summaryrefslogtreecommitdiff
path: root/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch23.ipynb
blob: b535473dda2c328805e98406dee2869186c92081 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
{
 "metadata": {
  "name": "",
  "signature": "sha256:85497d817768e6e1d81546cc4adcb855eed2a97589497e4f8a3f22d0bc4a6c3d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "\n",
      "Chapter 23 : Calculation of Enthalpy Changes"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 23.1   Page no. 686\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%matplotlib inline\n",
      "from matplotlib.pyplot import *\n",
      "\n",
      "# Variables\n",
      "# Given\n",
      "x_Tl = [90,92,97,100] ;\t\t\t# Temperature of saturated liquid- [degree C]\n",
      "x_Tg = [100,102,107,110] ;\t\t\t# Temperature of saturated vapour- [degree C]\n",
      "y_Hl = [376.9,385.3,406.3,418.6] ;\t\t\t# Enthalpy change of saturated liquid -[kJ/kg]\n",
      "y_Hg = [2256.44,2251.2,2237.9,2229.86] ;\t\t\t# Enthalpy change of saturated vapour -[kJ/kg]\n",
      "\n",
      "# Results\n",
      "plot(x_Tl,y_Hl,x_Tg,y_Hg);\n",
      "show()\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD9CAYAAABazssqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFTxJREFUeJzt3V9MW+fBx/HfCbjKXiVRclFMZkdyF0yJgwN0lZOLZXOV\nQBOkMapMqGRrSEOmCTQtVaOp20U7mLRCL7aJpkPqBZ1QJhUytUA0rRYXk9O10mCjRJrqrHE0omJj\n2DKGRFZekZDzXkTxG8J/7GDI8/1IEeb4nOPHJyfnax+Og2Xbti0AgJE2ZXoAAIDMIQIAYDAiAAAG\nIwIAYDAiAAAGIwIAYLBFIzA8PKxnnnlGe/fuVWFhod58801JUkNDg9xut0pKSlRSUqIPPvgguUxT\nU5O8Xq8KCgrU29ubnD4wMCC/3y+v16szZ848pKcDAFgJa7HPCYyOjmp0dFTFxcW6efOmvvrVr6q7\nu1sXLlzQ1q1b9fLLL8+aPxKJ6Pjx4/rLX/6ieDyuw4cPKxqNyrIsBQIBvfXWWwoEAiovL9cPf/hD\nHTly5KE/QQDAwhZ9J5Cbm6vi4mJJ0pYtW7Rnzx7F43FJ0nzt6OnpUXV1tRwOhzwej/Ly8tTX16dE\nIqHJyUkFAgFJ0okTJ9Td3Z3u5wIAWKFl/0zg+vXrGhwc1IEDByRJ586dU1FRkWprazUxMSFJGhkZ\nkdvtTi7jdrsVj8fnTHe5XMmYAAAyJ3s5M928eVPf/va31dLSoi1btqiurk6vvfaaJOnVV1/V2bNn\n1dbWlvJgLMtKeR0AYKLV/g9AS74TuHXrlo4dO6bvfve7qqyslCTl5OTIsixZlqXTp0+rv79f0t1X\n+MPDw8llY7GY3G63XC6XYrHYrOkul2vBJ8Kf9Pz56U9/mvExPEp/2J5sy/X6JxWLRsC2bdXW1srn\n8+mll15KTk8kEsnbXV1d8vv9kqSKigp1dHRoenpaQ0NDikajCgQCys3N1bZt29TX1yfbtnX+/Plk\nUAAAmbPo6aCPP/5Yv/3tb7Vv3z6VlJRIkl5//XW9++67unz5sizL0hNPPKG3335bkuTz+VRVVSWf\nz6fs7Gy1trYmT/G0trbq5MmTmpqaUnl5OVcGAcA6sOglomvNsqyU39rg/4XDYQWDwUwP45HB9kwf\ntmV6pXLsJAIAsMGlcuzkv40AAIMRAQAwGBEAAIMRAQAwGBEAAIMRAQAwGBEAAIMRAQAwGBEAAIMR\nAQAwGBEAAIMRAQAwGBEAAIMRAQAw2LJ+xzBgumvj12TbtrI3ZStrU9bdr9bdr/NN4/dlY6Pg9wkA\ny/C1d76m0ZujmrFndPvObc3cufv19p3bc6bN2DOyZC0YiOVE5N73y11uqfUt6/6VrGuR8S01L4FM\nP36pDLCO2LatO/adZBweDMRyIrLQPPemz7fu+eabM22J5Va0rlXMO2PPaJO1KW1BSUe8VhrDhzE9\na1OWNlmrPzufyrGT00FAmlmWpSwrS1nK0mNZj2V6OOvKvUCmIygriddC896+c1v/e/t/VzyehzF9\nvnePyw1LKogAgDWTDOSmrEwPZV1Z7N3jcgKyX/tX/dicDgKADY7fMQwAWBUiAAAGIwIAYDAiAAAG\nIwIAYDAiAAAGIwIAYDAiAAAGIwIAYDAiAAAGIwIAYDAiAAAGIwIAYDAiAAAGIwIAYLBFIzA8PKxn\nnnlGe/fuVWFhod58801J0vj4uEpLS5Wfn6+ysjJNTEwkl2lqapLX61VBQYF6e3uT0wcGBuT3++X1\nenXmzJmH9HQAACuxaAQcDod+9atf6dNPP9Wf//xn/frXv9aVK1fU3Nys0tJSXb16VYcOHVJzc7Mk\nKRKJqLOzU5FIRKFQSPX19clfdFBXV6e2tjZFo1FFo1GFQqGH/+wAAItaNAK5ubkqLi6WJG3ZskV7\n9uxRPB7XxYsXVVNTI0mqqalRd3e3JKmnp0fV1dVyOBzyeDzKy8tTX1+fEomEJicnFQgEJEknTpxI\nLgMAyJxl/47h69eva3BwUPv379fY2JicTqckyel0amxsTJI0MjKiAwcOJJdxu92Kx+NyOBxyu93J\n6S6XS/F4fN7HaWhoSN4OBoMKBoMreT4A8MgLh8MKh8NpWdeyInDz5k0dO3ZMLS0t2rp166z7LMuS\nZVlpGYw0OwIAgLkefIHc2Ni46nUteXXQrVu3dOzYMb3wwguqrKyUdPfV/+joqCQpkUgoJydH0t1X\n+MPDw8llY7GY3G63XC6XYrHYrOkul2vVgwYApMeiEbBtW7W1tfL5fHrppZeS0ysqKtTe3i5Jam9v\nT8ahoqJCHR0dmp6e1tDQkKLRqAKBgHJzc7Vt2zb19fXJtm2dP38+uQwAIHMs+97lO/P46KOP9PWv\nf1379u1LnvJpampSIBBQVVWVPv/8c3k8Hl24cEHbt2+XJL3++ut65513lJ2drZaWFj377LOS7l4i\nevLkSU1NTam8vDx5uemswViWFhkOAGAeqRw7F43AWiMCALByqRw7+cQwABiMCACAwYgAABiMCACA\nwYgAABiMCACAwYgAABiMCACAwYgAABiMCACAwYgAABiMCACAwYgAABiMCACAwYgAABiMCACAwYgA\nABiMCACAwYgAABiMCACAwYgAABiMCACAwYgAABiMCACAwYgAABiMCACAwYgAABiMCACAwYgAABiM\nCACAwYgAABiMCACAwYgAABiMCACAwYgAABhsyQicOnVKTqdTfr8/Oa2hoUFut1slJSUqKSnRBx98\nkLyvqalJXq9XBQUF6u3tTU4fGBiQ3++X1+vVmTNn0vw0AACrsWQEXnzxRYVCoVnTLMvSyy+/rMHB\nQQ0ODuro0aOSpEgkos7OTkUiEYVCIdXX18u2bUlSXV2d2traFI1GFY1G56wTALD2lozAwYMHtWPH\njjnT7x3c79fT06Pq6mo5HA55PB7l5eWpr69PiURCk5OTCgQCkqQTJ06ou7s7DcMHAKRi1T8TOHfu\nnIqKilRbW6uJiQlJ0sjIiNxud3Iet9uteDw+Z7rL5VI8Hk9h2ACAdMhezUJ1dXV67bXXJEmvvvqq\nzp49q7a2trQMqKGhIXk7GAwqGAymZb0A8KgIh8MKh8NpWdeqIpCTk5O8ffr0aX3zm9+UdPcV/vDw\ncPK+WCwmt9stl8ulWCw2a7rL5Zp33fdHAAAw14MvkBsbG1e9rlWdDkokEsnbXV1dySuHKioq1NHR\noenpaQ0NDSkajSoQCCg3N1fbtm1TX1+fbNvW+fPnVVlZuepBAwDSY8l3AtXV1bp06ZJu3LihXbt2\nqbGxUeFwWJcvX5ZlWXriiSf09ttvS5J8Pp+qqqrk8/mUnZ2t1tZWWZYlSWptbdXJkyc1NTWl8vJy\nHTly5OE+MwDAkix7vst8MsSyrHmvOgIALCyVYyefGAYAgxEBADAYEQAAgxEBADAYEQAAgxEBADAY\nEQAAgxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAA\ngxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAAgxEBADAYEQAAgxEB\nADAYEQAAgxEBADAYEQAAgxEBADDYkhE4deqUnE6n/H5/ctr4+LhKS0uVn5+vsrIyTUxMJO9ramqS\n1+tVQUGBent7k9MHBgbk9/vl9Xp15syZND8NAMBqLBmBF198UaFQaNa05uZmlZaW6urVqzp06JCa\nm5slSZFIRJ2dnYpEIgqFQqqvr5dt25Kkuro6tbW1KRqNKhqNzlknAGDtLRmBgwcPaseOHbOmXbx4\nUTU1NZKkmpoadXd3S5J6enpUXV0th8Mhj8ejvLw89fX1KZFIaHJyUoFAQJJ04sSJ5DIAgMxZ1c8E\nxsbG5HQ6JUlOp1NjY2OSpJGREbnd7uR8brdb8Xh8znSXy6V4PJ7KuAEAaZCd6gosy5JlWekYiySp\noaEheTsYDCoYDKZt3QDwKAiHwwqHw2lZ16oi4HQ6NTo6qtzcXCUSCeXk5Ei6+wp/eHg4OV8sFpPb\n7ZbL5VIsFps13eVyzbvu+yMAAJjrwRfIjY2Nq17Xqk4HVVRUqL29XZLU3t6uysrK5PSOjg5NT09r\naGhI0WhUgUBAubm52rZtm/r6+mTbts6fP59cBgCQOUu+E6iurtalS5d048YN7dq1Sz/72c/04x//\nWFVVVWpra5PH49GFCxckST6fT1VVVfL5fMrOzlZra2vyVFFra6tOnjypqakplZeX68iRIw/3mQEA\nlmTZ967hXAcsy9I6Gg4AbAipHDv5xDAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDB\niAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAA\nGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwIAIDBiAAAGIwI\nAIDBiAAAGIwIAIDBUoqAx+PRvn37VFJSokAgIEkaHx9XaWmp8vPzVVZWpomJieT8TU1N8nq9Kigo\nUG9vb2ojBwCkLKUIWJalcDiswcFB9ff3S5Kam5tVWlqqq1ev6tChQ2pubpYkRSIRdXZ2KhKJKBQK\nqb6+Xnfu3En9GQAAVi3l00G2bc/6/uLFi6qpqZEk1dTUqLu7W5LU09Oj6upqORwOeTwe5eXlJcMB\nAMiM7FQWtixLhw8fVlZWlr7//e/re9/7nsbGxuR0OiVJTqdTY2NjkqSRkREdOHAguazb7VY8Hp+z\nzoaGhuTtYDCoYDCYyhAB4JETDocVDofTsq6UIvDxxx9r586d+te//qXS0lIVFBTMut+yLFmWteDy\n8913fwQAAHM9+AK5sbFx1etK6XTQzp07JUmPP/64nnvuOfX398vpdGp0dFSSlEgklJOTI0lyuVwa\nHh5OLhuLxeRyuVJ5eABAilYdgS+++EKTk5OSpP/+97/q7e2V3+9XRUWF2tvbJUnt7e2qrKyUJFVU\nVKijo0PT09MaGhpSNBpNXlEEAMiMVZ8OGhsb03PPPSdJun37tr7zne+orKxMTz/9tKqqqtTW1iaP\nx6MLFy5Iknw+n6qqquTz+ZSdna3W1tZFTxUBAB4+y37w8p4MsixrztVGAIDFpXLsTOkHw8Cj7M4d\n6dYtaXr67tft26VNfMYejxgigIfOtu8eRO8/oE5Pz769HqfNzEiPPSY5HHe/RiJSbm6mtyaQXkRg\ng7HtuwenhQ5g6fg+3cveuiVlZ88+oN5/O9VpW7akd333pmVlSfzYCo864yNw/1v+tT5grnZdmzbN\nPWAtdFBb6X3/8z/pWc+97+9N42AKrE/rLgK/+c3aHozv3En/gXShV6iprvfeQTUrK9N/SwAeFesu\nAh9+OP8BcPNmaevW5R9Ml/s9b/kBmIxLRAFgg0vl2MkFbwBgMCIAAAYjAgBgMCIAAAYjAgBgMCIA\nAAYjAgBgMCIAAAYjAgBgMCIAAAYjAgBgMCIAAAYjAgBgMCIAAAYjAgBgMCIAAAYjAgBgMCIAAAYj\nAgBgMCIAAAYjAgBgMCIAAAYjAgBgMCIAAAYjAgBgMCIAAAYjAgBgMCIAAAZb0wiEQiEVFBTI6/Xq\njTfeWMuHNlI4HM70EB4pbM/0YVuuH2sWgZmZGf3gBz9QKBRSJBLRu+++qytXrqzVwxuJf2jpxfZM\nH7bl+rFmEejv71deXp48Ho8cDoeef/559fT0rNXDAwDmsWYRiMfj2rVrV/J7t9uteDy+Vg8PAJhH\n9lo9kGVZaZ0Py9PY2JjpITxS2J7pw7ZcH9YsAi6XS8PDw8nvh4eH5Xa7Z81j2/ZaDQcAoDU8HfT0\n008rGo3q+vXrmp6eVmdnpyoqKtbq4QEA81izdwLZ2dl666239Oyzz2pmZka1tbXas2fPWj08AGAe\na/o5gaNHj+qzzz7TtWvX9JOf/EQtLS3y+/0qLCxUS0uLJGl8fFylpaXKz89XWVmZJiYm1nKIG9Z8\n27KhoUFut1slJSUqKSlRKBTK8CjXr1OnTsnpdMrv9yenLbYvNjU1yev1qqCgQL29vZkY8rq2ku15\n/fp1felLX0rup/X19Zka9ro037b83e9+p7179yorK0uffPLJrPlXvG/aGfK3v/3NLiwstKempuzb\nt2/bhw8ftq9du2b/6Ec/st944w3btm27ubnZfuWVVzI1xA1joW3Z0NBg/+IXv8j08DaEDz/80P7k\nk0/swsLC5LSF9sVPP/3ULioqsqenp+2hoSF79+7d9szMTEbGvV6tZHsODQ3Nmg+zzbctr1y5Yn/2\n2Wd2MBi0BwYGktNXs29m7L+N+Pvf/679+/dr8+bNysrK0je+8Q299957unjxompqaiRJNTU16u7u\nztQQN4z5tuX7778viR+2L9fBgwe1Y8eOWdMW2hd7enpUXV0th8Mhj8ejvLw89ff3r/mY17OVbE8s\nbr5tWVBQoPz8/DnzrmbfzFgECgsL9ac//Unj4+P64osv9Ic//EGxWExjY2NyOp2SJKfTqbGxsUwN\nccOYb1veuxLr3LlzKioqUm1tLafWVmihfXFkZGTWlW185mV5Fvu3PTQ0pJKSEgWDQX300UeZGuKG\nt5p9M2MRKCgo0CuvvKKysjIdPXpUxcXFysrKmjWPZVl8bmAZFtqW9fX1Ghoa0uXLl7Vz506dPXs2\n00PdsJbaF9lPV+b+7fnlL39Zw8PDGhwc1C9/+UsdP35ck5OTGR7ho2OpfTOj/4voqVOn9Ne//lWX\nLl3Sjh07lJ+fL6fTqdHRUUlSIpFQTk5OJoe4Ydy/Lbdv364nn3xSjz/+ePIf2+nTpzllsUIL7YsP\nfuYlFovJ5XJlZIwbyULb87HHHkue7njqqae0e/duRaPRjI1zI1vNvpnRCPzzn/+UJH3++ed6//33\ndfz4cVVUVKi9vV2S1N7ersrKykwOccO4f1t2dXXp+PHjSiQSyfu7urpmXV2ApS20L1ZUVKijo0PT\n09MaGhpSNBpVIBDI5FA3hIW2540bNzQzMyNJ+sc//qFoNKqvfOUrGRvnRnP/z/1WtW8+pB9oL8vB\ngwdtn89nFxUV2X/84x9t27btf//73/ahQ4dsr9drl5aW2v/5z38yOcQNY75t+cILL9h+v9/et2+f\n/a1vfcseHR3N8CjXr+eff97euXOn7XA4bLfbbb/zzjuL7os///nP7d27d9tPPvmkHQqFMjjy9Wkl\n2/O9996z9+7daxcXF9tPPfWU/fvf/z7Do19fHtyWbW1tdldXl+12u+3NmzfbTqfTPnLkSHL+le6b\nlm1z+QgAmIrfLAYABiMCAGAwIgAABiMCAGAwIgAABiMCAGCw/wMDiUOF/Sr3yAAAAABJRU5ErkJg\ngg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x33aa350>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 23.2  page no. 687\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "# Variables\n",
      "# Basis : 1 g mol\n",
      "R = 8.314 * 10**-3 ;\t\t\t# Ideal gas constant -[kJ/(g mol * K)]\n",
      "Hv = 30.20 ;\t\t\t# Experimental value of heat of vaporization of acetone -[kJ/g]  \n",
      "\n",
      "# additional needed data for acetone from Appendix D\n",
      "T = 329.2 ;\t\t\t# Normal boiling point of acetone - [K]\n",
      "Tc = 508.0 ;\t\t\t# Critical temperature  of acetone - [K]\n",
      "Pc = 47.0 ;\t\t\t# Critical presure of acetone -[atm]\n",
      "\n",
      "# Calculations and Results\n",
      "Tbc = T/Tc ;\t\t\t# variable required in etimation equations\n",
      "lnPc = math.log(Pc)  ;\t\t\t#  variable required in etimation equations\n",
      "\n",
      "B = 2940.46 ;\n",
      "C = -35.93 ;\n",
      "\n",
      "del_Hv1 = (R*B*T**2)/((C+T)**2) ;\t\t\t#Heat of vapourization -[kJ/g]\n",
      "d1 = (abs(Hv - del_Hv1)*100)/Hv ;\t\t\t# differece of experimental and calculated value -[%]\n",
      "print '(a) Heat of vapourization of acetone is %.2f kJ/g mol. And differece of experimental and calculated value is %.1f %% . '%(del_Hv1,d1);\n",
      "\n",
      "del_Hv2 = R*T*((3.978*Tbc - 3.938 +1.555*lnPc)/(1.07 - Tbc)) ;\t\t\t#Heat of vapourization -[kJ/g]\n",
      "d2 = (abs(Hv - del_Hv2)*100)/Hv ;\t\t\t# differece of experimental and calculated value -[%]\n",
      "print ' (b) Heat of vapourization of acetone is %.2f kJ/g mol. And differece of experimental and calculated value is %.1f %% . '%(del_Hv2,d2);\n",
      "\n",
      "\n",
      "del_Hv3 = 1.093*R*Tc*((Tbc*(lnPc-1))/(0.93-Tbc)) ;\t\t\t#Heat of vapourization -[kJ/g]\n",
      "d3 = (abs(Hv - del_Hv3)*100)/Hv ;\t\t\t# differece of experimental and calculated value -[%]\n",
      "print ' (c) Heat of vapourization of acetone is %.2f kJ/g mol. And differece of experimental and calculated value is %.1f %% . '%(del_Hv3,d3);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) Heat of vapourization of acetone is 30.80 kJ/g mol. And differece of experimental and calculated value is 2.0 % . \n",
        " (b) Heat of vapourization of acetone is 30.01 kJ/g mol. And differece of experimental and calculated value is 0.6 % . \n",
        " (c) Heat of vapourization of acetone is 30.24 kJ/g mol. And differece of experimental and calculated value is 0.1 % . \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "\n",
      "Example 23.3   Page no. 693\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "c = 2.675*10**4    #*.4536)/(1055*1.8) ;\n",
      "d = 42.27#*.4536)/(1055*1.8) ;\n",
      "e = 1.425*10**-2#*.4536)/(1055*1.8) ;\n",
      "# Calculations\n",
      "#Now convert Tk (Temperature in K) to TF (temperature in F) to get answer of form x + yT - zT**2,where\n",
      "x = c + d*460/1.8 - e*((460/1.8)**2) ;\n",
      "y = d/1.8;\n",
      "z = e/(1.8*1.8) ;\n",
      "\n",
      "# Results\n",
      "print 'The required answer is %.2e + (%.2e)T - (%.3e) T**2 Btu/(lb mol*F) , where T is in degree F .  '%(x,y,z)\n",
      "\n",
      "print \"Note answer in textbook seems wrong by order of 10^-3\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required answer is 3.66e+04 + (2.35e+01)T - (4.398e-03) T**2 Btu/(lb mol*F) , where T is in degree F .  \n",
        "Note answer in textbook seems wrong by order of 10^-3\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 23.4  page no. 694\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "# Take all 18 experimenta data in an array Cp\n",
      "Cpi = [39.87,39.85,39.90,45.16,45.23,45.17,50.72,51.03,50.90,56.85,56.80,57.02,63.01,63.09,63.14,69.52,69.68,69.63] ;\t\t\t# Array of Cpi(Heat capacity) values\n",
      "# Take corresponding temperatures in array T\n",
      "Ti = [300,300,300,400,400,400,500,500,500,600,600,600,700,700,700,800,800,800] ;\t\t\t# array of Ti\n",
      "Ti_sqr = [300**2,300**2,300**2,400**2,400**2,400**2,500**2,500**2,500**2,600**2,600**2,600**2,700**2,700**2,700**2,800**2,800**2,800**2] ;\t\t\t# array of Ti**2\n",
      "Ti_cub = [300**3,300**3,300**3,400**3,400**3,400**3,500**3,500**3,500**3,600**3,600**3,600**3,700**3,700**3,700**3,800**3,800**3,800**3];\t\t\t# array of Ti**3\n",
      "Ti_qd = [300**4,300**4,300**4,400**4,400**4,400**4,500**4,500**4,500**4,600**4,600**4,600**4,700**4,700**4,700**4,800**4,800**4,800**4];\t\t\t# array of Ti**4\n",
      "Cpi_Ti = [39.87*300,39.85*300,39.90*300,45.16*400,45.23*400,45.17*400,50.72*500,51.03*500,50.90*500,56.85*600,56.80*600,57.02*600,63.01*700,63.09*700,63.14*700,69.52*800,69.68*800,69.63*800] ;\t\t\t# Array of Cpi(Heat capacity)*Ti  values\n",
      "Cpi_Ti_sqr = [39.87*300**2,39.85*300**2,39.90*300**2,45.16*400**2,45.23*400**2,45.17*400**2,50.72*500**2,51.03*500**2,50.90*500**2,56.85*600**2,56.80*600**2,57.02*600**2,63.01*700**2,63.09*700**2,63.14*700**2,69.52*800**2,69.68*800**2,69.63*800**2] ;\t\t\t# Array of Cpi(Heat capacity)*Ti**2  values\n",
      "\n",
      "n = 18. ;\t\t\t# Number of data\n",
      "# Calculations\n",
      "\n",
      "from numpy import matrix\n",
      "# Solve equations (a),(b) & (c) simultaneously using matrix\n",
      "a = matrix([[n,sum(Ti),sum(Ti_sqr)],[sum(Ti),sum(Ti_sqr),sum(Ti_cub)],[sum(Ti_sqr),sum(Ti_cub),sum(Ti_qd)]]) ;\t\t\t# Matrix of coefficients of unknown\n",
      "b = matrix([[sum(Cpi)],[sum(Cpi_Ti)],[sum(Cpi_Ti_sqr)]]) ;\t\t\t# Matrix of constants\n",
      "x = (a)**-1 * b ;\t\t\t# Matrix of solutions a = x(1), b = x(2) , c = x(3) \n",
      "\n",
      "# Results\n",
      "print 'The solution is Cp = %.2f + %.3e T + %.2e T**2 .Therefore coefficients are as follows :'%(x[0],x[1],x[2])\n",
      "print ' a = %.2f. b = %.3e . c = %.2e .'%(x[0],x[1],x[2])\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The solution is Cp = 25.44 + 4.371e-02 T + 1.44e-05 T**2 .Therefore coefficients are as follows :\n",
        " a = 25.44. b = 4.371e-02 . c = 1.44e-05 .\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 23.5 page no : 695"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "from scipy.integrate import quad\n",
      "# Variables\n",
      "# Basis : 1 g mol of gas\n",
      "#Given\n",
      "T1 = 550. ;\t\t\t# Initial temperature - [degree F]\n",
      "T2 = 200. ;\t\t\t# Final temperature - [degree F]\n",
      "CO2 = 9.2/100 ;\t\t\t# Mole fraction \n",
      "CO = 1.5/100 ;\t\t\t# Mole fraction \n",
      "O2 = 7.3/100 ;\t\t\t# Mole fraction \n",
      "N2 = 82.0/100 ;\t\t\t#Mole fraction \n",
      "\n",
      "# Calculations\n",
      "# Additional data needed  :\n",
      "a_N2 = 6.895;\t\t\t# constant\n",
      "b_N2 = 0.7624*10**-3;\t\t\t# coefficient of T\n",
      "c_N2 = -0.7009*10**-7;\t\t\t# coefficient of square T\n",
      "a_O2 = 7.104 ;\t\t\t# constant\n",
      "b_O2 = (0.7851*10**-3);\t\t\t# coefficient of T\n",
      "c_O2 = (-0.5528*10**-7); \t\t\t# coefficient of square T\n",
      "a_CO2 = 8.448;\t\t\t# constant\n",
      "b_CO2 = 5.757*10**-3;\t\t\t# coefficient of T\n",
      "c_CO2 = -21.59*10**-7;\t\t\t# coefficient of square T\n",
      "d_CO2 = 3.059*10**-10;\t\t\t# coefficient of cubic T\n",
      "a_CO = 6.865 ;\t\t\t# constant\n",
      "b_CO = 0.8024*10**-3;\t\t\t# coefficient of T\n",
      "c_CO = -0.7367*10**-7; \t\t\t# coefficient of square T\n",
      "\n",
      "# New coefficients after multiplying mole fraction of each component\n",
      "a1_N2 = 6.895*N2 ;\t\t\t# constant\n",
      "b1_N2 = N2*0.7624*10**-3; \t\t\t# coefficient of T\n",
      "c1_N2 = (-0.7009*10**-7)*N2; \t\t\t# coefficient of square T \n",
      "a1_O2 = 7.104*O2 ;\t\t\t# constant\n",
      "b1_O2 = (0.7851*10**-3)*O2;\t\t\t# coefficient of T\n",
      "c1_O2 = (-0.5528*10**-7)*O2; \t\t\t# coefficient of square T\n",
      "a1_CO2 = 8.448*CO2;\t\t\t# constant\n",
      "b1_CO2 = (5.757*10**-3)*CO2;\t\t\t# coefficient of T\n",
      "c1_CO2 = (-21.59*10**-7)*CO2; \t\t\t# coefficient of square T\n",
      "d1_CO2 = (3.059*10**-10)*CO2; \t\t\t# coefficient of cubic T\n",
      "a1_CO = 6.865*CO;\t\t\t# constant\n",
      "b1_CO = (0.8024*10**-3)*CO;\t\t\t# coefficient of T\n",
      "c1_CO = (-0.7367*10**-7)*CO; \t\t\t# coefficient of square T\n",
      "\n",
      "# Get net coefficients of T , square T and cubic T by adding them\n",
      "a_net = a1_N2+a1_CO2+a1_CO+a1_O2; \t\t\t#Net constant\n",
      "b_net = b1_N2+b1_CO2+b1_CO+b1_O2; \t\t\t#Net coefficient of T\n",
      "c_net = c1_N2+c1_CO2+c1_CO+c1_O2 ;\t\t\t#Net coefficient of square T\n",
      "d_net = d1_CO2;\t\t\t#Net coefficient of cubic T\n",
      "\n",
      "def f(T):\n",
      "    return (a_net )+( b_net*T) + (c_net*(T**2)) + (d_net*(T**3))\n",
      "    \n",
      "del_H = quad(f,T1,T2)[0] \t\t\t# Change in enthalpy of gas over given range-[Btu/lb mol gas]\n",
      "\n",
      "# Results\n",
      "print ' Change in enthalpy of gas over given range is %.0f Btu/lb mol gas . '%del_H\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Change in enthalpy of gas over given range is -2616 Btu/lb mol gas . \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 23.6  page no. 700 \n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "\n",
      "# Solution \n",
      "#Given\n",
      "N2 = 1. ;\t\t\t# Moles of N2 - [kg mol]\n",
      "P = 100. ;\t\t\t# Pressure of gas - [kPa] \n",
      "T1 = 18. ;\t\t\t# Initial temperature - [degree C]\n",
      "T2 = 1100.  ;\t\t\t# Final temperature - [degree C]\n",
      "\n",
      "# Calculations\n",
      "# In the book it is mentioned to use tables in Appendix D6 to calculate enthalpy change, we get \n",
      "H_T1 = 0.524;\t\t\t# Initial enthalpy -[kJ/kg mol]\n",
      "H_T2 = 34.715   ;\t\t\t# Final enthalpy - [kJ/kg mol]\n",
      "del_H =  H_T2 - H_T1 ;\t\t\t# Change in enthalpy - [kJ/kg]\n",
      "\n",
      "# Results\n",
      "print ' Change in enthalpy of N2 over given range is %.3f kJ/kg mol N2 . '%del_H\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Change in enthalpy of N2 over given range is 34.191 kJ/kg mol N2 . \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 23.7  page no. 701\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "#Given\n",
      "T1 = 640. ;\t\t\t# Initial temperature -[degree F]\n",
      "T2 = 480. ;\t\t\t# Final temperature -[degree F]\n",
      "P1 = 92. ;\t\t\t# Initial pressure -[psia]\n",
      "P2 = 52. ;\t\t\t# Final pressure - [psia]\n",
      "\n",
      "\n",
      "#From steam table\n",
      "#At 90 psia\n",
      "H1_600 = 1328.7 ;\t\t\t#H at 90 psia and 600 F-[Btu/lb]\n",
      "H1_700 = 1378.1 ;\t\t\t#H at 90 psia and 700 F-[Btu/lb]\n",
      "H2_600 = 1328.4 ;\t\t\t#H at 95 psia and 600 F-[Btu/lb]\n",
      "H2_700 = 1377.8 ;\t\t\t#H at 95 psia and 700 F-[Btu/lb]\n",
      "\n",
      "# Calculations\n",
      "H3_600 = H1_600+ ((H2_600-H1_600)/(95.-90))*(92-90);\t\t\t#H  at 92 psia and 600 F-[Btu/lb]\n",
      "H3_700 = H1_700+ ((H2_700-H1_700)/(95.-90))*(92-90);\t\t\t#H at 92 psia and 700 F-[Btu/lb]\n",
      "H3_640 = H3_600+((H3_700-H3_600)/(700.-600))*(640-600);\t\t\t#H at 92 psia and 640 F-[Btu/lb]\n",
      "\n",
      "H1_450 = 1258.7 ;\t\t\t#H at 50 psia and 450 F-[Btu/lb]\n",
      "H1_500 = 1282.6 ;\t\t\t#H at 50 psia and 500 F-[Btu/lb]\n",
      "H2_450 = 1258.2 ;\t\t\t#H at 55 psia and 450 F-[Btu/lb]\n",
      "H2_500 = 1282.2 ;\t\t\t#H at 55 psia and 500 F-[Btu/lb]\n",
      "H3_450 = H1_450+ ((H2_450-H1_450)/(55.-50))*(52-50) ;\t\t\t#H at 52 psia and 450 F-[Btu/lb]\n",
      "H3_500 = H1_500+ ((H2_500-H1_500)/(55.-50))*(52-50);\t\t\t#H at 52 psia and 500 F-[Btu/lb]\n",
      "H3_480 = H3_450+((H3_500-H3_450)/(500.-450))*(480-450);\t\t\t# H at 52 psia and 480 F-[Btu/lb]\n",
      "del_H =   H3_480 - H3_640;\t\t\t# Change in enthalpy - [Btu/lb]\n",
      "\n",
      "# Results\n",
      "print 'Change in enthalpy is %.1f Btu/lb .'%del_H\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Change in enthalpy is -75.5 Btu/lb .\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 23.8  page no. 702\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "\n",
      "# Solution \n",
      "\n",
      "# Variables\n",
      "W = 4. ;\t\t\t# Mass of water -[kg]\n",
      "Ti= 27.+273 ;\t\t\t# Initial temperature -[K]\n",
      "Pi = 200. ;\t\t\t# Initial pressure -[kPa]\n",
      "Pf = Pi ;\t\t\t# Final pressure -[kPa]\n",
      "V1 = 0.001004 ;\t\t\t# Specific volume at Ti -[cubic metre/kg]\n",
      "V2 = 1000. * V1 ;\t\t\t#Specific volume at final temperature(Tf) from given condition in problem - [cubic metre/kg]\n",
      "va = 0.9024  ;\t\t\t# Specific volume -[cubic metre/kg]\n",
      "Ta = 400. ;\t\t\t# [K]\n",
      "vb = 1.025 ;\t\t\t# Specific volume -[cubic metre/kg]\n",
      "Tb = 450. ;\t\t\t#[K]\n",
      "vf = V2 ;\t\t\t# Final specific volume -[cubic metre/kg]\n",
      " \n",
      "# Calculations\n",
      "m=(Tb - Ta)/(vb - va);\t\t\t# slope \n",
      "Tf=Ta + m*(vf - va) ;\t\t\t# Final temperature - [K]\n",
      "\n",
      "# Results\n",
      "print ' Final temperature is %.0f K.'%Tf\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Final temperature is 441 K.\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 23.9  page no. 704\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Solution \n",
      "\n",
      "# Variables\n",
      "mv = 1. ;\t\t\t# Mass of saturated vapour - [lb]\n",
      "P1 = 2. ;\t\t\t# Initial pressure -[atm]\n",
      "P2 = 20. ;\t\t\t# Final pressure -[atm]\n",
      "H_2 = 179. ;\t\t\t# Specific enthalpy at 2 atm - [Btu/lb]\n",
      "H_20 = 233. ;\t\t\t#  Specific enthalpy at 20 atm - [Btu/lb]\n",
      "V_2 = 3.00 ;\t\t\t# Specific volume at 2 atm - [cubic feet/lb]\n",
      "V_20 = 0.30 ;\t\t\t#  Specific volume at 20 atm - [cubic feet/lb]\n",
      "T_2 = 72. ;\t\t\t# Temperature at 2 atm -[degree F]\n",
      "T_20 = 239. ;\t\t\t# Temperature at 20 atm -[degree F]\n",
      "\n",
      "# Calculations\n",
      "del_H = H_20 - H_2 ;\t\t\t# Change in specific enthalpy -[Btu/lb] \n",
      "del_V = V_20 - V_2 ;\t\t\t# Change in specific volume -[cubic feet/lb] \n",
      "del_T = T_20 - T_2 ;\t\t\t# Change in temperature -[degree F]\n",
      "\n",
      "# Results\n",
      "print '(a) Change in specific enthalpy is %.0f Btu/lb.'%del_H\n",
      "print ' (b) Change in specific volume is %.2f cubic feet/lb.'%del_V\n",
      "print ' (c) Change in temperature is %.1f degree F.'%del_T\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) Change in specific enthalpy is 54 Btu/lb.\n",
        " (b) Change in specific volume is -2.70 cubic feet/lb.\n",
        " (c) Change in temperature is 167.0 degree F.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": true,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}