1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 22 : Introduction to Energy Balances for Process without Reaction"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
" Example 22.1 page no. 651\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Application of the energy balance to a closed system\n",
"\n",
"# Variables\n",
"#Assume that properties of water can be used to substitute properties of solution\n",
"# Given\n",
"V = 1.673 ;\t\t\t# Volume of closed vessel-[cubic metre]\n",
"m = 1. ;\t\t\t# mass of saturated liquid vaporized-[kg]\n",
"Pi = 1. ;\t\t\t# Initial pressure -[atm]\n",
"Ti = 10. ;\t\t\t# Initial temperature -[degree C]\n",
"Pf = 1. ;\t\t\t# final pressure -[atm]\n",
"Tf = 100. ;\t\t\t# final temperature -[degree C]\n",
"\n",
"# Use steam table to obtain additional information at given condition\n",
"Ui = 35. ;\t\t\t# Initial enthalpy-[kJ/kg]\n",
"Uf = 2506.0 ;\t\t\t# Final enthalpy -[kJ/kg]\n",
"\n",
"# Calculations\n",
"# Use eqn. 22.2 after modifiying it using given conditions(W = 0,del_KE = 0 and del_PE = 0 )\n",
"Q = m*(Uf - Ui) ;\t\t\t# Heat transferred to the vessel - [kJ]\n",
"\n",
"# Results\n",
"print 'Heat transferred to the vessel is %.1f kJ . '%Q\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transferred to the vessel is 2471.0 kJ . \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 22.2 page no. 652\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of U using American engineering units\n",
"\n",
"# Variables\n",
"# Given\n",
"T1 = 80. ;\t\t\t# Initial temperature -[degree F]\n",
"T1 = 40. ;\t\t\t# final temperature -[degree F]\n",
"\n",
"# Additional data obtained from steam table at given temperatures and corresponding vapour pressures\n",
"p1 = 0.5067 ;\t\t\t# Initial saturation pressure-[psia]\n",
"p2 = 0.1217 ;\t\t\t# Final saturation pressure-[psia]\n",
"V1 = 0.01607 ;\t\t\t# Initial specific volume - [cubic feet/lb]\n",
"V2 = 0.01602 ;\t\t\t# Final specific volume - [cubic feet/lb]\n",
"H1 = 48.02 ;\t\t\t#Initial specific enthalpy -[Btu/lb]\n",
"H2 = 8.05 ;\t\t\t# Final specific enthalpy -[Btu/lb]\n",
"\n",
"# Calculations\n",
"del_P = p2 - p1 ;\t\t\t# Change in pressure -[psia]\n",
"del_V = V2 - V1 ;\t\t\t# Change in specific volume -[cubic feet/lb]\n",
"del_H = H2 - H1 ;\t\t\t# Change in specific enthalpy -[Btu/lb]\n",
"del_pV = p2*144*V2/778. - p1*144*V1/778. ;\t\t\t# Change in pv-[Btu]\n",
"del_U = del_H - del_pV ;\t\t\t# Change in specific internal energy - [Btu/lb]\n",
"del_E = del_U ;\t\t\t# Change in specific total energy(since KE=0,PE=0 and W=0) -[Btu/lb]\n",
"\n",
"# Results\n",
"print 'Change in pressure is %.3f psia . '%del_P\n",
"print 'Change in specific volume is %.5f cubic feet/lb (negligible value) . '%del_V\n",
"print 'Change in specific enthalpy is %.2f Btu/lb . '%del_H\n",
"print 'Change in specific internal energy is %.2f Btu/lb . '%del_U\n",
"print 'Change in specific total energy is %.2f Btu/lb . '%del_E\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Change in pressure is -0.385 psia . \n",
"Change in specific volume is -0.00005 cubic feet/lb (negligible value) . \n",
"Change in specific enthalpy is -39.97 Btu/lb . \n",
"Change in specific internal energy is -39.97 Btu/lb . \n",
"Change in specific total energy is -39.97 Btu/lb . \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
" Example 22.3 page no. 662\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# use of the general energy balance to analyze an open , unsteady-state system\n",
"\n",
"# Variables\n",
"#Lets take tank to be system\n",
"# Given\n",
"T = 600. ; \t\t\t# Temperature of steam -[K]\n",
"P = 1000. ;\t\t\t# Pressure of steam -[kPa]\n",
"\n",
"# Calculations\n",
"# Additional data for steam obtained from CD database at T and P\n",
"U = 2837.73 ;\t\t\t# Specific internal energy-[kJ/kg]\n",
"H = 3109.44 ;\t\t\t# Specific enthalpy -[kJ/kg]\n",
"V = 0.271 ;\t\t\t# Specific volume -[cubic metre/kg]\n",
"# By the reduced equation \n",
"Ut2 = H ;\t\t\t# Internal energy at final temperature-[kJ/kg]\n",
"\n",
"# Results\n",
"print 'The specific internal energy at final temperature is %.2f kJ/kg. Now use two properties\\\n",
"of the steam (P = %i kPa and Ut2 = %.2f kJ/kg) to find final temperature (T) from steam table. \\\n",
"From steam table we get T = 764 K.'%(Ut2,P,Ut2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The specific internal energy at final temperature is 3109.44 kJ/kg. Now use two propertiesof the steam (P = 1000 kPa and Ut2 = 3109.44 kJ/kg) to find final temperature (T) from steam table. From steam table we get T = 764 K.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
" Example 22.4 page no. 669\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# application of the energy balance to a open, steady-state system, a heat exchanger\n",
"\n",
"# Variables\n",
"# Take milk plus water in tank to be system\n",
"# Given\n",
"T1_water = 70. ;\t\t\t# Temperature of entering water -[degree C]\n",
"T2_water = 35. ;\t\t\t# Temperature of exiting water -[degree C]\n",
"T1_milk = 15. ;\t\t\t#Temperature of entering milk -[degree C]\n",
"T2_milk = 25. ;\t\t\t#Temperature of exiting milk -[degree C]\n",
"\n",
"# Get additional data from steam table for water and milk,assuming milk to have same properties as that of water.\n",
"H_15 = 62.01 ;\t\t\t#Change in specific internal energy-[kJ/kg]\n",
"H_25 = 103.86 ;\t\t\t#Change in specific internal energy-[kJ/kg]\n",
"H_35 = 146.69 ;\t\t\t#Change in specific internal energy-[kJ/kg]\n",
"H_70 = 293.10 ;\t\t\t#Change in specific internal energy-[kJ/kg]\n",
"\n",
"# Assumptions to simplify Equation 22.8 are:\n",
"print 'Assumptions to simplify Equation 22.8 are:'\n",
"print '1. Change in KE and PE of system = 0.'\n",
"print '2. Q = 0 ,because of way we picked the system,it is is well insulated.'\n",
"print '3. W = 0,work done by or on the system.'\n",
"\n",
"# Calculations\n",
"#Basis m_milk = 1 kg/min , to directly get the answer .\n",
"m_milk = 1 ;\t\t\t# Mass flow rate of milk-[kg/min]\n",
"# By applying above assumtions eqn. 22.8 reduces to del_H = 0 .Using it get m_water-\n",
"m_water = (m_milk*(H_15 - H_25))/(H_35 - H_70) ; \t\t\t# Mass flow rate of water-[kg/min]\n",
"m_ratio = m_water/m_milk ;\t\t\t# Mass flow rate of water per kg/min of milk-[kg/min]\n",
"\n",
"# Results\n",
"print 'Mass flow rate of water per kg/min of milk is %.2f (kg water/min )/(kg milk/min).'%m_ratio\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Assumptions to simplify Equation 22.8 are:\n",
"1. Change in KE and PE of system = 0.\n",
"2. Q = 0 ,because of way we picked the system,it is is well insulated.\n",
"3. W = 0,work done by or on the system.\n",
"Mass flow rate of water per kg/min of milk is 0.29 (kg water/min )/(kg milk/min).\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
" Example 22.5 page no. 670\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculation of power needed to pump water in an open, steady state system\n",
"\n",
"# Variables\n",
"# Take pipe between initial and final level of water\n",
"# Given\n",
"h_in = -20. ;\t\t\t# Depth of water below ground-[ft]\n",
"h_out = 5. ;\t\t\t# Height of water level above ground-[ft]\n",
"h = h_out - h_in ;\t\t\t# Total height to which water is pumped-[ft]\n",
"V = 0.50 ;\t\t\t# Volume flow rate of water - [cubic feet/s]\n",
"ef = 100.; \t\t\t# Efficiency of pump - [%] \n",
"g = 32.2; \t\t\t# Acceleration due to gravity -[ft/square second] \n",
"gc = 32.2 ;\t\t\t#[(ft*lbm)/(second square*lbf)]\n",
"\n",
"M = V * 62.4 ;\t\t\t# mass flow rate - [lbm/s]\n",
"PE_in = 0 ;\t\t\t# Treating initial water level to be reference level\n",
"\n",
"# Calculations\n",
"PE_out = (M*g*h*1.055)/(gc*778.2) ;\t\t\t# PE of discharged water -[lbm*(square feet/square second)]\n",
"W = PE_out - PE_in ;\t\t\t#Work done on system = power delivered by pump, (since we are using mass flow rate and pump efficiency is 100 % , so W = Power) -[kW]\n",
"\n",
"# Results\n",
"print 'The electric power required by the pump is %.2f kW. '%W\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electric power required by the pump is 1.06 kW. \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": true,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|