Hf_out = [21.425,15.043,14.241,17.010,54.25] ;\t\t\t#Change in enthalpy during temperature change -[kJ/g mol]\n",
      "del_H_out =del_Hi_out + del_Hf_out ;\t\t\t# Change in enthalpy final - [kJ/g mol]\n",
      "\n",
      "del_Hi_in = [ -49.963,-1206.9,0,0] ;\t\t\t# \t\t\t# Heat of formation  - [kJ/g mol] \n",
      "del_Hf_in = [0,0,0,0] ;\t\t\t#Change in enthalpy during temperature change -[kJ/g mol]\n",
      "del_H_in = del_Hi_in + del_Hf_in ;\t\t\t# Change in enthalpy final - [kJ/g mol]\n",
      "\n",
      "from numpy import matrix\n",
      "a = matrix([[1,-1],[(del_H_in[1]-del_H_out[4]),-del_H_out[0]]]) ;\t\t\t# Matrix of coefficients\n",
      "b = matrix([[-1],[(del_H_out[1]*nG_O2 + del_H_out[2]*nG_N2 +del_H_out[3]*nG_H2O-del_H_in[0]*CH4)]]) ;\t\t\t# Matrix of constants\n",
      "a = a.I\n",
      "x = a*b  ;\t\t\t# Matrix of solutions, L = x(1), nG_CO2 = x(2)\n",
      "g_CaCO3 = x[0]*w_CaCO3 ;\t\t\t#CaCO3 processed for each g mol of CH4 - [g]\n",
      "\n",
      "# Results\n",
      "print ' CaCO3 processed for each g mol of CH4 is %.0f g.'%g_CaCO3\n",
      "m_CaCO3 = (v_CH4*g_CaCO3)/359.05 ;\n",
      "print ' Therefore, CaCO3 processed per 1000 ft**3 of CH4 is %.0f lb.'%m_CaCO3\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " CaCO3 processed for each g mol of CH4 is 465 g.\n",
        " Therefore, CaCO3 processed per 1000 ft**3 of CH4 is 1295 lb.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 26.4  page no. 815\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "SO2_in = 2200. ;\t\t\t# Amount of SO2 entering reactor 2-[lb mol/hr]\n",
      "\n",
      "R1_CO_in = 1. ;\t\t\t#CO entering reactor 1-[lb mol]\n",
      "air =  .80 ;\t\t\t# Fraction of air used in burning \n",
      "\n",
      "R2_fSO2_in = 0.667 ;\t\t\t# Fraction of SO2 entering reactor 2\n",
      "R2_fO2_in = 0.333 ;\t\t\t# Fraction of O2 entering reactor 2\n",
      "R2_fSO3_out = 0.586 ;\t\t\t# Fraction of SO3 exiting reactor 2\n",
      "R2_fSO2_out = 0.276 ;\t\t\t# Fraction of SO2 exiting reactor 2\n",
      "R2_fO2_out = 0.138 ;\t\t\t# Fraction of O2 exiting reactor 2\n",
      "# Main Reaction: CO , (1/2)*O2 ---> CO2 \n",
      "R1_O2_in = (1.0/2)*air ;\t\t\t#  O2 entering reactor 1-[g mol]\n",
      "R1_N2_in = R1_O2_in*(79./21) ;\t\t\t#  N2 entering reactor 1-[g mol]\n",
      "\n",
      "# Calculations\n",
      "#Output of reactor 1\n",
      "R1_CO_out = R1_CO_in*(1 - air) ;\t\t\t# [g mol]\n",
      "R1_CO2_out = 1*( air) ;\t\t\t# [g mol]\n",
      "R1_N2_out = R1_N2_in ;\t\t\t#[g mol]\n",
      "\n",
      "del_Hi_out = [ -109.054,-393.250,0.,-296.855,-395.263,0.] ; \t\t\t# Heat of formation  - [kJ/g mol] \n",
      "del_Hf_out = [35.332,35.178,22.540,20.845,34.302,16.313] ;\t\t\t#Change in enthalpy during temperature change -[kJ/g mol]\n",
      "del_H_out =del_Hi_out + del_Hf_out ;\t\t\t#[-371.825,15.043,160.781,-449.650,-581.35]\t\t\t# Change in enthalpy final - [kJ/g mol]\n",
      "\n",
      "del_Hi_in = [  -109.054,-393.250,0.,-296.855,0.] ;\t\t\t# \t\t\t# Heat of formation  - [kJ/g mol] \n",
      "del_Hf_in = [17.177,17.753,11.981,0.,0.] ;\t\t\t#Change in enthalpy during temperature change -[kJ/g mol]\n",
      "del_H_in = del_Hi_in+ del_Hf_in ;\t\t\t# Change in enthalpy final - [kJ/g mol]\n",
      "\n",
      "from numpy import matrix\n",
      "# Solve eqn. (a), (b) and (c) to get F ,P , ex \n",
      "a = matrix([[(R2_fSO3_out),0,-1],\n",
      "            [(R2_fSO2_out),-(R2_fSO2_in),1],\n",
      "            [- 285.50, -(del_H_in[3]*R2_fSO2_in), 0]]) ;\t\t\t# Matrix of coefficients\n",
      "\n",
      "b = matrix([[0],[0],[- 33.459781 ]]) ;\t\t\t# Matrix of constants\n",
      "#a = a.I\n",
      "#x = a*b  ;\t\t\t# Matrix of solutions, P = x(1), F = x(2) ,ex = x(3)\n",
      "\n",
      "from numpy import *\n",
      "x = linalg.solve(a,b)\n",
      "\n",
      "F = x[1] ;\t\t\t#exit stream of reactor 2 - [lb mol]\n",
      "R2_SO2_in = R2_fSO2_in*F ;\t\t\t# Moles of SO2 required per lb mol of CO - [lb mol]\n",
      "\n",
      "CO = (R1_CO_in*SO2_in)/R2_SO2_in ;\t\t\t#Mole of CO burned in reactor 1 - [lb mol] \n",
      "\n",
      "# Results\n",
      "print 'Mole of CO burned in reactor 1 is %.0f lb mol.'%CO\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mole of CO burned in reactor 1 is 2259 lb mol.\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 26.5  page no. 819\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      " \n",
      "\n",
      "# Variables\n",
      "CA = 10000. ;\t\t\t# Produced citric acid - [kg]\n",
      "f_glucose = .30 ;\t\t\t# Fraction of glucose in solution \n",
      "con_glucose = .60 ;\t\t\t#  Fraction of glucose consumed\n",
      "w_glucose = 180.16 ;\t\t\t# Mol. wt. of d,alpha glucose -[g]\n",
      "H_glucose = -1266 ;\t\t\t# Specific enthalpy change of glucose - [kJ/g mol]\n",
      "w_CA = 192.12; \t\t\t# Mol. wt. of citric acid -[g]\n",
      "H_CA = -1544.8  ;\t\t\t# Specific enthalpy change of citric acid - [kJ/g mol]\n",
      "w_BM = 28.6 ;\t\t\t# Mol. wt. of biomass -[g]\n",
      "H_BM = -91.4  ;\t\t\t#  Specific enthalpy change of biomass - [kJ/g mol]\n",
      "H_CO2 = -393.51  ;\t\t\t#  Specific enthalpy change of CO2 - [kJ/g mol]\n",
      "\n",
      "# Calculations\n",
      "mol_CA = CA/w_CA ;\t\t\t# Mole of citric acid produced - [kg mol]\n",
      "g_soln = (mol_CA*(3/2.22)*w_glucose*1)/(con_glucose*f_glucose) ;\t\t\t#Mass of 30 % glucose solution introduced -[kg]\n",
      "i_glucose = g_soln* f_glucose / w_glucose ;\t\t\t# Initial moles of glucose - [kg mol]\n",
      "f_glucose = (1 - con_glucose)*i_glucose ;\t\t\t# Final moles of glucose - [kg mol]\n",
      "f_CA = mol_CA ;\t\t\t# Final moles of citric acid - [kg mol]\n",
      "f_BM = f_CA*(5.35/2.22) ;\t\t\t# Using the reaction (a)- Final moles of biomass - [kg mol]\n",
      "i_O2 = i_glucose*(7.8/3) ;\t\t\t#  Using the reaction (a)- Initial moles of O2 - [kg mol]\n",
      "f_CO2 =  i_glucose*(4.5/3)*con_glucose ;\t\t\t#  Using the reaction (a) - Final moles of CO2 - [kg mol]\n",
      "\n",
      "power = 100 ;\t\t\t# Power of aerator -[hp]\n",
      "time = 220 ;\t\t\t# Time taken for reaction - [ hr ]\n",
      "W = (power*745.7*time*3600)/1000 ;\t\t\t# Work done by aerator - [kJ]\n",
      "\n",
      "Hi_glucose  = i_glucose*H_glucose*1000 ;\t\t\t# Enthalpy change of glucose input - [kJ]\n",
      "Hi_O2  = i_O2*0*1000 ;\t\t\t# Enthalpy change of O2 input - [kJ]\n",
      "H_in = Hi_glucose + Hi_O2 ;\t\t\t# Enthalpy change of input - [kJ]\n",
      "\n",
      "Hf_glucose  = f_glucose*H_glucose*1000 ;\t\t\t# Enthalpy change of glucose output - [kJ]\n",
      "Hf_BM = f_BM * H_BM*1000 ;\t\t\t#Enthalpy change of biomass output - [kJ]\n",
      "Hf_CA = f_CA *H_CA*1000 ;\t\t\t#Enthalpy change of citric acid output - [kJ]\n",
      "Hf_CO2 = f_CO2 *H_CO2*1000 ;\t\t\t#Enthalpy change of CO2 output - [kJ]\n",
      "H_out = Hf_glucose + Hf_BM +Hf_CA + Hf_CO2 ;\t\t\t# Enthalpy change of output - [kJ]\n",
      "del_H = H_out - H_in ;\t\t\t# Total enthalpy change in process - [kJ]\n",
      "Q = del_H - W ;\t\t\t# Heat removed - [kJ]\n",
      "\n",
      "# Results\n",
      "print 'Heat exchange from the fermentor during production of 10,000 kg citric acid is %.2e kJ(minus sign indicates heat is removed).'%Q\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat exchange from the fermentor during production of 10,000 kg citric acid is -1.03e+08 kJ(minus sign indicates heat is removed).\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "code",
     "collapsed": true,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}