summaryrefslogtreecommitdiff
path: root/Basic_Engineering_Thermodynamics_by_Rayner_Joel/Chapter9_1.ipynb
blob: 339b7e2c5128dabb646ea0751a65052a60e9f226 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 9 - Heat Transfer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 1: pg 256"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 9.1\n",
      " The heat lost per hour is (kJ) =  10815.0\n",
      " The interface temperature is (C) =  8.2\n"
     ]
    }
   ],
   "source": [
    "#pg 256\n",
    "print('Example 9.1');\n",
    "\n",
    "#  aim : To determine \n",
    "#  the heat loss per hour through the wall and interface temperature\n",
    "\n",
    "#  Given values\n",
    "x1 = .25;# thickness of brick,[m]\n",
    "x2 = .05;# thickness of concrete,[m]\n",
    "t1 = 30.;# brick face temperature,[C]\n",
    "t3 = 5.;# concrete face temperature,[C]\n",
    "l = 10.;# length of the wall, [m]\n",
    "h = 5.;# height of the wall, [m]\n",
    "k1 = .69;# thermal conductivity of brick,[W/m/K]\n",
    "k2 = .93;# thermal conductivity of concrete,[W/m/K]\n",
    "\n",
    "#  solution\n",
    "A = l*h;# area of heat transfer,[m**2]\n",
    "Q_dot = A*(t1-t3)/(x1/k1+x2/k2);# heat transferred, [J/s]\n",
    "\n",
    "#  so heat loss per hour is\n",
    "Q = Q_dot*3600*10**-3;# [kJ]\n",
    "print ' The heat lost per hour is (kJ) = ',round(Q)\n",
    "\n",
    "#  interface temperature calculation\n",
    "#   for  the brick wall, Q_dot=k1*A*(t1-t2)/x1;\n",
    "#  hence\n",
    "t2 = t1-Q_dot*x1/k1/A;# [C]\n",
    "print ' The interface temperature is (C) = ',round(t2,1)\n",
    "\n",
    "#  End\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 2: pg 258"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 9.2\n",
      " The minimum thickness of the lagging required is (mm) =  38.8\n"
     ]
    }
   ],
   "source": [
    "#pg 258\n",
    "print('Example 9.2');\n",
    "\n",
    "#  aim : To determine\n",
    "#  the minimum \n",
    "#  thickness of the lagging required\n",
    "import math\n",
    "#  Given values\n",
    "r1 = 75./2;# external radious of the pipe,[mm]\n",
    "L = 80.;# length of the pipe,[m]\n",
    "m_dot = 1000.;# flow of steam, [kg/h]\n",
    "P = 2.;# pressure, [MN/m**2]\n",
    "x1 = .98;# inlet dryness fraction\n",
    "x2 = .96;# outlet dryness fraction\n",
    "k = .08;# thermal conductivity of of pipe, [W/m/K]\n",
    "t2 = 27.;# outside temperature,[C]\n",
    "\n",
    "#  solution\n",
    "#  using steam table  at 2 MN/m**2 the enthalpy of evaporation of steam is,\n",
    "hfg = 1888.6;# [kJ/kg]\n",
    "#  so heat loss through the pipe is\n",
    "Q_dot = m_dot*(x1-x2)*hfg/3600;# [kJ]\n",
    "\n",
    "# also from steam table saturation temperature of steam at 2 MN/m**2 is,\n",
    "t1 = 212.4;# [C]\n",
    "# and for thick pipe, Q_dot=k*2*%pi*L*(t1-t2)/log(r2/r1)\n",
    "# hence\n",
    "r2 = r1*math.exp(k*2*math.pi*L*(t1-t2)*10**-3/Q_dot);# [mm]\n",
    "\n",
    "t = r2-r1;# thickness, [mm]\n",
    "#results\n",
    "print ' The minimum thickness of the lagging required is (mm) = ',round(t,1)\n",
    "\n",
    "#  End\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 3: pg 260"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 9.3\n",
      " (a) The heat lost per hour is (kJ) =  8770.0\n",
      " (b) The interface temperature of the lagging is (C) =  71.5\n",
      "There is some rounding off error in the book, so answer is not matching\n"
     ]
    }
   ],
   "source": [
    "#pg 260\n",
    "print('Example 9.3');\n",
    "\n",
    "#  aim : To determine the\n",
    "#  (a) heat loss per hour\n",
    "#   (b) interface temperature og lagging\n",
    "import math\n",
    "# Given values\n",
    "r1 = 50.; # radious of steam main,[mm]\n",
    "r2 = 90.;# radious with first lagging,[mm]\n",
    "r3 = 115.;# outside radious os steam main with lagging,[mm]\n",
    "k1 = .07;# thermal conductivity of 1st lagging,[W/m/K]\n",
    "k2 = .1;# thermal conductivity of 2nd lagging, [W/m/K]\n",
    "P = 1.7;# steam pressure,[MN/m^2]\n",
    "t_superheat = 30.;# superheat of steam, [K]\n",
    "t3 = 24.;# outside temperature of the lagging,[C]\n",
    "L = 20.;# length of the steam main,[m]\n",
    "\n",
    "#  solution\n",
    "#  (a)\n",
    "#  using steam table saturation temperature of steam at 1.7 MN/m^2 is\n",
    "t_sat = 204.3;# [C]\n",
    "# hence\n",
    "t1 = t_sat+t_superheat;# temperature of steam,[C]\n",
    "\n",
    "Q_dot = 2*math.pi*L*(t1-t3)/(math.log(r2/r1)/k1+math.log(r3/r2)/k2);# heat loss,[W]\n",
    "#  heat loss in hour is\n",
    "Q = Q_dot*3600*10**-3;# [kJ]\n",
    "\n",
    "print ' (a) The heat lost per hour is (kJ) = ',round(Q)\n",
    "\n",
    "# (b)\n",
    "#  using Q_dot=2*%pi*k1*(t1-t1)/log(r2/r1) \n",
    "t2 = t1-Q_dot*math.log(r2/r1)/(2*math.pi*k1*L);# interface temperature of lagging,[C]\n",
    "\n",
    "print ' (b) The interface temperature of the lagging is (C) = ',round(t2,1)\n",
    "\n",
    "print 'There is some rounding off error in the book, so answer is not matching'\n",
    "\n",
    "#  End\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 4: pg 265"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 9.4\n",
      " The energy emitted from the surface is (kW) =  355.7\n"
     ]
    }
   ],
   "source": [
    "#pg 265\n",
    "print('Example 9.4');\n",
    "\n",
    "# aim : To determine \n",
    "#  the energy emetted from the surface\n",
    "\n",
    "#  Given values\n",
    "h = 3.;# height of surface, [m]\n",
    "b = 4.;# width of surface, [m]\n",
    "epsilon_s = .9;# emissivity of the surface\n",
    "T = 273.+600;# surface temperature ,[K]\n",
    "sigma = 5.67*10**-8;# [W/m^2/K^4]\n",
    "\n",
    "#  solution\n",
    "As = h*b;# area of the surface, [m^2]\n",
    "\n",
    "Q_dot = epsilon_s*sigma*As*T**4*10**-3;# energy emitted, [kW]\n",
    "#results\n",
    "print ' The energy emitted from the surface is (kW) = ',round(Q_dot,1)\n",
    "\n",
    "#  End\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 5: pg 265"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 9.5\n",
      " The transfer of energy will be from furnace to sphere and transfer rate is (kW) =  703.0\n",
      " There is some calculation mistake in the book, so answer is not matching\n"
     ]
    }
   ],
   "source": [
    "#pg 265\n",
    "print('Example 9.5');\n",
    "\n",
    "#  aim : To determine \n",
    "#  the rate of energy transfer between furnace and the sphere and its direction\n",
    "import math\n",
    "#  Given values\n",
    "l = 1.25;# internal side of cubical furnace, [m]\n",
    "ti = 800.+273;# internal surface temperature of the furnace,[K]\n",
    "r = .2;# sphere radious, [m]\n",
    "epsilon = .6;# emissivity of sphere\n",
    "ts = 300.+273;# surface temperature of sphere, [K]\n",
    "sigma = 5.67*10**-8;# [W/m**2/K**4]\n",
    "\n",
    "#  Solution\n",
    "Af = 6*l**2;# internal surface area of furnace, [m**2]\n",
    "As =4 *math.pi*r**2;# surface area of sphere, [m**2]\n",
    "\n",
    "#  considering internal furnace to be black\n",
    "Qf = sigma*Af*ti**4*10**-3;# [kW]\n",
    "\n",
    "#  radiation emitted by sphere is\n",
    "Qs = epsilon*sigma*As*ts**4*10**-3; # [kW]\n",
    "\n",
    "#  Hence transfer of energy is\n",
    "Q = Qf-Qs;# [kW]\n",
    "#results\n",
    "print ' The transfer of energy will be from furnace to sphere and transfer rate is (kW) = ',round(Q)\n",
    "print' There is some calculation mistake in the book, so answer is not matching'\n",
    "\n",
    "#  End\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6: pg 271"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 9.6\n",
      " The overall heat transfer coefficient for the wall is (W/m**2 K) =  0.313\n",
      " The heat loss per hour through the wall is (kJ) =  1148.0\n"
     ]
    }
   ],
   "source": [
    "#pg 271\n",
    "print('Example 9.6');\n",
    "\n",
    "#  aim : To determine\n",
    "#  the overall transfer coefficient and the heat loss per hour\n",
    "\n",
    "#  Given values\n",
    "x1 = 25*10**-3;# Thickness of insulating board, [m]\n",
    "x2 = 75*10**-3;# Thickness of fibreglass, [m]\n",
    "x3 = 110*10**-3;# Thickness of brickwork, [m]\n",
    "k1 = .06;# Thermal conductivity of insulating board, [W/m K]\n",
    "k2 = .04;# Thermal conductivity of fibreglass, [W/m K]\n",
    "k3 = .6;# Thermal conductivity of brickwork, [W/m K]\n",
    "Us1 = 2.5;#  surface heat transfer coefficient of the inside wall,[W/m**2 K]\n",
    "Us2 = 3.1;#  surface heat transfer coefficient of the outside wall,[W/m**2 K]\n",
    "ta1 = 27.;# internal ambient temperature, [C]\n",
    "ta2 = 10.;# external ambient temperature, [C]\n",
    "h = 6.;# height of the wall, [m]\n",
    "l = 10.;# length of the wall, [m]\n",
    "\n",
    "#  solution\n",
    "U = 1/(1/Us1+x1/k1+x2/k2+x3/k3+1/Us2);# overall heta transfer coefficient,[W/m**2 K]\n",
    "\n",
    "A = l*h;# area ,[m**2]\n",
    "\n",
    "Q_dot = U*A*(ta1-ta2);# heat loss [W]\n",
    "\n",
    "#  so heat loss per hour is\n",
    "Q = Q_dot*3600*10**-3;# [kJ]\n",
    "#results\n",
    "print ' The overall heat transfer coefficient for the wall is (W/m**2 K) = ',round(U,3)\n",
    "print ' The heat loss per hour through the wall is (kJ) = ',round(Q)\n",
    "\n",
    "#  End\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7: pg 272"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example 9.7\n",
      " The heat loss per hour is (kJ) =  24533.0\n",
      " The surface temperature of the lagging is (C) =  46.99\n",
      "there is minor variation in the answer due to rounding off error in textbook\n"
     ]
    }
   ],
   "source": [
    "#pg 272\n",
    "print('Example 9.7');\n",
    "\n",
    "#  aim : To determine  \n",
    "#  the heat loss per hour and the surface temperature of the lagging\n",
    "import math\n",
    "#  Given values\n",
    "r1 = 75.*10**-3;# External radiou of the pipe, [m]\n",
    "t_l1 = 40.*10**-3;# Thickness of lagging1, [m]\n",
    "t_l2 = t_l1;\n",
    "k1 = .07;# thermal conductivity of lagging1, [W/m K]\n",
    "k2 = .1;# thermal conductivity of lagging2, [W/m K]\n",
    "Us = 7;# surface transfer coefficient for outer surface, [W/m**2 K]\n",
    "L = 50.;# length of the pipe, [m]\n",
    "ta = 27.;# ambient temperature, [C]\n",
    "P = 3.6;# wet steam pressure, [MN/m**2]\n",
    "\n",
    "#  solution\n",
    "#  from steam table saturation temperature of the steam at given pressure is,\n",
    "t1 =  244.2;# [C]\n",
    "r2 = r1+t_l1;# radious of pipe with lagging1,[m]\n",
    "r3 = r2+t_l2;# radious of pipe with both the lagging, [m]\n",
    "\n",
    "R1 = math.log(r2/r1)/(2*math.pi*L*k1);# resistance due to lagging1,[C/W]\n",
    "R2 = math.log(r3/r2)/(2*math.pi*L*k2);# resistance due to lagging2,[C/W]\n",
    "R3 = 1/(Us*2*math.pi*r3*L);# ambient resistance, [C/W]\n",
    "\n",
    "#  hence overall resistance is,\n",
    "Req = R1+R2+R3;# [C/W]\n",
    "tdf = t1-ta;# temperature driving force, [C]\n",
    "Q_dot = tdf/Req;# rate of heat loss, [W]\n",
    "#  so heat loss per hour is,\n",
    "Q = Q_dot*3600*10**-3;# heat loss per hour, [kJ]\n",
    "\n",
    "#  using eqn [3]\n",
    "t3 = ta+Q_dot*R3;# surface temperature of the lagging, [C]\n",
    "#results\n",
    "print ' The heat loss per hour is (kJ) = ',round(Q,0)\n",
    "print ' The surface temperature of the lagging is (C) = ',round(t3,2)\n",
    "\n",
    "print 'there is minor variation in the answer due to rounding off error in textbook'\n",
    "\n",
    "#  End\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}