1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
|
{
"metadata": {
"name": "",
"signature": "sha256:3005e9f014df5b80be5a0d9ce99c3166f00b45b3269e9a4b1d59ef8c3aeabae4"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6:Introduction to Heat Transfer"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.1 Page no:221"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"t1=270\t\t#Temperature inside surface of the furnace wall in degree centigrade\n",
"t3=20\t\t#Temperature outside surface is dissipating heat by convection into air in degree centigrade\n",
"L=0.04\t\t#Thickness of the wall in m\n",
"K=1.2\t\t#Thermal conductivity of wall in W/m-K\n",
"t2=70\t\t#Temperature of outside surface should not exceed in degree centigrade\n",
"A=1\t\t #Assuming area in m**2\n",
"\n",
"#Calculations\n",
"Q1=(K*A*(t1-t2))/(L)\t#Heat transfer through the furnace wall in W\n",
"hc=(Q1)/(A*(t2-t3))\t\t#Heat transfer coefficient in W/m**2K\n",
"\n",
"#Output\n",
"print\"The minimum value of heat transfer coefficient at the outer surface is\",hc,\"W/m**2K\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum value of heat transfer coefficient at the outer surface is 120.0 W/m**2K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.2 page no:222"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"t1=30\t\t #Normal temperature of black body in degree centigrade\n",
"t2=100\t\t#Heated temperature of black body in degree centigrade\n",
"s=20.52*10**-8\t#Stefan Boltzmann constant in kJ/hrK**4\n",
"A=1\t\t #Assume area in m**2\n",
"\n",
"#Calculations\n",
"T1=273+t1\t#Black body temperatures in kelvin K\n",
"T2=273+t2\t#Heated temperature of black body in kelvin K\n",
"E=s*(T2**4-T1**4)\t#Increase of emissive power in kJ/hr\n",
"\n",
"#Output\n",
"print'The change in its emissive power',round(E,4),\"kJ/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The change in its emissive power 2242.4228 kJ/hr\n"
]
}
],
"prompt_number": 82
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.3 page no:222"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"L=0.012 \t#Wall thickness of a mild steel tank in m\n",
"t1=100.0\t\t#Temperature of water in tank in degree centigrade\n",
"t4=20.0\t \t#Atmospheric temperature of air in degree centigrade\n",
"K=50.0\t\t #Thermal conductivity of mild steel in W/m-K\n",
"hi=2850.0\t\t#Convection heat transfer coefficient on water side in W/m**2-K\n",
"ho=10.0\t\t#Convection heat transfer coefficient on air side in W/m**2-K\n",
"Q1=60.0 \t#Heat trasfer from the incandicent lamp in W\n",
"s=5.67*10**-8\t#Stefan boltzmann constant in W/m**2/K**4\n",
"T1=2500.0\t #Lamp surface temperature in K\n",
"T2=300.0\t\t#Room temperature in K\n",
"A=1.0\t\t #Assuming area in m**2\n",
"\n",
"#Calculations\n",
"T=t1-t4\t\t#Temperature difference in degree centigrade\n",
"Q=(T)/((1/hi)+(L/K)+(1/ho))\t#Rate of heat loss per m**2 area of surface of tank in W\n",
"t3=(Q/(ho*A))+(t4)\t\t#Temperature of the outside surface in degree centigrade\n",
"U=(Q)/(A*T)\t\t#Overall Heat transfer coefficient in W/m**2/K\n",
"a=(Q1)/(s*(T1**4-T2**4))\t#surface area of the coil in m**2\n",
"a1=a*10**6#Surface area of the coil in mm**2\n",
"\n",
"#Output\n",
"print'(a) The rate of heat loss per sq m area of the tank is',round(Q,2),\" W \"\n",
"print '(b) Overall heat transfer coefficient is ',round(U,2),\" W/m**2/K\" \n",
"print '(c) Temperature of the outside surface of tank is ',round(t3,2),\"C\" \n",
"print '(d)The surface area of the coil is ',round(a1,3),\"mm**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The rate of heat loss per sq m area of the tank is 795.3 W \n",
"(b) Overall heat transfer coefficient is 9.94 W/m**2/K\n",
"(c) Temperature of the outside surface of tank is 99.53 C\n",
"(d)The surface area of the coil is 27.096 mm**2\n"
]
}
],
"prompt_number": 83
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4 page no:225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"A1=3.5\t\t#Area of the boiler plate in m**2\n",
"X2=0.02\t\t#Thickness of the plate in m\n",
"K2=50.0\t\t#Thermal conductivity of plate in W/m-K\n",
"X1=0.002\t #Thickness of layer inside boiler in m\n",
"K1=1.0\t\t #Thermal conductivity of layer in W/m-K\n",
"t1=250.0\t\t#The hot gas temperature of the plate in degree centigrade\n",
"t3=200.0\t\t#Temperature of cold air in degree centigrade\n",
"\n",
"#Calculations \n",
"T=t1-t3\t\t#Temperature difference in degree centigrade\n",
"Q=(T*A1)/((X1/K1)+(X2/K2))\t#Rate of heat loss in W\n",
"Q1=Q/1000\t\t#Rate of heat loss in kJ/s\n",
"Q2=Q1*3600\t\t#Rate of heat loss in kJ/hr\n",
"\n",
"#Output\n",
"print'(a)Rate of heat loss is',round(Q1,2),\" kJ/s \"\n",
"print'(b)Rate of heat loss per hour is',round(Q2,2),\"kJ/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Rate of heat loss is 72.92 kJ/s \n",
"(b)Rate of heat loss per hour is 262500.0 kJ/hr\n"
]
}
],
"prompt_number": 84
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5 page no:226"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data \n",
"L1=0.225\t\t#Thickness of the brick in m\n",
"K1=4.984\t\t#Thermal conductivity of brick in kJ/hr m C/m\n",
"L2=0.125\t\t#Thickness of insulating brick in m\n",
"K2=0.623\t\t#Thermal conductivity of insulating brick in kJ/hr m C /m\n",
"Ti=1650.0\t\t#Temperature inside the furnace in degree centigrade\n",
"hl=245.28\t\t#Conductance at inside wall in kJ/hr m**2 C\n",
"ho=40.88\t\t#Conductance at outside wall in kJ/hr m**2 C\n",
"To=27.0\t\t#Temperature of surrounding atmosphere in degree centigrade \n",
"\n",
"#Calculations \n",
"R=((1.0/hl)+(L1/K1)+(L2/K2)+(1.0/ho))\t#Total resistance of the wall in C hr/kJ\n",
"q=(Ti-To)/R\t\t\t#Rate of heat loss per m**2 of the wall in kJ/hr m**2\n",
"T1=Ti-(q*(1.0/hl))\t\t\t#Inner surface temperature in degree centigrade\n",
"T3=Ti-(q*((1.0/hl)+(L1/K1)+(L2/K2)))\t#Outer surface temperature in degree centigrade\n",
"\n",
"#Output\n",
"print'(a)The rate of heat loss per sq m of the wall is',round(q,1), \"kJ/hr m**2\"\n",
"print'(b)The temperature at the inner surface is',round(T1,2),\"C\" \n",
"print'(c)The temperature at the outer surface is',round(T3,2),\"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The rate of heat loss per sq m of the wall is 5916.3 kJ/hr m**2\n",
"(b)The temperature at the inner surface is 1625.88 C\n",
"(c)The temperature at the outer surface is 171.72 C\n"
]
}
],
"prompt_number": 85
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6 page no:227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Input data\n",
"x=0.3\t\t#Thickness of the wall in degree centigrade\n",
"t1=24.0\t\t#Inside surface temperature of the wall in degree centigrade\n",
"t2=-6\t\t#Outside temperature of wall in degree centigrade\n",
"h=2.75\t\t#Height of the wall in m\n",
"L=6.1\t\t#Length of the wall in m\n",
"K=2.6\t\t#Coefficient of conductivity of brick in kJ/hr m C\n",
"\n",
"#Calculations \n",
"A=h*L\t\t#Area of the wall in m**2\n",
"A=round(A,1)\n",
"T=t2-t1\t\t#Temperature difference in degree centigrade\n",
"q=(K*A*(-T))/(x)\t#Heat transfer by conduction in kJ/hr\n",
"R=(t1-t2)/q\t#Resistance of the wall in C hr/kJ\n",
"C=1.0/R\t\t#Conductance of the wall in kJ/m C\n",
"\n",
"#Output\n",
"print'(a)The heat transfer by conduction through the wall is',q, \"kJ/hr\"\n",
"print'(b)Resistance of the wall is',round(R,5),\"C hr/kJ\"\n",
"print'(C)Conductance of the wall is',round(C,1),\"kJ/m C\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The heat transfer by conduction through the wall is 4368.0 kJ/hr\n",
"(b)Resistance of the wall is 0.00687 C hr/kJ\n",
"(C)Conductance of the wall is 145.6 kJ/m C\n"
]
}
],
"prompt_number": 86
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.8 page no:230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"T=300\t\t#Temperature of the earth as a black body in K\n",
"s=20.52*10**-8\t#Stefan Boltzmann constant in kJ/hr m**2 T**4\n",
"\n",
"#Calculations \n",
"Q=s*T**4\t#Heat received by unit area on the earths surface perpendicular to solar rays in kJ/hr\n",
"\n",
"#Output\n",
"print'Heat received by the unit area of earths surface',round(Q,2),\"kJ/hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat received by the unit area of earths surface 1662.12 kJ/hr\n"
]
}
],
"prompt_number": 87
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.9 page no:230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"D=0.07\t\t # Diameter of the steel tube in m\n",
"L=3.0\t\t #Length of the steel tube\n",
"t1=227.0\t\t#Temperature of the steel tube in m\n",
"t2=27.0\t \t#Temperature of the room in degree centigrade\n",
"s=20.52*10**-8\t#Stefan Boltzmann constant in kJ/hr m**2 T**4\n",
"pi=3.1428\t\t#Constant value of pi\n",
"\n",
"#Calculations \n",
"A=2*pi*D*L\t #Surface area of the tube in m**2\n",
"Q=(A)*(s)*((t1+273)**4-(t2+273)**4)\t#Loss of heat by radiation in kJ/hr\n",
"Q1=Q/3600.0\t #Loss of heat by radiation in kW\n",
"\n",
"#Output\n",
"print'The loss of heat by radiation from steel tube is',round(Q1,3),\"KW\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The loss of heat by radiation from steel tube is 4.093 KW\n"
]
}
],
"prompt_number": 88
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.10 page no:231"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Input data\n",
"T1=7.0\t\t #Inside temperature of refrigerator in degree centigrade \n",
"T0=28.0\t\t#Temperature in the kitchen in degree centigrade\n",
"K1=40.0\t\t#Thermal conductivity of mild steel in W/mC\n",
"x1=0.03\t\t#Thickness of mild sheets in m\n",
"K3=40.0\t\t#Thermal conductivity of the mild steel in W/mC\n",
"x3=0.03\t\t#Thickness of another side mild sheet in m\n",
"x2=0.05\t\t#Thickness of glass wool insulated in m\n",
"hi=10.0\t\t#Heat transfer coefficient in the inner surface of refrigerator in W/m**2 C\n",
"ho=12.5\t\t#Heat transfer coefficient in the outer surface of refrigerator in W/m**2 C\n",
"K2=0.04\t\t#Thermal conductivity of glass in W/mC\n",
"\n",
"#Calculations\n",
"Q=(T1-T0)/((1/hi)+(x1/K1)+(x2/K2)+(x3/K3)+(1/ho))\t#Heat transfer per unit area in W/m**2\n",
"\n",
"#Output\n",
"print'The rate of heat removed from the refrigirator ',round(Q,3),\"W/m**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate of heat removed from the refrigirator -14.67 W/m**2\n"
]
}
],
"prompt_number": 89
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.11 page no:232"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Input data\n",
"x1=0.2\t \t#Thickness of the fire brick\n",
"x2=0.2\t \t#Thickness of the common brick\n",
"Ti=1400.0 \t#Temperature of hot gases in the inner surface of the brick in degree centigrade\n",
"To=50.0\t\t#Temperature of gases in the outer surface of the brick in degree centigrade\n",
"h1=16.5\t\t#Convection heat transfer coefficient on gas side in W/mC\n",
"h2=17.5\t\t#radiation heat transfer coefficient on gas side in W/mC\n",
"h3=12.5\t\t#Convection heat transfer coefficient on outer side in W/mC\n",
"h4=6.5 \t\t#Radiation heat transfer coeeficient on outer side in W/mC\n",
"K1=4.0 \t\t#Thermal conductivity of fire brick in W/mC\n",
"K2=0.65\t\t#Thermal conductivity of common brick in W/mC\n",
"\n",
"#Calculations \n",
"hi=h1+h2\t\t#Total heat transfer coefficient in inner \n",
"ho=h3+h4\t\t#Total heat transfer coefficient in outer \n",
"Q=(Ti-To)/((1/hi)+(x1/K1)+(x2/K2)+(1/ho))\t#Heat flow through the furnace composite wall per unit area in W/m**2\n",
"Q1=Q/1000\n",
"T1=Ti-(Q/hi)\t#Temperature at the inside of the fire brick \n",
"T2=T1-(Q*(x1/K1))#Maximum temperature to which common brick is subjected in degree centigrade\n",
"\n",
"#Output\n",
"print'(a)Heat loss per m**2 area of the furnace wall is',round(Q)/1000,\"kW/m**2\" \n",
"print'(b)Maximum temperature to which common brick is subjec',round(T1,3),\"C\" \n",
"print'(c)similarly on other side is',round(T2,3),\"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Heat loss per m**2 area of the furnace wall is 3.07 kW/m**2\n",
"(b)Maximum temperature to which common brick is subjec 1309.705 C\n",
"(c)similarly on other side is 1156.204 C\n"
]
}
],
"prompt_number": 90
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.12 page no:234"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"K1=0.93\t\t#Thermal conductivity of fire clay in W/mC\n",
"K2=0.13\t\t#Thermal conductivity of diatomite brick in W/mC\n",
"K3=0.7\t\t#Thermal conductivity of red brick in W/mC\n",
"x1=0.12\t\t#Thickness of fire clay in m\n",
"x2=0.05\t\t#Thickness of diatomite in m\n",
"x3=0.25\t\t#Thickness of brick in m\n",
"T=1\t\t#Assume the difference between temperature in degree centigrade\n",
"\n",
"#Calculations\n",
"Q=(T)/((x1/K1)+(x2/K2)+(x3/K3))\t#The heat flow per unit area in W/m**2\n",
"X3=K3*((T/Q)-(x1/K1))\t\t#Thickness of the red brick layer in m\n",
"X=X3*100\t\t\t#Thickness of the red brick layer in cm\n",
"\n",
"#Output\n",
"print'The thickness of the red brick layer is',round(X,3),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of the red brick layer is 51.923 cm\n"
]
}
],
"prompt_number": 91
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.13 page no:235"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"R1=0.06\t\t#Thickness of material layer in m\n",
"R2=0.12\t\t#Thickness of the two insulating materials in m\n",
"R3=0.16\t\t#Thickness of material layers with pipe in m\n",
"K1=0.24\t\t#Thermal conductivity of one layer in W/mC\n",
"K2=0.4\t\t #Thermal conductivity of another layer in W/mC\n",
"L=60.0\t\t #Length of the pipe in m\n",
"hi=60.0\t\t#Heat transfer coefficient inside in W/m**2C\n",
"ho=12.0\t\t#Heat transfer coefficient outside in W/m**2C\n",
"ti=65.0\t\t#Temperature of hot air flowing in pipe in degree centigrade\n",
"to=20.0\t\t#Atmospheric temperature in degree centigrade\n",
"pi=3.1428\t #Constant value of pi\n",
"\n",
"#Calculations\n",
"Q=(ti-to)*(2*pi*L)/((1/(hi*R1))+(math.log(R2/R1)/(K1))+(math.log(R3/R2)/(K2))+(1/(ho*R3)))\t#Rate of heat loss in W\n",
"Q1=Q/1000\t#Rate of heat loss in kW\n",
"\n",
"#Output\n",
"print'The rate of heat loss is',round(Q1,4),\"kW\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate of heat loss is 3.8519 kW\n"
]
}
],
"prompt_number": 92
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.14 page no:237"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Input data\n",
"R1=8.0\t\t #Inner radius of the pipe in cm\n",
"R2=8.5\t\t #Outter radius of the pipe in cm\n",
"x1=3.0\t\t #Thickness of first layer in cm\n",
"x2=5.0\t\t #Thickness of second layer in cm\n",
"T1=300.0\t\t#Inner surface temperature of the steam pipe in degree centigrade\n",
"pi=3.1428\t #Constant value of pi \n",
"T4=50.0\t\t #Temperature at outer surface of insulation in degree centigrade\n",
"L=1.0\t\t #Length of the pipe in m\n",
"K1=50.0\t \t#Thermal conductivity of pipe in W/mC\n",
"K2=0.15\t \t#Thermal conductivity of first layer in W/mC\n",
"K3=0.08\t \t#Thermal conductivity of second layer in W/mC\n",
"h=2751.0\t\t#Enthalpy of dry and saturated steam at 300 degree centigrade in kJ/kg\n",
"q=40.0\t \t#Quantity of steam flow in gm/hr\n",
"hf=1345.0\t\t#Enthalpy of fluid at 300 degree centigrade in kJ/kg\n",
"hfg=1406.0\t\t#enthalpy at 300 degree centigrade in kJ/kg\n",
"\n",
"#Calculations\n",
"R3=R2+x1\t#Radius of pipe with first layer\n",
"R4=R3+x2\t#Radius of pipe with two layers\n",
"Q=(2*pi*L*(T1-T4))/((math.log(R2/R1)/(K1))+(math.log(R3/R2)/(K2))+(math.log(R4/R3)/(K3)))\n",
"Q1=Q/1000\t#Quantity of heat loss per meter length of pipe in kW\n",
"Q2=Q1*3600\t#Quantity of heat loss per meter length of pipe in kJ/hr\n",
"hg=((h)-(Q2/q))\t#Enthalpy of steam in kJ/kg\n",
"x=(hg-hf)/(hfg)\t#Dryness fraction of steam\n",
"\n",
"#Output\n",
"print'(a)The quantity of heat lost per meter length of steam pipe is',round(Q,2),\"W/m or\",round(Q*3600/1000),\"kJ/hr\"\n",
"print'(b)The quantity of steam coming out of one meter length pipe is',round(x,4),\"gm/h\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The quantity of heat lost per meter length of steam pipe is 240.68 W/m or 866.0 kJ/hr\n",
"(b)The quantity of steam coming out of one meter length pipe is 0.9846 gm/h\n"
]
}
],
"prompt_number": 93
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.15 page no:238"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"x=0.3\t\t#Thickness of brick wall in m\n",
"ti=24.0\t\t#Inside surface temperature of wall in degree centigrade\n",
"to=-6.0\t\t#Outside surface temperature of wall in degree centigrade\n",
"h=2.75\t\t#Height of the wall in m\n",
"L=6.1\t\t#Length of the wall in m\n",
"K=2.6\t\t#Thermal conductivity of brick material in kJ/m hr C\n",
"\n",
"#Calculations\n",
"T=ti-to\t\t#Temperature difference across the wall in degree centigrade\n",
"A=h*L\t\t#Area of the wall in m**2\n",
"Q=(K*A*T)/(x)\t#Heat transfer through conduction by the wall per hour in kJ/hr\n",
"R=T/Q\t\t#Resistance of the wall in hr C/kJ\n",
"C=1.0/R\t\t#Conductance of the wall in kJ/hr C\n",
"\n",
"#Output\n",
"print'(a)The heat transfer by conduction through the wall is',round(Q),\"kJ/hr \"\n",
"print'(b)The resistance of the wall is ',round(R,5),\"Chr/Kj \" \n",
"print' The conductance of the wall is',round(C,1), \"kJ/hr C \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The heat transfer by conduction through the wall is 4362.0 kJ/hr \n",
"(b)The resistance of the wall is 0.00688 Chr/Kj \n",
" The conductance of the wall is 145.4 kJ/hr C \n"
]
}
],
"prompt_number": 94
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.16 page no:240"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"x1=0.3 \t#Thickness of refractory bricks in m\n",
"K1=5.66\t\t#Thermal conductivity of refractory bricks in kJ/hr mC\n",
"t1=1650.0\t\t#Inner surface temperature of the wall in degree centigrade\n",
"t2=320.0\t \t#Outside surface temperature of the wall in degree centigrade\n",
"x2=0.3\t \t#Thickness of insulating brick in m\n",
"K2=1.26\t\t#Thermal conductivity of insulating brick in kJ/hr mC\n",
"A=1.0\t \t#unit surface area in m**2\n",
"t3=27.0\t\t#Outside surface temperature of the brick in degree centigrade\n",
"\n",
"#Calculations \n",
"T1=t1-t2\t\t#Temperature difference in degree centigrade\n",
"Q1=(K1*A*T1)/(x1)\t#Heat loss without insulation in kJ/hr/m**2\n",
"R1=(K1*A)/(x1)\t#Heat loss for the change in temperature for refractory brick wall material in kJ/hrC\n",
"R2=(K2*A)/(x2)\t#Heat loss for the change in temperature for insulated brick wall material kJ/hrC\n",
"Q2=(t1-t3)/((1.0/R1)+(1.0/R2))\t#Heat loss with insulation in kJ/hr/m**2\n",
"Q3=Q1-Q2\t\t#Reduction in heat loss through the wall in kJ/hr/m**2\n",
"\n",
"#Output\n",
"print'The reduction in heat loss through the wall is ',round(Q3,1),\"kJ/hr/m**2\"\n",
"print\"\\nNOTE:Answer wrongly written in book as 1951.4\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reduction in heat loss through the wall is 19517.2 kJ/hr/m**2\n",
"\n",
"NOTE:Answer wrongly written in book as 1951.4\n"
]
}
],
"prompt_number": 95
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.17 page no:241"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"L=4.6\t \t #Length of the wall in m\n",
"b=2.3\t \t#Breadth of the wall in m\n",
"x1=0.025\t\t#Thickness of the wood in m\n",
"x2=0.075\t\t#Thickness of the cork slabbing in m\n",
"x3=0.115\t\t#Thickness of the brick in m\n",
"t1=18.0\t\t #Exterior temperature of the wall in degree centigrade\n",
"t4=-20.0\t\t#Interior temperature of the wall in degree centigrade\n",
"K1=7.5 \t\t #Thermal conductivity of the wood in kJ/hr mC\n",
"K2=1.9 \t\t #Thermal conductivity of the wood in kJ/hr.mC\n",
"K3=41.0\t\t #Thermal conductivity of the brick in kJ/hr mC\n",
"\n",
"#Calculations\n",
"A=L*b\t\t#Area of the wall in m**2\n",
"R1=(K1*A)/(x1)\t#Heat loss for the change in temperature for insulated wood material in kJ/hrC\n",
"R2=(K2*A)/(x2)\t#Heat loss for the change in temperature for cork material in kJ/hrC\n",
"R3=(K3*A)/(x3)\t#Heat loss for the change in temperature for brick in kJ/hrC\n",
"Q=(t1-t4)/((1.0/R1)+(1.0/R2)+(1.0/R3))\t#Heat loss with insulation in kJ/hr\n",
"Q1=Q*24.0\t\t#Heat loss with insulation in kJ/24hr\n",
"t2=t1-(Q/R1)\t#Interface temperature t2 in degree centigrade \n",
"t3=t2-(Q/R2)\t#Interface temperature t3 in degree centigrade\n",
"\n",
"#Output \n",
"print'(a)The leakage through the wall per 24 hours is',round(Q,2),\"kJ/hr=\",round(Q,2)*24 \n",
"print'(b)Temperature at the interface is',round(t2,3),\"C\" \n",
"print'(c)Temperature at interface ',round(t3,3),\"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The leakage through the wall per 24 hours is 8814.37 kJ/hr= 211544.88\n",
"(b)Temperature at the interface is 15.223 C\n",
"(c)Temperature at interface -17.663 C\n"
]
}
],
"prompt_number": 96
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.18 page no:243"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"#Input data\n",
"L=0.3\t\t#Thickness of the wall in m\n",
"ti=320\t\t#Inner surface temperature in degree centigrade\n",
"to=38\t\t#Outer surface temperature in degree centigrade\n",
"A=1\t\t#Assume unit area in m**2\n",
"\n",
"#Calculations\n",
"Q=(A/L)*((0.01256/2)*(ti**2-to**2)-(4.2/3)*10**-6*(ti**3-to**3)) #Heat loss per sq metre of surface area\n",
"\n",
"#Output\n",
"print'The heat loss per sq metre of surface area for a furnace wall is',round(Q,2),\"kJ/hr/m**2 \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The heat loss per sq metre of surface area for a furnace wall is 1960.68 kJ/hr/m**2 \n"
]
}
],
"prompt_number": 97
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.19 page no:245"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=11.5\t\t#Outer diameter of steam pipe line in cm\n",
"t1=5.0\t\t#Thickness of first layer in cm\n",
"K1=0.222\t\t#Thermal conductivity of first layer in kJ/hr mC\n",
"t2=3.0\t\t#Thickness of second layer in cm\n",
"pi=3.1428\t\t#Constant value of pi\n",
"K2=3.14\t\t#Thermal conductivity of second layer in kJ/hr mC\n",
"T1=235\t\t#Outside surface temperature of steam pipe in degree centigrade\n",
"T3=38\t\t#Outer surface of lagging in degree centigrade\n",
"L=1.0\t\t#Length of the pipe in m\n",
"\n",
"#Calculations\n",
"I=math.log((d+(2*t1))/d)\t\t\t#For inner layer calculation\n",
"O=math.log((d+(2*t1)+(2*t2))/(d+(2*t1)))\t\t#For outer layer calculations\n",
"R1=(2.0*pi*L*K1)/I\t\t#Heat loss for change in temperature for first insulated material in kJ/hC\n",
"R2=(2.0*pi*L*K2)/O\t\t#Heat loss for the change in temperature for second insulated material in kJ/hC\n",
"Q=(T1-T3)/(1.0/R1+1.0/R2)\t#Heat loss per metre length of pipe per hr in kJ/hr\n",
"T2=T1-(Q/R1)#Temperature between the two layers of insulation in degree centigrade\n",
"\n",
"#Output\n",
"print'(a)The heat loss per metre length of pipe per hr is',round(Q,2),\" kJ/hr\" \n",
"print'(b)Temperature between the two layers of insulation is',round(T2,2),\"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The heat loss per metre length of pipe per hr is 427.45 kJ/hr\n",
"(b)Temperature between the two layers of insulation is 43.33 C\n"
]
}
],
"prompt_number": 98
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.20 page no:247"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Input data\n",
"t1=24.0 \t#Temperature at the outside surface in degree centigrade \n",
"t4=-15.0 \t#Temperature at the inner surface in degree centigrade\n",
"A=1.0 \t\t#Assuming unit area in m**2\n",
"K1=23.2\t\t#Thermal conductivity of steel in W/mC\n",
"K2=0.014\t\t#Thermal conductivity of glasswood in W/mC\n",
"K3=0.052\t\t#Thermal conductivity of plywood in W/mC\n",
"x1=0.0015\t\t#Thickness of steel sheet at outer surface in m\n",
"x2=0.02\t\t#Thickness of glasswood in between in m\n",
"x3=0.01\t\t#Thickness of plywood at a inner surface in m\n",
"\n",
"#Calculations\n",
"R1=(K1*A)/x1\t#Heat loss for the change in temperature for first insulated material\n",
"R2=(K2*A)/x2\t#Heat loss for the change in temperature for second insulated material\n",
"R3=(K3*A)/x3\t#Heat loss for the change in temperature for third insulated material\n",
"Q=(t1-t4)/(1/R1+1/R2+1/R3)\t#The rate of heat flow in W/m**2\n",
"\n",
"#Output\n",
"print'The rate of heat flow is',round(Q,2),\"W/m**2 \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate of heat flow is 24.06 W/m**2 \n"
]
}
],
"prompt_number": 21
}
],
"metadata": {}
}
]
}
|