1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 13 - Steam turbines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1: pg 380"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 13.1\n",
" The power developed for a steam flow of 1 kg/s is (kW) = 52.8\n",
" The energy of steam finally leaving the wheel is (kW/kg) = 8.778\n"
]
}
],
"source": [
"#pg 380\n",
"print('Example 13.1');\n",
"\n",
"# aim : To determine \n",
"# the power developed for a steam flow of 1 kg/s at the blades and the kinetic energy of the steam finally leaving the wheel\n",
"\n",
"# Given values\n",
"alfa = 20;# blade angle, [degree]\n",
"Cai = 375;# steam exit velocity in the nozzle,[m/s]\n",
"U = 165;# blade speed, [m/s]\n",
"loss = .15;# loss of velocity due to friction\n",
"\n",
"# solution\n",
"# using Fig13.12,\n",
"Cvw = 320;# change in velocity of whirl, [m/s]\n",
"cae = 132.5;# absolute velocity at exit, [m/s]\n",
"Pds = U*Cvw*10**-3;# Power developed for steam flow of 1 kg/s, [kW]\n",
"Kes = cae**2/2*10**-3;# Kinetic energy change of steam, [kW/kg] \n",
"\n",
"#results\n",
"print ' The power developed for a steam flow of 1 kg/s is (kW) = ',Pds\n",
"print ' The energy of steam finally leaving the wheel is (kW/kg) = ',round(Kes,3)\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2: pg 382"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 13.2\n",
" (a) The angle of blades is (degree) = 41.5\n",
" (b) The work done on the blade is (kW/kg) = 150.45\n",
" (c) The diagram efficiency is (percent) = 83.6\n",
" (d) The End-thrust is (N/kg) = -90\n"
]
}
],
"source": [
"#pg 382\n",
"print('Example 13.2');\n",
"\n",
"# aim : To determine\n",
"# (a) the entry angle of the blades\n",
"# (b) the work done per kilogram of steam per second\n",
"# (c) the diagram efficiency\n",
"# (d) the end-thrust per kilogram of steam per second\n",
"\n",
"# given values\n",
"Cai = 600.;# steam velocity, [m/s]\n",
"sia = 25.;# steam inlet angle with blade, [degree]\n",
"U = 255.;# mean blade speed, [m/s]\n",
"sea = 30.;# steam exit angle with blade,[degree] \n",
"\n",
"# solution\n",
"# (a)\n",
"# using Fig.13.13(diagram for example 13.2)\n",
"eab = 41.5;# entry angle of blades, [degree]\n",
"print ' (a) The angle of blades is (degree) = ',eab\n",
"\n",
"# (b)\n",
"Cwi_plus_Cwe = 590;# velocity of whirl, [m/s]\n",
"W = U*(Cwi_plus_Cwe);# work done on the blade,[W/kg]\n",
"print ' (b) The work done on the blade is (kW/kg) = ',W*10**-3\n",
"\n",
"# (c)\n",
"De = 2*U*(Cwi_plus_Cwe)/Cai**2;# diagram efficiency \n",
"print ' (c) The diagram efficiency is (percent) = ',round(De*100,1)\n",
"\n",
"# (d)\n",
"# again from the diagram\n",
"Cfe_minus_Cfi = -90;# change invelocity of flow, [m/s]\n",
"Eth = Cfe_minus_Cfi;# end-thrust, [N/kg s]\n",
"print ' (d) The End-thrust is (N/kg) = ',Eth\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3: pg 384"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 13.3\n",
" (a) The power of turbine is (kW) = 806.625\n",
" (b) The diagram efficiency is (percent) = 78.7\n"
]
}
],
"source": [
"#pg 384\n",
"print('Example 13.3');\n",
"\n",
"# aim : To determine\n",
"# (a) the power output of the turbine\n",
"# (b) the diagram efficiency\n",
"\n",
"# given values\n",
"U = 150.;# mean blade speed, [m/s]\n",
"Cai1 = 675.;# nozzle speed, [m/s]\n",
"na = 20.;# nozzle angle, [degree]\n",
"m_dot = 4.5;# steam flow rate, [kg/s]\n",
"\n",
"# solution\n",
"# from Fig. 13.15(diagram 13.3)\n",
"Cw1 = 915.;# [m/s]\n",
"Cw2 = 280.;# [m/s]\n",
"\n",
"# (a)\n",
"P = m_dot*U*(Cw1+Cw2);# power of turbine,[W]\n",
"print ' (a) The power of turbine is (kW) = ',P*10**-3\n",
"\n",
"# (b)\n",
"De = 2*U*(Cw1+Cw2)/Cai1**2;# diagram efficiency\n",
"print ' (b) The diagram efficiency is (percent) = ',round(De*100,1)\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4: pg 386"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 13.4\n",
" (a) The power output of the stage is (MW) = 11.6\n",
" (b) The specific enthalpy drop in the stage is (kJ/kg) = 82.0\n",
" (c) The increase in relative velocity is (percent) = 52.2\n"
]
}
],
"source": [
"#pg 386\n",
"print('Example 13.4');\n",
"import math\n",
"# aim : To determine\n",
"# (a) the power output of the stage\n",
"# (b) the specific enthalpy drop in the stage\n",
"# (c) the percentage increase in relative velocity in the moving blades due to expansion in the bladse\n",
"\n",
"# given values\n",
"N = 50.;# speed, [m/s]\n",
"d = 1.;# blade ring diameter, [m]\n",
"nai = 50.;# nozzle inlet angle, [degree]\n",
"nae = 30.;# nozzle exit angle, [degree]\n",
"m_dot = 600000.;# steam flow rate, [kg/h]\n",
"se = .85;# stage efficiency\n",
"\n",
"# solution\n",
"# (a)\n",
"U = math.pi*d*N;# mean blade speed, [m/s]\n",
"# from Fig. 13.17(diagram 13.4)\n",
"Cwi_plus_Cwe = 444;# change in whirl speed, [m/s]\n",
"P = m_dot*U*Cwi_plus_Cwe/3600;# power output of the stage, [W]\n",
"print ' (a) The power output of the stage is (MW) = ',round(P*10**-6,1)\n",
"\n",
"# (b)\n",
"h = U*Cwi_plus_Cwe/se;# specific enthalpy,[J/kg]\n",
"print ' (b) The specific enthalpy drop in the stage is (kJ/kg) = ',round(h*10**-3)\n",
"\n",
"# (c)\n",
"# again from diagram\n",
"Cri = 224.;# [m/s]\n",
"Cre = 341;# [m/s]\n",
"Iir = (Cre-Cri)/Cri;# increase in relative velocity\n",
"print ' (c) The increase in relative velocity is (percent) = ',round(Iir*100,1)\n",
"\n",
"# End\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5: pg 389"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 13.5\n",
" (a) The blade height at this stage is (mm) = 65.0\n",
" (b) The power developed is (kW) = 218.7\n",
" (a) The specific enthalpy drop in the stage is (kJ/kg) = 19.059\n"
]
}
],
"source": [
"#pg 389\n",
"print('Example 13.5');\n",
"\n",
"# aim : To determine\n",
"# (a) the blade height of the stage\n",
"# (b) the power developed in the stage\n",
"# (c) the specific enthalpy drop at the stage\n",
"from math import sqrt,pi\n",
"# given values\n",
"U = 60.;# mean blade speed, [m/s]\n",
"P = 350.;# steam pressure, [kN/m**2]\n",
"T = 175.;# steam temperature, [C]\n",
"nai = 30.;# stage inlet angle, [degree]\n",
"nae = 20.;# stage exit angle, [degree] \n",
"\n",
"# solution\n",
"# (a)\n",
"m_dot = 13.5;# steam flow rate, [kg/s]\n",
"# at given T and P\n",
"v = .589;# specific volume, [m**3/kg]\n",
"# given H=d/10, so\n",
"H = sqrt(m_dot*v/(pi*10*60));# blade height, [m]\n",
"print ' (a) The blade height at this stage is (mm) = ',round(H*10**3)\n",
"\n",
"# (b)\n",
"Cwi_plus_Cwe = 270;# change in whirl speed, [m/s]\n",
"P = m_dot*U*(Cwi_plus_Cwe);# power developed, [W]\n",
"print ' (b) The power developed is (kW) = ',P*10**-3\n",
"\n",
"# (c)\n",
"s = .85;# stage efficiency\n",
"h = U*Cwi_plus_Cwe/s;# specific enthalpy,[J/kg]\n",
"print ' (a) The specific enthalpy drop in the stage is (kJ/kg) = ',round(h*10**-3,3)\n",
"\n",
"# End\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|