1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
{
"metadata": {
"name": "",
"signature": "sha256:943d4576ca0c6a409710e5e5dfd3597778d333997c650e03aa4c9f933860e70a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 13 : Hydraulic Power Transmission|"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.1 Page No : 512"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\n",
"#initialisation of variables\n",
"nop= 0.88\n",
"nom= 0.88 # constant\n",
"Pm= 75. \t#hp\n",
"p= 3000. \t#lb/in**2 pressure\n",
"d= 54.5 \t#lbm/ft**3 density\n",
"u= 1.05*10**-4 # viscosity\n",
"d1= 0.5 \t#in\n",
"g= 32.2 \t#ft/sec**2\n",
"\t\n",
"#CALCULATIONS\n",
"nt= (7./11)*nop*nom\n",
"pp= Pm/nt\n",
"Q= nop*pp*550/(p*144)\n",
"Re= 4*d*Q/(math.pi*u*(d1/12)*g)\n",
"\t\n",
"#RESULTS\n",
"print ' ntrans = %.3f '%(nt)\n",
"print ' Input power = %.f hp'%(pp)\n",
"print ' Flow rate = %.3f ft**3/sec'%(Q)\n",
"print ' Reynolds Number = %.1e '%(Re)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" ntrans = 0.493 \n",
" Input power = 152 hp\n",
" Flow rate = 0.171 ft**3/sec\n",
" Reynolds Number = 8.4e+04 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.2 Page No : 513"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\n",
"#initialisation of variables\n",
"lc= 0.25\n",
"a= 90. \t#degrees\n",
"p= 3000. \t#lb/in**2 pressure\n",
"g= 32.2 \t#ft/sec**2\n",
"d1= 0.5 \t#in\n",
"Q= 0.171 \t#ft**3/sec\n",
"d= 54.5 \t#lbm/ft**3 density\n",
"n1= 2. \n",
"n2= 6.\n",
"lc1= 0.9\n",
"nop= 0.88\n",
"nom= 0.88\n",
"\t\n",
"#CALCULATIONS\n",
"P1= 4*p*144/11\n",
"P2= 8*d*Q**2*(n1*lc+n2*lc1)/(math.pi**2*(d1/12)**4*g)\n",
"pt= P1+P2\n",
"dpm= (p*144-pt)\n",
"ntrans= nop*nom*dpm/(p*144)\n",
"\t\n",
"#RESULTS\n",
"print ' Frictional pressure drop = %.2e lbf/ft**2'%(P1) \n",
"print ' Extra Frictional pressure drop = %.2e lbf/ft**2'%(P2) \n",
"print ' Total pressure drop = %.2e lbf/ft**2'%(pt)\n",
"print ' Motor pressure drop = %.2e lbf/ft**2'%(dpm)\n",
"print ' Overall transmission coefficiency = %.3f'%(ntrans)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Frictional pressure drop = 1.57e+05 lbf/ft**2\n",
" Extra Frictional pressure drop = 7.85e+04 lbf/ft**2\n",
" Total pressure drop = 2.36e+05 lbf/ft**2\n",
" Motor pressure drop = 1.96e+05 lbf/ft**2\n",
" Overall transmission coefficiency = 0.352\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13.3 Page No : 521"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\n",
"#initialisation of variables\n",
"bip= 135. \t#degrees inlet angle\n",
"bop= 150. \t#degrees outlet angle\n",
"bot= 140. \t#degrees turbine outlet angle\n",
"bos= 137. \t#degrees stator blade outlet angle\n",
"r= 1.8 \n",
"r1= 1.8 # ratio b1/b2\n",
"r2= 0.7 # ratio b1/b3\n",
"r3= 0.95 # ratio r3/r1\n",
"\t\n",
"#CALCULATIONS\n",
"Vw2r2byVw1r1 = (1+(1/math.tan(math.radians(bip))/1/math.tan(math.radians(bos))))*r**2-r1*(1/math.tan(math.radians(bop))/1/math.tan(math.radians(bos)))\n",
"Vw3r3byVw1r1 = r2*r3**2*(1+(1/math.tan(math.radians(bip))/1/math.tan(math.radians(bos))))-(1/math.tan(math.radians(bot))/1/math.tan(math.radians(bos)))\n",
"CtbyCp = (Vw2r2byVw1r1-Vw3r3byVw1r1)/(Vw3r3byVw1r1-1)\n",
"\t\n",
"#RESULTS\n",
"print ' R1 = %.2f'%(Vw2r2byVw1r1) \n",
"print ' R2 = %.2f'%(Vw3r3byVw1r1) \n",
"print ' Torque ratio = %.2f'%(CtbyCp)\n",
"\n",
"# rounding off error. please check. instead of cot, have used 1/tan. please check."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" R1 = 3.37\n",
" R2 = 0.03\n",
" Torque ratio = -3.45\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|