1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
|
{
"metadata": {
"name": "",
"signature": "sha256:24b9eaeeeddeacc3199362b9156ae9de4a4fc79ba4c35797142cfcc4a54f627a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1: Fundamental Concepts and Definitions"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.1 Page No. 34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"p=700\t\t #pressure of fluid in kN/m**2\n",
"v1=0.28\t\t#Initial volume of fluid in m**3\n",
"v2=1.68\t\t#Final volume of fluid in m**3\n",
"\n",
"#Calculations\n",
"W=p*(v2-v1)\t#Work done in kJ\n",
"\n",
"#Output\n",
"print'The Work done is',round(W,1),'KJ or',round(W/1000,3),'MJ'\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Work done is 980.0 KJ or 0.98 MJ\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2 Page No.35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"p1=138.0\t\t#Initial pressure of gas in kN/m**2\n",
"p2=690.0\t\t#Final pressure of gas in kN/m**2\n",
"v1=0.112\t\t#Initial volume in m**3\n",
"\n",
"#Calculations\n",
"P=p1/p2\t\t#Pressure ratio\n",
"v2=v1*(P**(1/1.4))\t#Final volume of gas in m**3\n",
"\n",
"#Output\n",
"print'The new volume of the gas is',round(v2,3),\"m**3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The new volume of the gas is 0.035 m**3\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.3 Page No. 35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"p1=2070\t\t#Initial pressure of gas in kN/m**2\n",
"p2=207\t\t#Final pressure of gas in kN/m**2\n",
"v1=0.014\t\t#Initial volume of gas in m**3\n",
"n=1.35\t\t#constant\n",
"\n",
"#Calculations\n",
"P=p1/p2\t\t#Pressure ratio\n",
"v2=v1*(P**(1/1.35))\t#Final volume of gas in m**3\n",
"W=(p1*v1-p2*v2)/(n-1)\t#Work done in kJ\n",
"\n",
"#Output\n",
"print'(a)Final volume of gas ',round(v2,3),\"m**3 \"\n",
"print'(b)Work done by the gas during the expansion is',round(W,2),\"kJ\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Final volume of gas 0.077 m**3 \n",
"(b)Work done by the gas during the expansion is 37.22 kJ\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.4 Page No.36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"v1=0.056\t\t#Initial volume of gas in m**3\n",
"v2=0.007\t\t#Final volume of gas in m**3\n",
"p1=100\t\t#Initial perssure compressed Isothermally in kN/m**2\n",
"\n",
"#Calculations\n",
"p2=(p1*v1)/v2\t#Final pressure in kN/m**2\n",
"W=p1*v1*(math.log(v2/v1))\t#Work done in kJ\n",
"\n",
"#Output\n",
"print'(a)Final pressure is',round(p2,0),\"kN/m**2 \"\n",
"print'(b)The work done on gas is',round(-W,2), \"kJ\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Final pressure is 800.0 kN/m**2 \n",
"(b)The work done on gas is 11.64 kJ\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
" Example 1.5 Page No. 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"v1=1.0\t\t#Initial volume in m**3\n",
"v2=3.0\t\t#Final volume in m**3\n",
"\n",
"#Calculations\n",
"import math\n",
"W=10**5*(((v2**3-v1**3)/3)+8*(math.log(v2/v1)))\t#Work done in J\n",
"\n",
"#Output\n",
"print'The work done is',round(W,0),\"Nm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The work done is 1745556.0 Nm\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.6 Page No. 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"v1=0.2\t#Initial volume in m**3\n",
"v2=0.5\t#Final volume in m**3\n",
"\n",
"#Calculations\n",
"W=1500*(((v2**2-v1**2)/200)+(v2-v1))/1000\t#Work done in kJ\n",
"\n",
"#Output\n",
"print'The work done by the gas is',round(W,4),\"KJ\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The work done by the gas is 0.4516 KJ\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.8 Page No. 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"v1=1.5\t\t#Initial volume in m**3\n",
"v2=2\t\t#Final volume in m**3\n",
"w1=2\t\t#Work receiving in Nm\n",
"p=6\t\t#constsnt pressure of gas in N/m**2\n",
"\n",
"#Calculations\n",
"w2=p*(v2-v1)\t#Work done in Nm\n",
"W=w2-w1\t\t#Net work done by the system in Nm\n",
"\n",
"#Output\n",
"print'Net work done by the system is',round(W,2),\"Nm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Net work done by the system is 1.0 Nm\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.9 Page No. 40"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"d=13596\t\t#Density of Hg in kg/m**3\n",
"g=9.806\t\t#gravity in m/sec**2\n",
"z=760.0\t\t#Barometer pressure in mm of Hg\n",
"Pv=40.0\t\t#Vaccum pressure in cm\n",
"dw=1000.0\t\t#Density of water in kg/m**3\n",
"Zw=1.5\t\t#Level of water in m\n",
"\n",
"#Calculations\n",
"p=(d*g*z)/10**6\t#Pressure in kPa\n",
"p1=(80/76.0)*p\t#Pressure in kPa\n",
"Pa=p-Pv\t\t#Absolute pressure in kPa\n",
"p2=(36/76.0)*p\t#Pressure in kPa\n",
"p3=(dw*g*Zw)/1000.0\t\t#pressure in kPa\n",
"p4=(5.2*10**5)/1000.0\t#pressure in kPa\n",
"\n",
"#Output\n",
"print'(a)Pressure of 80cm of Hg is',round(p1,2),\"kPa\" \n",
"print'(b)Pressure of 40cm of Hg vaccum is',round(p2,2), \"kPa \"\n",
"print'(c)Pressure due to 1.5m of water coloumn is',round(p3*1000,4),\"N/m**2or Pa\" \n",
"print'(d)Pressure in kPa for 5.2bar is',round(p4,2),\"kPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Pressure of 80cm of Hg is 106.66 kPa\n",
"(b)Pressure of 40cm of Hg vaccum is 48.0 kPa \n",
"(c)Pressure due to 1.5m of water coloumn is 14709.0 N/m**2or Pa\n",
"(d)Pressure in kPa for 5.2bar is 520.0 kPa\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.10 Page No.41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"z=750\t\t#Barometric pressure in mm of Hg\n",
"g=9.81\t\t#Gravity in m/sec**2\n",
"Pa=101.325\t#one atm pressure in kN/m**2\n",
"Pg=3.3\t\t#Pressure in atm\n",
"Pf=3.2\t\t#Pressure in m of water\n",
"d=13596\t\t#Density of Hg in kg/m**3\n",
"\n",
"#calculations\n",
"Pp=(d*g*z)/10**6\t\t #Pressure in kPa\n",
"p1=(d*g*0.55)/1000.0\t\t #Pressure in kPa\n",
"p2=Pp+(Pg*101.325)\t #Pressure in kPa\n",
"p3=Pp+(Pf*g*100)/1000.0\t#Pressure in kPa\n",
"p4=4.6*100\t\t #Pressure in kPa\n",
"\n",
"#Output\n",
"print'(a)Pressure of 55cm of Hg (Abs)',round(p1,1),\"KPa\"\n",
"print'(b)Pressure at 3.3 atm (Gauge)',round(p2,1),\"kPa\" \n",
"print'(c)Pressure of 3.2m of water (Gauge)',round(p3,1),\"kPa\" \n",
"print'NOTE: In the book there is mistake in calculation p3 '\n",
"print'(d)Pressure of 4.6bar (Abs)',round(p4,1),\"kPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Pressure of 55cm of Hg (Abs) 73.4 KPa\n",
"(b)Pressure at 3.3 atm (Gauge) 434.4 kPa\n",
"(c)Pressure of 3.2m of water (Gauge) 103.2 kPa\n",
"NOTE: In the book there is mistake in calculation p3 \n",
"(d)Pressure of 4.6bar (Abs) 460.0 kPa\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.11 Page No. 42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Zw=50\t\t#Manometer reading of water in cm\n",
"Zo=763\t\t#Atmospheric pressure in mm of Hg\n",
"d=13.6*10**3\t#Density of Hg in kg/m**3\n",
"dw=1000\t\t#Density of water in kg/m**3\n",
"g=9.81\t\t#Gravity in m/sec**2\n",
"\n",
"#Calculations\n",
"Pa=(d*g*Zo)/10**6\t\t#Atmospheric pressure in kPa\n",
"Pg=(dw*g*Zw)/10**5\t#Gauge pressure in kPa\n",
"Pab=Pa+Pg\t\t#Absolute pressure in kPa\n",
"\n",
"#Output\n",
"print'Absolute pressure is',round(Pab,2),\"kPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Absolute pressure is 106.7 kPa\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.12 Page No. 42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Z=70\t\t\t#Vaccum gauge reading in cm of Hg\n",
"Pa=101.325\t\t#Atmospheric pressure in kPa\n",
"d=13.6*10**3\t\t#Density of Hg in kg/m**3\n",
"g=9.81\t\t\t#Gravity in m/sec**2\n",
"\n",
"#Calculations\n",
"Pv=(d*g*Z)/10**5\t\t#Vaccum pressure in kPa\n",
"Pab=Pa-Pv\t\t#Absolute pressure in kPa\n",
"\n",
"#Output\n",
"print'Absolute pressure is',round(Pab,2),\"kPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Absolute pressure is 7.93 kPa\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.13 Page No. 43"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Pv=30\t\t#Vaccum pressure in kPa\n",
"Z=755\t\t#Barometer reading in mm of Hg\n",
"d=13590\t\t#Density of Hg in kg/m**3\n",
"g=9.81\t\t#Gravity in m/sec**2\n",
"\n",
"#calculations \n",
"Pa=(d*g*Z)/10**6\t#Atmospheric perssure in kPa\n",
"Pab=Pa-Pv\t#Absolute pressure in kPa\n",
"\n",
"#Output\n",
"print'Asolute pressure in the tank is',round(Pab,2),\"kPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Asolute pressure in the tank is 70.66 kPa\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.14 Page No. 43"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"Z=0.562\t\t#Level of open limb in m\n",
"Z1=0.761\t\t#Barometer reading in m of Hg\n",
"g=9.79\t\t#Gravity in m/sec**2\n",
"d=13640\t\t#Density of Hg in kg/m**2\n",
"\n",
"#Calculations\n",
"Pa=(d*g*Z1)/1000.0\t#Atmospheric pressure in kPa\n",
"Ph=(d*g*Z)/1000.0\t#Pressure exercterd due to height in kPa\n",
"Pab=Pa+Ph\t#Absolute pressure in kPa\n",
"\n",
"#Output\n",
"print'The gas pressure is',round(Pab,3),\"kN/m**2\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The gas pressure is 176.668 kN/m**2\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.15 Page No. 44"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"d=13.596*10**3\t#Density of Hg in kg/m**3\n",
"dl=800\t\t#Density of liquid in kg/m**3\n",
"Z=30\t\t#Level of the liquid in the arm in cm\n",
"Z1=0.75\t\t#Barometric pressure in m\n",
"g=9.81\t\t#Gravity in m/sec**2\n",
"\n",
"#Calculatins\n",
"Pg=(dl*g*Z)/10**7\t#Gauge pressure in bar\n",
"Pa=(d*g*Z1)/10**5\t#Atmospheric pressure in bar\n",
"Pab=Pa+Pg #Absolute pressure in bar\n",
"\n",
"#Output\n",
"print'Absolute pressure of the gas is',round(Pab,2),\"bar\"\n",
"print'NOTE:In the book there is calculation mistake in last step'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Absolute pressure of the gas is 1.02 bar\n",
"NOTE:In the book there is calculation mistake in last step\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.16 Page No. 45"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Z1=0.17\t\t#Level of liquid in m\n",
"Z=0.76\t\t#Barometer readings in m\n",
"d=13596\t\t#Density of Hg in kg/m**3\n",
"g=9.806\t\t#Gravity in m/sec**2\n",
"s=0.8\t\t#Specific gravity \n",
"d1=1000\t\t#Density of water in kg/m**3\n",
"\n",
"#Calculations\n",
"dl=s*d1\t\t#Density of given liquid in kg/m**3\n",
"Pa=d*g*Z\t\t#Atmospheric pressure in N/m**2\n",
"p=dl*g*Z1\t#Pressure in N/m**2\n",
"Pab=(Pa-p)/10**5\t#Absolute pressure in bar\n",
"\n",
"#Output\n",
"print'Absolute pressure of the gas is',round(Pab),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Absolute pressure of the gas is 1.0 bar\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.17 Page No. 46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"g=9.806\t\t#Gravity in m/sec**2\n",
"d=13596\t\t#Density of Hg in kg/m**3\n",
"Z=9.75\t\t#Level of Hg in cm\n",
"dw=1000\t\t#Density of water in kg/m**3\n",
"Zw=0.034\t\t#Coloumn of condensate in m\n",
"Zo=0.76\t\t#Atmospheric pressure in m of Hg\n",
"\n",
"#Calculations\n",
"P=dw*g*Zw\t #Pressure in N/m**2\n",
"Pa=d*g*Zo\t #Atmospheric pressure in N/m**2\n",
"Pg=(d*g*Z)/100.0\t#Gauge pressure in N/m**2\n",
"Pab=(Pa+Pg-P)/10**5\t#Absolute pressure in bar\n",
"\n",
"#Output\n",
"print'Pressure due to height is',round(P,3),'N/m**2'\n",
"print'Atmospheric Pressure is ',round(Pa,0),'N/m**2'\n",
"print'Absolute pressure of steam is',round(Pab,4),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pressure due to height is 333.404 N/m**2\n",
"Atmospheric Pressure is 101325.0 N/m**2\n",
"Absolute pressure of steam is 1.1399 bar\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.18 Page No. 47"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"g=9.7\t\t #Gravity in m/sec**2\n",
"d=13.69*10**3\t#Density of Hg in kg/m**3\n",
"dw=1000\t\t #Density of water in kg/m**3\n",
"Pa=98\t \t#Atmospheric pressure in kPa\n",
"Z=0.6\t \t#Manometer level difference in m of Hg\n",
"Zw=0.04\t\t #Water coloumn level in m\n",
"\n",
"#Calculations \n",
"Pw=(dw*g*Zw)/1000.0\t#Pressure due to water in kPa\n",
"Pg=(d*g*Z)/1000.0\t\t#Pressure in kPa\n",
"Pab1=Pa+Pg-Pw\t\t#Absolute pressure in kPa\n",
"Pab=Pab1/100.0\t\t #Absolute pressure in bar\n",
"\n",
"#Output \n",
"print'The absolute pressure of steam is',round(Pab,2),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The absolute pressure of steam is 1.77 bar\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.19 Page No. 48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Z=0.76\t\t#Actual height of mercury coloumn in m\n",
"g=9.806\t\t#Gravity in m/sec**2\n",
"d=13596\t\t#Density of Hg in kg/m**3\n",
"dw=1000\t\t#Density of water in kg/m**3\n",
"Zw=0.035\t\t#Height of condensate coloumn in m\n",
"Zh=0.10\t\t#Height of mercury coloumn in m\n",
"\n",
"#Calculations\n",
"Pa=d*g*Z\t\t#Atmospheric pressure in N/m**2\n",
"Pw=dw*g*Zw\t#Pressure due to water in N/m**2\n",
"Ph=d*g*Zh\t#Pressure due to Hg in N/m**2\n",
"Pab=(Pa+Ph-Pw)/10**5\t#Absolute pressure in bar\n",
"\n",
"#Output \n",
"print'Absolute pressure of steam in the pipe is',round(Pab,2),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Absolute pressure of steam in the pipe is 1.14 bar\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.20Page No. 49"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"dk=800\t\t#Density of kerosene in kg/m**3\n",
"g=9.81\t\t#gravity in m/sec**2\n",
"Zk=0.051\t\t#Kerosene vapour on Hg coloumn in m\n",
"d=13600\t\t#Density of Hg in kg/m**3\n",
"Zh=0.1\t\t#Hg level in m\n",
"Z=0.755\t\t#Atmospheric pressure in m of Hg\n",
"\n",
"#Calculations\n",
"Pk=dk*g*Zk\t\t #Pressure of kerosene in N/m**2\n",
"Pa=d*g*Z\t\t #Atmospheric pressure in N/m**2\n",
"Ph=d*g*Zh \t#Pressure due to Hg in N/m**2\n",
"Pab=(Pa+Ph-Pk)/1000.0\t#Absolute pressure in kPa\n",
"\n",
"#Output \n",
"print'Absolute pressure of vapour is ',round(Pab,2),\"kPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Absolute pressure of vapour is 113.67 kPa\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.21 Page No. 50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"d=13596\t\t#Density of Hg in kg/m**3\n",
"g=9.806\t\t#Gravity in m/sec**2\n",
"df=0.8*1000\t#Density of fluid in kg/m**3\n",
"Z=0.76\t\t#Atmospheric pressure in m of Hg\n",
"Zf=0.3\t\t#Height of fluid coloumn in m\n",
"\n",
"#Calculations\n",
"Pa=d*g*Z\t\t#Atmospheric perssure in N/m**2\n",
"P=df*g*Zf\t#Pressure due to fluid in N/m**2\n",
"Pab=(Pa+P)/10**5\t#Absolute pressure in bar\n",
"Zh=((Pab*10**5-Pa)/(d*g))*100\t#Difference between the height of Hg coloumn in 2 arms in m\n",
"\n",
"#Output\n",
"print'(a)The Absolute pressure of the gas in pipe line Pab',round(Pab,2),\" bar\" \n",
"print'(b)If the fluid used is Hg then the difference of height of Hg coloumn in the 2 arms is',round(Zh,2),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" (a)The Absolute pressure of the gas in pipe line Pab 1.04 bar\n",
"(b)If the fluid used is Hg then the difference of height of Hg coloumn in the 2 arms is 1.77 cm\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.22 Page No. 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Pa=1\t\t#Atmospheric pressure in bar\n",
"g=9.81\t\t#Gravity in m/sec**2\n",
"do=0.8*1000\t#Density of oil in kg/m**3\n",
"Zo=0.8\t\t#Level of oil in m\n",
"dw=1000\t\t#Density of water in kg/m**3\n",
"Zw=0.65\t\t#Level of water in m\n",
"d=13.6*10**3\t#Density of Hg in kg/m**3\n",
"Z=0.45\t\t#Level of Hg in m\n",
"\n",
"#Calculations\n",
"Po=(do*g*Zo)/10**5\t#Pressure of oil in bar\n",
"Pw=(dw*g*Zw)/10**5\t#Pressure of water in bar\n",
"P=(d*g*Z)/10**5\t\t#Pressure of Hg in bar\n",
"Pab=Pa+Po+Pw+P\t\t#Pressure at the bottom of the coloumn in bar\n",
"Pow=Pa+Po\t\t#Pressure at the interface of oil and water in bar\n",
"Poh=Pa+Po+Pw\t\t#Pressure at the interface of water and Hg\n",
"\n",
"#Output\n",
"print'(a)Pressure at the bottom of the coloumn is',round(Pab,2),\"bar\" \n",
"print'(b)Pressure at the inter surface of oil and water ia',round(Pow,3),\"bar \" \n",
"print'(c)Pressure at the inter surface of water and Hg ',round(Poh,3),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Pressure at the bottom of the coloumn is 1.73 bar\n",
"(b)Pressure at the inter surface of oil and water ia 1.063 bar \n",
"(c)Pressure at the inter surface of water and Hg 1.127 bar\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.23 Page No. 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Z=0.76\t\t#Barometer reading in m\n",
"g=9.81\t\t#Gravity in m/sec**2\n",
"d=13.6*10**3\t#Density of Hg in kg/m**3\n",
"Pab=1.2*10**5\t#Absolute pressure in N/m**2\n",
"do=0.8*1000\t#Density of oil in kg/m**3\n",
"dw=1000\t\t#Density of water in kg/m**3\n",
"dh=13.6*10**3\t#Density of Hg in kg/m**3\n",
"\n",
"#calculations\n",
"Pa=dh*g*Z\t#Atmospheric pressure in N/m**2\n",
"Pg=Pab-Pa\t#Gauge pressure in N/m**2\n",
"Zo=Pg/(do*g)\t#Height of oil in manometer in m\n",
"Pw=Pab-Pa\t#Pressure exercted by water in N/m**2\n",
"Zw=Pw/(dw*g)\t#Height of water in manometer in m\n",
"P=Pab-Pa\t\t#Pressure of Hg in N/m**2\n",
"Zh=P/(d*g)\t#Height of Hg in manometer in m\n",
"\n",
"#Output\n",
"print'(a)The height of fluid for oil Manometer',round(Zo,2),\"m \"\n",
"print'(b)The height of fluid for water Manometer ia',round(Zw,2),\"m\" \n",
"print'(c)The height of fluid for Hg Manometer is',round(Zh,3),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The height of fluid for oil Manometer 2.37 m \n",
"(b)The height of fluid for water Manometer ia 1.9 m\n",
"(c)The height of fluid for Hg Manometer is 0.139 m\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.24 Page No. 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Zg=0.753\t\t#Barometer reading at ground level in m\n",
"Zp=0.690\t\t#Pilots barometer reading in the plane in m\n",
"d=13600\t\t#Density of Hg in kg/m**3\n",
"g=9.81\t\t #Gravity in m/sec**2\n",
"da=1.25\t\t#Density of air in kg/m**3\n",
"\n",
"#Calculations\n",
"Pg=d*g*Zg\t#Pressure at ground level in N/m**2\n",
"Pp=d*g*Zp\t#Pressure at plane level in N/m**2\n",
"P=Pg-Pp\t\t#Change of pressure at ground level and that of plane level in N/m**2\n",
"Za=P/(da*g)\t#Altitude of plane from ground in m\n",
"\n",
"#Output \n",
"print'The altitude of the plane from ground level is',round(Za,1),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The altitude of the plane from ground level is 685.4 m\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.25 Page No. 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"dw=1000\t\t#Density of water in kg/m**3\n",
"dh=13590\t\t#Density of Hg in kg/m**3\n",
"Pa=400\t\t#Pressure at A in kPa\n",
"g=9.81\t\t#Gravity in N/m**2\n",
"Zw1=2.5\t\t#First level of water in m\n",
"Zw2=0.4\t\t#Second level of water in m\n",
"Zh=0.6\t\t#Level of Hg in m\n",
"\n",
"#Calculations \n",
"Pw1=dw*g*Zw1\t#First level of water pressure in N/m**2\n",
"Pw2=dw*g*Zw2\t#Second level of water pressure in n/m**2\n",
"Ph=dh*g*Zh\t#Pressure of Hg in N/m**2\n",
"Pb=((Pa*1000)+Pw1+Pw2-Ph)/1000\t#Pressure exercted at B in kPa\n",
"\n",
"#Output\n",
"print'Pressure exercted at B is',round(Pb,2),\"KPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pressure exercted at B is 348.46 KPa\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.26 Page No. 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"do=0.902*10**3\t#Density of oil in kg/m**3\n",
"Pg=2*10**5\t #Gauge pressure in N/m**2\n",
"g=9.81\t\t #Gravity in m/sec**2\n",
"ho=2\t\t #Level of oil in m\n",
"d=2\t\t #Diameter of cylinder in m\n",
"pi=3.141595\t#Constant value of pi\n",
"\n",
"#Calculations\n",
"A=(pi/4.0)*d**2 #Area of cylinder \n",
"Po=do*g*ho\t # Pressure due to oil in N/m**2\n",
"W=(Pg+Po)*A\t #Weight of the piston in N\n",
"\n",
"#Output\n",
"print'The total weight of piston and slab is',round(W,2),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total weight of piston and slab is 683916.56 N\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.27 Page No. 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"m=21\t\t#Mass of piston in kg\n",
"P1=600\t\t#Pressure in the pipe 1 in kPa\n",
"P2=170\t\t#Pressure in the pipe 2 in kPa\n",
"d1=0.10\t\t#Diameter of the piston 1 in m\n",
"d2=0.20\t\t#Diameter of the piston 2 in m\n",
"pi=3.14155\t#Constant value of pi\n",
"\n",
"#Calculations\n",
"F=(m*9.81)/1000\t\t#Force due to mass in kN\n",
"F1=(pi/4)*d1**2*P1\t\t#Force 1 acting on 10 cm diameter piston in kN\n",
"F2=(pi/4)*(d2**2-d1**2)*P2\t#Force 2 acting on 20 cm diameter piston in kN\n",
"F3=F+F1+F2\t\t#Total downward force in kN\n",
"P3=F3/((pi/4)*d2**2)\t#Pressure 3 in the gas in kPa\n",
"\n",
"#Output\n",
"print'The pressure in the gas is ',round(P3,2),\"KPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The pressure in the gas is 284.06 KPa\n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.28 Page No. 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"P1=0.755\t\t#Barometric reading at the bottom of the building in m\n",
"P2=0.73\t\t#Barometric reading at the top of the building in m\n",
"da=1.18\t\t#Density of air in kg/m**3\n",
"g=9.81\t\t#Gravitalional constant in m/sec**2\n",
"d=13600\t\t#Density of Hg in kg/m**3\n",
"\n",
"#Calculations\n",
"h=((P1-P2)*d*g)/(da*g) #The height of the building in m\n",
"\n",
"#Output\n",
"print'The height of the building ',round(h,1),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The height of the building 288.1 m\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.29 Page No. 58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"PA=200\t\t#Gauge pressure reading for A in kPa\n",
"PB=120\t\t#Gauge pressure reading for B in kPa\n",
"hb=750\t\t#Barometer reading in mm of Hg\n",
"g=9.806\t\t#Gravitational constant in m/sec**2\n",
"d=13597\t\t#Density of Hg in barometer in kg/m**3\n",
"\n",
"#Calculations\n",
"Pa=d*g*hb/10**6\t#Atmospheric pressure in kPa\n",
"Pab1=PA+Pa\t#Absolute pressure in container A in kPa\n",
"Pab2=PB+Pab1\t#Absolute pressure in container B in kPa\n",
"\n",
"#Output \n",
"print'(a)The absolute pressure in the container A is',round(Pab1,1),\"kPa\" \n",
"print'(b)The absolute pressure in the container B is ',round(Pab2,2),\"kPa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The absolute pressure in the container A is 300.0 kPa\n",
"(b)The absolute pressure in the container B is 420.0 kPa\n"
]
}
],
"prompt_number": 38
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.30 Page No. 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"C1=40\t\t #Temperature 1 in degree centigrade\n",
"C2=-20\t\t#Temperature 2 in degree centigrade \n",
"\n",
"#calculations\n",
"F1=((C1/100.0)*180)+32\t#Temperature 1 in Fahrenheit\n",
"F2=((C2/100.0)*180)+32\t#Temperature 2 in Fahrenheit\n",
"\n",
"#Output\n",
"print'(a)Temperature after converting 40 degree C is',round(F1,2),\"F\"\n",
"print'(b)Temperature after convertibg -20 degree C is ',round(F2,2),\"F\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Temperature after converting 40 degree C is 104.0 F\n",
"(b)Temperature after convertibg -20 degree C is -4.0 F\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.31 Page No. 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"C=(-32/180.0)/((1/100.0)-(1/180.0))\t#Centrigade temperature in degree C\n",
"F=C\t\t\t#Fahrenheit temperature in degree Fahrenheit\n",
"\n",
"print'The temperature which has the same value on both the centrigrade and fahrenheit scales is',C\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature which has the same value on both the centrigrade and fahrenheit scales is -40.0\n"
]
}
],
"prompt_number": 40
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.32 Page No. 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"P1=1.5\t\t#Thermometric properties at ice point\n",
"P2=7.5\t\t#Thermometric properties at steam point\n",
"P3=3.5\t\t#Thermometric property\n",
"\n",
"#Calculations\n",
"import math\n",
"M = array([[math.log(P2), 1], [math.log(P1), 1]])\n",
"N=([100,0])\n",
"X=inv(M)*N #Inverse matrix\n",
"a=X[0,0]\n",
"b=X[1,0]\n",
"t=(a*math.log(P3)+b)\t#Required temperature in degree C\n",
"\n",
"#Output\n",
"print'The required temperature is ',round(t,2),\"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required temperature is 52.65 C\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.33 Page No. 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"T1=100\n",
"T2=300 #Temperature of ice and steam point in the scale\n",
"P1=1.86\t\t #Values of thermometric properties at ice point nad steam point respectively\n",
"P2=6.8\n",
"P=2.5\t\t\t #Thermometric property\n",
"\n",
"#Calculations\n",
"import math\n",
"#aln(P2)+b=300 #Costants in the temprature scale reading, a and b\n",
"#aln(P1)+b=100\n",
"#Solving above two equations\n",
"a=(T2-T1)/(math.log(P2/P1)) \n",
"b=T2-a*math.log(P2)\n",
"t=(a*math.log(P)+b)\t#Required temperature in degree C\n",
"\n",
"#Output\n",
"print'Temperature corresponding to the thermometric property is ',round(t,1),\"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature corresponding to the thermometric property is 145.6 C\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.34 Page No. 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"p1=32.0\t\t #Pressure in mm of Hg at triple point of water\n",
"p2=76.0\t\t #Pressure in mm of Hg above atmospheric pressure\n",
"p3=752.0\t\t#Barometric pressure in mm of Hg\n",
"T=273.16\t\t#Triple point of water in K\n",
"\n",
"#Calculations\n",
"P1=p3+p1\t#Total pressure in mm of Hg\n",
"P2=p2+p3\t#Total pressure in mm of Hg\n",
"T2=((T*P2)/P1)-273.16\t#Temperture in degree C\n",
"\n",
"#Output\n",
"print'Temperature is ',round(T2,2),\"C\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature is 15.33 C\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.35 Page No.61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"T1=32\t\t#Temperatures of ice point and steam point respectively\n",
"T2=212\n",
"P1=1.86\t\t #P values at ice point and steam point respectively\n",
"P2=6.81\n",
"P=2.5\t\t\t#Reading on the thermometer\n",
"\n",
"#Calculations\n",
"import math\n",
"#aln(P1)+b=32 #Costants in the given temprature scale reading, a and b\n",
"#aln(P2)+b=212\n",
"#Solving above two equations\n",
"a=(T2-T1)/(math.log(P2/P1)) \n",
"b=T2-a*math.log(P2)\n",
"t=(a*math.log(P)+b)\t#Required temperature in degree C\n",
"\n",
"#Output\n",
"print'Temperature corresponding to the thermometric property is ',round(t,0),\"C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature corresponding to the thermometric property is 73.0 C\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|