summaryrefslogtreecommitdiff
path: root/Basic_Principles_And_Calculations_In_Chemical_Engineering/ch13.ipynb
blob: d6a8519736ab1c618721c3a856618c8e0685f68e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
{
 "metadata": {
  "name": "",
  "signature": "sha256:86277517338e3080962ec366bf78a36ead36dc032944d5f67a8c58022c6af85a"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 13 : Ideal Gases"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 13.1  Page No. 404\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "m_CO2 = 40. ;\t\t\t# Mass of CO2-[kg]\n",
      "mol_wt_CO2 = 44. ;\t\t\t# Molecular mass of 1kmol CO2 -[kg]\n",
      "mol_V = 22.42 ;\t\t\t# Molar of ideal gas at standard condition-[cubic metre/kg mol]\n",
      "\n",
      "# Calculations\n",
      "V_CO2 = (m_CO2 * mol_V)/(mol_wt_CO2);\t\t\t# volume of CO2-[cubic metre]\n",
      "\n",
      "# Results\n",
      "print 'Volume occupied by 40 kg CO2 at standard condition is  %.1f cubic metre.'%V_CO2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Volume occupied by 40 kg CO2 at standard condition is  20.4 cubic metre.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 13.2  Page No. 405\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "p =1. ;\t\t\t# Pressure -[atm]\n",
      "V = 22415. ;\t\t\t# Molar valume -[cubic centimetre/g mol]\n",
      "T = 273.15 ;\t\t\t# Temperature-[K]\n",
      "\n",
      "# Calculations\n",
      "R = (p*V/T);\t\t\t# Universal gas constant-[(cubic centimetre.atm)/(K.g mol)]\n",
      "\n",
      "# Results\n",
      "print 'Universal gas constant is  %.2f (cubic centimetre*atm)/(K*g mol). '%R\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Universal gas constant is  82.06 (cubic centimetre*atm)/(K*g mol). \n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "   Example 13.3     Page No.406\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "m_CO2 = 88. ;\t\t\t#   Mass of CO2-[lb]\n",
      "mol_wt_CO2 = 44.  ;\t\t#   Molecular mass of 1 lb mol CO2 -[lb]\n",
      "mol_V = 359. ; \t\t\t#   Molar volume-[cubic feet]\n",
      "\n",
      "#  State 1-standard condition\n",
      "P1 = 33.91 ; \t\t\t#   Pressure -[ft of water]\n",
      "T1 = 273.  ;\t\t\t#  Temperature-[K]\n",
      "\n",
      "#   State 2\n",
      "P2 = 32.2  ;\t\t\t#   Pressure -[ft of water]\n",
      "Tc = 15.  ;\t\t\t    #   Temperature-[degree C]\n",
      "T2 = Tc+273  ;\t\t\t#  Temperature-[K]\n",
      "\n",
      "# Calculations\n",
      "V1 = (m_CO2 * mol_V) / (mol_wt_CO2);\n",
      "V2 = (V1 * T2 * P1) / (T1 * P2);\n",
      "\n",
      "# Results\n",
      "print 'The volume occupied 88 lb of CO2 at given condition is  %.0f cubic feet.'%V2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The volume occupied 88 lb of CO2 at given condition is  798 cubic feet.\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 13.4  Page No. 408\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "mol_wt_N2 = 28. ;\t# Molecular mass of 1 kg mol N2 -[kg]\n",
      "mol_V = 22.42 ;\t\t# Molar of ideal gas at standard condition-[cubic metre/kg mol]\n",
      "Tc =  27. ;\t\t\t# Temperature-[degree C]\n",
      "T = Tc + 273. ;\t\t#Temperature-[K]\n",
      "P = 100. ;\t\t\t#Pressure-[kPa]\n",
      "\t\t\t\n",
      "Ps = 101.3 ;\t\t# Pressure -[kPa]\n",
      "Ts = 273. ;\t\t\t#Temperature-[K]\n",
      "\n",
      "# Calculations\n",
      "V = (T *  Ps *  mol_V)/(Ts *  P) ;\t\t\t# Volume occupied by N2-[cubic metre]\n",
      "D_N2 = mol_wt_N2/V ;\t\t\t            # Density of N2 at given condition-[kg/cubic metre]\n",
      "\n",
      "# Results\n",
      "print ' Density of N2 at given condition is  %.3f kg/cubic metre.'%D_N2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Density of N2 at given condition is  1.122 kg/cubic metre.\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 13.5 Page No. 409 \n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "mol_wt_N2 = 28. ;\t\t\t# Molecular mass of 1 lb mol N2 -[lb]\n",
      "mol_wt_air = 29. ;\t\t\t# Molecular mass of 1 lb mol air -[lb]\n",
      "mol_V = 359. ;\t\t\t    # Molar volume of ideal gas-[cubic feet]\n",
      "\t\n",
      "Tf =  80. ;\t\t\t# Temperature-[degree F]\n",
      "T = Tf + 460. ;\t\t#Temperature-[degree Rankine]\n",
      "P = 745. ;\t\t\t#Pressure-[mm of Hg]\n",
      "\n",
      "Ps = 760. ;\t\t\t# Pressure -[mm of Hg]\n",
      "Ts = 492. ;\t\t\t#Temperature-[degree Rankine]\n",
      "\n",
      "# Calculations\n",
      "D_air = (Ts *  P *  mol_wt_air)/(T *  Ps *  mol_V) ;\t\t# Density of air at given condition-[lb/cubic feet]\n",
      "D_N2 = (Ts *  P *  mol_wt_N2)/(T *  Ps *  mol_V) ;\t\t\t# Density of N2 at given condition-[lb/cubic feet]\n",
      "sg_N2 = D_N2/D_air ;\t\t\t                            # Specific gravity of N2 compared to air at given condition \n",
      "\n",
      "# Results\n",
      "print ' Specific gravity of N2 compared to air at given condition  is  %.3f .'%sg_N2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Specific gravity of N2 compared to air at given condition  is  0.966 .\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 13.6   Page No. 414\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "F_gas =  1. ;\t\t\t    # Flue gas [kg mol]\n",
      "mf_CO2 = 14./100 ;\t\t\t# [mol fraction]\n",
      "mf_O2 = 6./100 ;\t\t\t# [mol fraction]\n",
      "mf_N2 = 80./100 ;\t\t\t# [mol fraction]\n",
      "P = 765. ;\t\t\t        #Pressure-[mm of Hg]\n",
      "T =  400. ;\t\t\t        # Temperature-[degree F]\n",
      "\n",
      "# Calculations\n",
      "p_CO2 = P * mf_CO2 ;\t\t# Partial pressure of CO2-[mm of Hg]\n",
      "p_O2 = P * mf_O2 ;\t\t\t# Partial pressure of O2-[mm of Hg]\n",
      "p_N2 = P * mf_N2 ;\t\t\t# Partial pressure of N2-[mm of Hg]\n",
      "\n",
      "# Results\n",
      "print ' Component            pi(Partial pressure-[mm of Hg]) '\n",
      "print '  CO2                  %.1f mm of Hg '%p_CO2\n",
      "print ' O2                   %.1f mm of Hg '%p_O2\n",
      "print ' N2                   %.1f mm of Hg '%p_N2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Component            pi(Partial pressure-[mm of Hg]) \n",
        "  CO2                  107.1 mm of Hg \n",
        " O2                   45.9 mm of Hg \n",
        " N2                   612.0 mm of Hg \n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 13.7  Page no. 416\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "G = 100. ;\t\t\t# Basis: Pyrolysis Gas-[lb mol] \n",
      "ub_CO = 10./100 ;\t# fraction of CO left unburnt\n",
      "ex_air = 40./100 ;\t# fraction of excess air\n",
      "m_vol = 359. ;\t\t# molar volume of gas at std. cond.-[cubic feet]\n",
      "Ts = 492. ;\t\t\t# Standard temperature -[degree Rankine]\n",
      "Ps = 29.92 ;\t\t#Standard pressure -[in. Hg]\n",
      "\n",
      "# Calculations\n",
      "# Analysis of entering gas of entering gas\n",
      "Tf1 =  90. ;\t\t\t# Temperature of gas-[degree F]\n",
      "T_gas = Tf1 +  460. ;\t#Temperature of gas-[degree Rankine]\n",
      "P_gas = 35. ;\t\t\t#Pressure-[in. Hg]\n",
      "CO2 = 6.4/100 ;\t\t\t# mol fraction of CO2\n",
      "O2 = 0.1/100 ;\t\t\t# mol fraction of O2\n",
      "CO = 39./100 ;\t\t\t# mol fraction of CO\n",
      "H2 = 51.8/100 ;\t\t\t# mol fraction of H2\n",
      "CH4 = 0.6/100 ;\t\t\t# mol fraction of CH4\n",
      "N2 = 2.1/100 ;\t\t\t# mol fraction of N2\n",
      "\n",
      "# Analysis of entering air\n",
      "Tf2 = 70. ;\t\t\t    # Temperature of air -[degree F]\n",
      "T_air = Tf2 +  460. ;\t#Temperature of air-[degree Rankine]\n",
      "P_air = 29.4 ;\t\t\t#Pressure of air [in. Hg]\n",
      "f_N2 = 79./100 ;\t\t\t# mol fraction of N2\n",
      "f_O2 =  21./100 ;\t\t\t# mol fraction of O2\n",
      "\n",
      "\n",
      "O2r_O2 = O2 * G ;\t\t\t#  O2 required by O2-[lb mol]\n",
      "O2r_CO = CO * G/2 ;\t\t\t# O2 required by CO-[lb mol]\n",
      "O2r_H2 = H2 * G/2 ;\t\t\t# O2 required by H2-[lb mol]\n",
      "O2r_CH4 = G * CH4 * 2 ;\t\t\t# O2 required by CH4-[lb mol]\n",
      "O2r_total = O2r_O2 +  O2r_CO +  O2r_H2 +  O2r_CH4 ;\t\t\t# Total O2 required-[lb mol]\n",
      "ex_O2 = ex_air * O2r_total ;\t\t\t# Excess O2-[lb mol]\n",
      "total_O2 = ex_O2 +  O2r_total ;\t\t\t# Total amt of O2 in air-[lb mol]\n",
      "total_N2 = total_O2 * (f_N2/f_O2);\t\t\t# Total amt of in air-[lb mol]\n",
      "air = total_O2 +  total_N2 ;\t\t\t# Total air entering -[lb mol]\n",
      "\n",
      "# Product analysis\n",
      "P_CO = ub_CO * CO * G ;\t\t\t#Unburnt CO in P-[lb mol]\n",
      "P_N2 = N2 * G +   total_N2 ;\t\t\t#  N2 in P-[lb mol]\n",
      "P_CO2 =  (CO2 +  CO +  CH4) * G - 1 * P_CO;\t\t\t#CO2 in P-[lb mol]\n",
      "P_H2O = (H2 +  2 * CH4) * G ;\t\t\t# H2 in P-[lb mol]\n",
      "P_O2 = (CO2 +  O2 +  0.5 * CO) * G +  total_O2 -P_CO2-0.5 * (P_H2O +  P_CO);\t\t\t# O2 in P-[lb mol]\n",
      "P = P_CO +  P_N2 +  P_CO2 +  P_H2O +  P_O2 ;\t\t\t# Product-[lb mol]\n",
      "Tf3 =  400  ;\t\t\t# Temperature of product-[degree F]\n",
      "T_prod = Tf3 +  460 ;\t\t\t#Temperature of product-[degree Rankine]\n",
      "P_prod =  35 ;\t\t\t# Pressure of product -[in.Hg]\n",
      "V_gas = (G * m_vol * T_gas * Ps)/(Ts * P_gas);\n",
      "V_air = (air * m_vol * T_air * Ps)/(Ts * P_air);\n",
      "V_prod = (P * m_vol * T_prod * Ps)/(Ts * P_prod);\n",
      "air_ft3 = V_air/V_gas ;\t\t\t#Air supplied per ft**3 of gas entered-[cubic feet]\n",
      "P_ft3 =  V_prod/V_gas ;\t\t\t#Product gas produced per ft**3 of gas entered-[cubic feet]\n",
      "\n",
      "# Results\n",
      "print ' Air supplied per ft**3 of gas entered %.2f cubic feet. '%air_ft3\n",
      "print ' Product gas produced per ft**3 of gas entered %.2f cubic feet.'%P_ft3\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Air supplied per ft**3 of gas entered 3.57 cubic feet. \n",
        " Product gas produced per ft**3 of gas entered 5.75 cubic feet.\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      " Example 13.8 Page No. 419\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "T1c = 15. ;\t\t\t    # Temperature of F & P -[degree C] \n",
      "T1 =  273.  +  T1c ;S\t# Temperature of F & P -[K] \n",
      "P1 =  105. ;\t\t\t# Pressure of F & P -[kPa]\n",
      "\n",
      "# Calculations\n",
      "# F analysis\n",
      "F_CO2 = 1.2/100 ;\t\t\t# Volume fraction \n",
      "F_odr = 98.8/100 ;\t\t\t# Volume fraction \n",
      "\n",
      "# P analysis\n",
      "P_CO2 = 3.4/100 ;\t\t\t# Volume fraction \n",
      "P_odr = 96.6/100 ;\t\t\t# Volume fraction \n",
      " \n",
      "Tc_CO2 =  7. ;\t\t\t#Temperature CO2 -[degree C] \n",
      "T_CO2 =  273. +  Tc_CO2 ;\t\t\t# Temperature CO2 -[K]\n",
      "P_CO2 =  131. ;\t\t\t# Pressure of CO2 -[kPa]\n",
      "CO2 = 0.0917 ;\t\t\t# Volume flow rate of CO2-[cubic metre/min]\n",
      "# Convert given volume flow rate of CO2 at temperature of F & P\n",
      "nw_CO2 = (CO2 *  T1 *  P_CO2)/(T_CO2 *  P1) ;\t\t\t# volume flow rate of CO2 at temperature of F & P-[cubic metre]\n",
      "\n",
      "from numpy import matrix\n",
      "a = matrix([[F_odr,-P_odr],[1, -1]]);\t\t\t# Matrix formed by coefficients of unknown\n",
      "b = matrix([[0],[-nw_CO2]]) ;\t\t\t# Matrix formed by constants\n",
      "a = a.I\n",
      "x = a*b ;\t\t\t# matrix of solution, x(1) = F;x(2) = P\n",
      "F = x[0] ;\t\t\t#Volume flow rate of entering gas-[cubic metre/min]\n",
      "P = x[1] ;\t\t\t#Volume flow rate of product [cubic metre/min]\n",
      "\n",
      "# Results\n",
      "print 'Volume flow rate of entering gas is %.2f cubic metre/min'%F\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Volume flow rate of entering gas is 5.17 cubic metre/min\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "code",
     "collapsed": true,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}