summaryrefslogtreecommitdiff
path: root/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch18.ipynb
blob: 7e472aab6c233e77d4eda57bd3307e826004dc64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 18 : Two Phase Gas Liquid Systems Partial Saturation and Humidity"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 18.1  Page no.539\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "V = 1. ;\t\t\t# Volume of water vapour-[cubic metre]\n",
      "rel_h =  43. ;\t\t\t# relative humidity -[%]\n",
      "vp_H2O = 1.61 ;\t\t\t# vapour pressure of water at 94 F-[in. of Hg]\n",
      "P_H2O = vp_H2O*(rel_h/100) ;\t\t\t# Pressure of water vapour in air-[in. of Hg]\n",
      "P =  29.92 ;\t\t\t# [in of Hg]\n",
      "T = 94+460. ;\t\t\t# Temperature -[Rankine]\n",
      "Ts =  492. ;\t\t\t#Temperature std. -[Rankine]\n",
      "mw_H2O = 18. ;\t\t\t# molecular mass of water -[lb]\n",
      "\n",
      "# Calculations\n",
      "H2O = (5280**3*Ts*P_H2O*mw_H2O)/(T*P*359) ;\t\t\t#mass of H2O-[lb]\n",
      "# The dew point is temperature at which water vapour in air first condense ,i.e at realative humidity 100 %, therefore\n",
      "psat_H2O = P_H2O ;\t\t\t# Saturation pressure of H2O -[in. of Hg]\n",
      "\n",
      "# Results\n",
      "print 'Saturation pressure of H2O %.3f in. of Hg'%psat_H2O\n",
      "print 'Use saturation  pressure of H2O to get dew point temperature T from steam table: T is about 68-69 F.'\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Saturation pressure of H2O 0.692 in. of Hg\n",
        "Use saturation  pressure of H2O to get dew point temperature T from steam table: T is about 68-69 F.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 18.2  Page no. 541\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "# Data from steam table\n",
      "psat_H2O = 31.8 ;\t\t\t# Saturation pressure -[mm of Hg]\n",
      "\n",
      "#(c)\n",
      "H =  .0055 ;\t\t\t# Humidity\n",
      "mw_H2O =  18. ;\t\t\t# Molecular wt.  of water-[lb]\n",
      "mw_air =  29. ;\t\t\t# Molecular wt. of air -[lb]\n",
      "P = 750. ;\t\t\t# Pressure total -[mm of Hg]\n",
      "\n",
      "# Calculations\n",
      "p_H2O = ((H*mw_air*P)/mw_H2O)/(1+(H*mw_air/mw_H2O)) ;\t\t\t# Partial pressure of water vapour in air-[mm of Hg]\n",
      "#(a)\n",
      "rel_H = (p_H2O/psat_H2O)*100  ;\t\t\t# relative humidity -[%]\n",
      "#(b)\n",
      "mol_H = (p_H2O)/(P-p_H2O) ;\t\t\t# Molal humidity\n",
      "\n",
      "# Results\n",
      "print '(a)Relative humidity is %.0f%% .'%rel_H\n",
      "print '(b)Molal humidity is %.1e '%mol_H\n",
      "print '(c)Partial pressure of water vapour in air is %.1f  mm of Hg.'%p_H2O\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Relative humidity is 21% .\n",
        "(b)Molal humidity is 8.9e-03 \n",
        "(c)Partial pressure of water vapour in air is 6.6  mm of Hg.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 18.3  Page No. 544\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "V_BDA  = 1000. ;\t\t\t# Volume of bone dry air(BDA) at 20 C & 108.0 kPa\n",
      "mol_V =  22.4 ;\t\t\t# Molar volume of gas at standard condition-[m**3]\n",
      "T = 20+273. ;\t\t\t# Temperature of BDA-[K]\n",
      "P = 108.0 ;\t\t\t#Pressure of BDA-[kPa]\n",
      "Ts = 273. ;\t\t\t# Standard temperature-[K]\n",
      "Ps = 101.3 ;\t\t\t#Standard pressure-[kPa]\n",
      "W = 0.93 ;\t\t\t# [kg]\n",
      "mw_W =  18. ;\t\t\t# mol. wt. of 1kmol water -[kg]\n",
      "\n",
      "# Calculations\n",
      "mol_W = W/mw_W ;\t\t\t# amount of water vapour(W)-[kg mol]\n",
      "mol_BDA = (V_BDA*Ts*P)/(T*Ps*mol_V) ;\t\t\t#  amount of BDA-[kg mol]\n",
      "p_H2O =  (mol_W/(mol_W+mol_BDA))*P ;\t\t\t# Partial pressure of H2O-[kPa]\n",
      "\n",
      "# Get vapour pressure for water at 15 C , namely 1.70 kPa\n",
      "psat_H2O  =  1.70 ;\t\t\t#vapour pressure for water at 15 C-[kPa]\n",
      "rel_H = (p_H2O/psat_H2O) ;\t\t\t#Fractional relative humidity-[]\n",
      "\n",
      "# Results\n",
      "print '(a)Fractional relative humidity of original air was %.3f .'%rel_H\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Fractional relative humidity of original air was 0.074 .\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 18.4  Page no.545\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "F  = 1000. ;\t\t\t# Volume of entering moist air at 22 C & 101.0 kPa\n",
      "mol_V =  22.4 ;\t\t\t# Molar volume of gas at standard condition-[m**3]\n",
      "T_in = 22.+273 ;\t\t\t# Temperature of entering moist air-[K]\n",
      "P_in = 101.0 ;\t\t\t#Pressure of entering moist air -[kPa]\n",
      "dp_in = 11.+273 ;\t\t\t# Dew point of entering air-[K]\n",
      "Ts = 273. ;\t\t\t# Standard temperature-[K]\n",
      "Ps = 101.3 ;\t\t\t#Standard pressure-[kPa]\n",
      "T_out = 58.+273 ;\t\t\t# Temperature of exiting moist air-[K]\n",
      "P_out = 98. ;\t\t\t#Pressure of exiting moist air -[kPa]\n",
      "\n",
      "# Additional vapour pressure data\n",
      "psat_in = 1.31 ;\t\t\t#Vapour pressure of entering moist air -[kPa]\n",
      "psat_out = 18.14 ;\t\t\t# Vapour pressure of exiting moist air -[kPa]\n",
      "pBDA_in = P_in-psat_in ;\t\t\t# Pressure of entering dry air - [kPa]\n",
      "pBDA_out  =  P_out - psat_out ;\t\t\t# Pressure of exiting dry air - [kPa]\n",
      "\n",
      "# Calculations\n",
      "mol_F = (F*P_in*Ts)/(Ps*T_in*mol_V) ;\t\t\t# Moles of moist air entering-[kg mol]\n",
      "mol_P = (mol_F*(pBDA_in/P_in))/(pBDA_out/P_out); \t\t\t#BDA balance- [kg mol]\n",
      "mol_W = mol_P-mol_F ;\t\t\t# Total balance -[kg mol]\n",
      "mw_BDA = 29. ;\t\t\t# Mol. wt. of dry air\n",
      "mw_H2O = 18. ;\t\t\t# Mol. wt. of water vapour\n",
      "m_BDA = (mol_F*pBDA_in/P_in)*mw_BDA ;\t\t\t# Mass of dry air entering-[kg]\n",
      "m_H2O = (mol_F*psat_in/P_in)*mw_H2O ;\t\t\t# Mass of water vapour entering-[kg]\n",
      "wa_in = m_BDA+m_H2O ;\t\t\t#Total wet air entering -[kg]\n",
      "H2O_ad = mol_W*mw_H2O/wa_in ;\t\t\t#Water added to each kg of wet air entering the process-[kg]\n",
      "\n",
      "# Results\n",
      "print 'Water added to each kg of wet air entering the process is %.3f kg.'%H2O_ad\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Water added to each kg of wet air entering the process is 0.132 kg.\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 18.5  Page No.547\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "# Given data\n",
      "#Basis: F = 29.76 lb mol\n",
      "F  = 29.76 ;\t\t\t# amount of entering moist air -[lb mol]\n",
      "F_rh = 90/100. ;\t\t\t# Relative humidity\n",
      "T_in = 100 + 460. ;\t\t\t# Temperature of entering moist air-[Rankine]\n",
      "P_in = 29.76 ;\t\t\t#Pressure of entering moist air -[in. of Hg]\n",
      "psat_in =  1.93 ;\t\t\t# Saturation pressure from steam table-[in. of Hg]\n",
      "T_out = 120 + 460. ;\t\t\t# Temperature of exiting dry air-[Rankine]\n",
      "P_out = 131.7 ;\t\t\t#Pressure of exiting dry air -[in. of Hg]\n",
      "psat_out =  3.45 ;\t\t\t# Saturation pressure from steam table-[in. of Hg]\n",
      "mol_V =  22.4 ;\t\t\t# Molar volume of gas at standard condition-[m**3]\n",
      "mw_H2O  =  18.02 ;\t\t\t# Mol. wt. of water -[lb]\n",
      "mw_air  =  29. ;\t\t\t# Mol. wt. of air -[lb]\n",
      "p_H2O_in = F_rh*psat_in ;\t\t\t# Partial pressure of water vapour at inlet--[in. of Hg]\n",
      "p_air_in = P_in-p_H2O_in ;\t\t\t# Partial pressure of air at inlet--[in. of Hg]\n",
      "\n",
      "# Calculations\n",
      "# Assume condensation takes place , therefore output gas P is saturated,\n",
      "P_rh =  1;\t\t\t# Relative humidity of output gas\n",
      "p_H2O_out = P_rh*psat_out ;\t\t\t# Partial pressure of water vapour at outlet--[in. of Hg]\n",
      "p_air_out = P_out-p_H2O_out ;\t\t\t# Partial pressure of air at outlet--[in. of Hg]\n",
      "\n",
      "# Get W and P from  balance of air and water\n",
      "P = (p_air_in*F/P_in)/(p_air_out/P_out) ;\t\t\t# From air balance-[ lb mol]\n",
      "W = (p_H2O_in*F/P_in)-(P*p_H2O_out/P_out);\t\t\t# From water balance -[lb mol]\n",
      "W_ton = (W*mw_H2O*2000)/(p_air_in*mw_air) ;\t\t\t# Moles of water condenses per ton dry air-[lb mol]\n",
      "W_m = mw_H2O*W_ton ;\t\t\t# Mass of water condenses per ton dry air-[lb]\n",
      "\n",
      "# Results\n",
      "#  Since W is positive our assumption(condensation takes place ) is right .\n",
      "print '(a) Yes water condense out during compression ,since W(%.3f  lb mol) is positive our assumption(condensation takes place ) \\nis right .'%W\n",
      "print '(b) Amount of water condenses per ton dry air is %.1f lb mol i.e %.0f lb water.'%(W_ton,W_m)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) Yes water condense out during compression ,since W(0.983  lb mol) is positive our assumption(condensation takes place ) \n",
        "is right .\n",
        "(b) Amount of water condenses per ton dry air is 43.6 lb mol i.e 786 lb water.\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}