summaryrefslogtreecommitdiff
path: root/Basic_Engineering_Thermodynamics_by_A._Venkatesh/ch9.ipynb
blob: a3ffa471d8640043d828dd4cc4b44697d4cb144f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
{
 "metadata": {
  "name": "",
  "signature": "sha256:db9190b16f5381a0273b385245ae5408db2539c1355e253496c8d01bc2f77490"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 9 : Ideal Gas and Ideal Gas Mixtures"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.1 Page No : 253"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "# Variables\n",
      "m = 6. \t\t\t#kg \t\t\t#mass of nitrogen\n",
      "M = 28. \t\t\t#kg/kmol \t\t\t#molar mass of nitrogen\n",
      "R = 8314.3 \t\t\t#kg/kmol\n",
      "p = 1e5 \t\t\t#Pa \t\t\t#pressure\n",
      "T = 27.+273 \t\t\t#K \t\t\t#temperature\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "V = m*R*T/(p*M)\n",
      "print \"Volume occupied by nitrogen = %.3f m**3\"%(V)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Volume occupied by nitrogen = 5.345 m**3\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.2 Page No : 253"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "# Variables\n",
      "p1 = 10. \t\t\t#bar \t\t\t#inital pressure\n",
      "T1 = 273.+227 \t\t\t#K \t\t\t#inital temperature\n",
      "v1 = 0.01 \t\t\t#m**3 \t\t\t#initial volume\n",
      "p2 = 1. \t\t\t#bar \t\t\t#final pressure\n",
      "T2 = 273.+27 \t\t\t#K \t\t\t#final temperature\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "v2 = (p1/p2)*(T2/T1)*v1 \t\t\t#m**3 \t\t\t#final volume\n",
      "print \"Final volume = %.2f m**3\"%(v2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Final volume = 0.06 m**3\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.3 Page No : 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "# Variables\n",
      "p = 1. \t\t\t#bar \t\t\t#pressure\n",
      "T = 50.+273 \t\t\t#\u00b0C \t\t\t#temperature\n",
      "h = 324.6 \t\t\t#kJ/kg \t\t\t#enthalpy\n",
      "R = 8.3143 \t\t\t#kJ/kmolK\n",
      "M = 28.97 \t\t\t#kg/kmol\n",
      "\n",
      "#Part (a)\n",
      "print \"Part a\";\n",
      "u = h - (R/M)*T \t\t\t#kJ/kg \t\t\t#internal energy\n",
      "print \"Internal energy = %.1f kJ/kg\"%(u)\n",
      "\n",
      "#Part (b)\n",
      "print \"Part b:i\";\n",
      "u = h - (R/M)*T \t\t\t#kJ/kg \t\t\t#internal energy\n",
      "print \"Enthalpy = %.1f kJ/kg\"%(h)\n",
      "print \"Internal energy = %.1f kJ/kg\"%(u)\n",
      "print \"Part b:ii\";\n",
      "u = h - (R/M)*T \t\t\t#kJ/kg \t\t\t#internal energy\n",
      "print \"Enthalpy = %.1f kJ/kg\"%(h)\n",
      "print \"Internal energy = %.1f kJ/kg\"%(u)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Part a\n",
        "Internal energy = 231.9 kJ/kg\n",
        "Part b:i\n",
        "Enthalpy = 324.6 kJ/kg\n",
        "Internal energy = 231.9 kJ/kg\n",
        "Part b:ii\n",
        "Enthalpy = 324.6 kJ/kg\n",
        "Internal energy = 231.9 kJ/kg\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.4 Page No : 256"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "# Variables\n",
      "Cv = 718 \t\t\t#J/kgK \t\t\t#specific at constant volume\n",
      "M = 28.97 \t\t\t#kg/kmol \t\t\t#molar mass of air\n",
      "R = 8314.3 \t\t\t#J/kmolK\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "Cp = (R/M)+Cv \t\t\t#J/kgK \t\t\t#specific heat at constant pressure\n",
      "print \"Specific heat at constant pressure = %.0f J/kg K\"%(Cp)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Specific heat at constant pressure = 1005 J/kg K\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.5 Page No : 258"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from scipy.integrate import quad \n",
      "\t\t\t\n",
      "# Variables\n",
      "p1 = 1. \t\t\t#bar \t\t\t#initial pressure\n",
      "T1 = 27.+273 \t\t\t#K \t\t\t#initial temperature\n",
      "p2 = 10. \t\t\t#bar \t\t\t#final pressure\n",
      "T2 = 327.+273 \t\t\t#K \t\t\t#final temperature\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "#Part(a)\n",
      "print \"Part a\";\n",
      "\n",
      "def f2(T): \n",
      "\t return 1.4-18.3*(T/100)**(-1.5)+38.3*(T/100)**(-2)-29.3*(T/100)**(-3)\n",
      "\n",
      "delta_h =  quad(f2,T1,T2)[0]\n",
      "\n",
      "print \"Increase in specific enthalpy = %.2f kJ/kg\"%(delta_h)\n",
      "\n",
      "#Part(b)\n",
      "print \"Part b\";\n",
      "\n",
      "def f3(T): \n",
      "\t return 1.042\n",
      "\n",
      "delta_h =  quad(f3,T1,T2)[0]\n",
      "\n",
      "print \"Increase in specific enthalpy at Cp = 1.042 kJ/kgK) = %.2f kJ/kg\"%(delta_h)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Part a\n",
        "Increase in specific enthalpy = 317.34 kJ/kg\n",
        "Part b\n",
        "Increase in specific enthalpy at Cp = 1.042 kJ/kgK) = 312.60 kJ/kg\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.6 Page No : 268"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "\n",
      "from numpy import *\n",
      "from matplotlib.pyplot import *\n",
      "import math \n",
      "\t\t\t\n",
      "# Variables\n",
      "Cp = 1005. \t\t\t#J/kgK \t\t\t#specific heat at constant pressure\n",
      "Cv = 718. \t\t\t#J/kgK \t\t\t#specific heat at constant volume\n",
      "m = 1. \t\t\t#kg \t\t\t#mass of air\n",
      "T1 = (27.+273) \t\t\t#K \t\t\t#initial temperature\n",
      "p1 = 1e5 \t\t\t#Pa \t\t\t#initial pressure\n",
      "p2 = p1/2. \t\t\t#Pa \t\t\t#final pressure\n",
      "\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "#Part(a)\n",
      "print \"Parta\";\n",
      "R = Cp-Cv \t\t\t#J/kgK\n",
      "V1_a = m*R*T1/p1 \t\t\t#m**3 \t\t\t#initial volume\n",
      "V2_a = V1_a \t\t\t#m**3 \t\t\t#final volume\n",
      "T2 = p2*V2_a/(m*R) \t\t\t#K \t\t\t#final temperature\n",
      "print \"Final temperature,T2 = %.1f K\"%(T2)\n",
      "\n",
      "#Part(b)\n",
      "print \"Partb\";\n",
      "V1_b = m*R*T1/p1 \t\t\t#m**3 \t\t\t#initial volume\n",
      "V2_b = V1_b*(p1/p2) \t\t\t#m**3 \t\t\t#final volume\n",
      "#Isothermal process => T1 = T2\n",
      "print \"Final temperature,T2 = %.1f K\"%(T1)\n",
      "\n",
      "#Part(c)\n",
      "print \"Partc\";\n",
      "R = Cp-Cv \t\t\t#J/kgK\n",
      "y = Cp/Cv\n",
      "V1_c = m*R*T1/p1 \t\t\t#m**3 \t\t\t#initial volume\n",
      "V2_c = V1_c*(p1/p2)**(1/y) \t\t\t#m**3 \t\t\t#final volume\n",
      "T2 = p2*V2_c/(m*R) \t\t\t#K \t\t\t#final temperature\n",
      "print \"Final temperature,T2 = %.0f K\"%(T2)\n",
      "\n",
      "#P-V diagram\n",
      "P = [p1*1e-5, p2*1e-5]\n",
      "V = [V1_a ,V1_a]\n",
      "plot(V,P,'b')       \t\t\t#plot for part(a)\n",
      "\n",
      "V = linspace(V1_b,V2_b,100)\n",
      "P = (p1*1e-5*V1_b)/V\n",
      "plot(V,P,'g')      \t\t\t#plot for part(b)\n",
      "\n",
      "V = linspace(V1_c,V2_c,100)\n",
      "P = (p1*1e-5*V1_c**y)/V**y\n",
      "plot(V,P,'r')     \t\t\t#plot for part(c)\n",
      "xlabel('Volume in m**3')\n",
      "ylabel('Pressure in bar')\n",
      "suptitle('p-V diagram sought in example 9.6')\n",
      "#legends(['Part (a)';'Part (b)';'Part (c)'],[2 3 5],opt=1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Parta\n",
        "Final temperature,T2 = 150.0 K\n",
        "Partb\n",
        "Final temperature,T2 = 300.0 K\n",
        "Partc\n",
        "Final temperature,T2 = 246 K\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 1,
       "text": [
        "<matplotlib.text.Text at 0x1100b2a90>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEhCAYAAAB7mQezAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FNXbxvFvCr13qdIERERqpKkBRYoC0nsVBRUFUfQn\nFvBFbCBFEUV6R1CqKFWiNKmRKkiVKnZEFEnZ94+zMZuwSXaTnZ1Ncn+uK1dmZ2dnnkySeeacM+cc\nEBEREREREREREREREREREREREREREfGZEcDridbVAA6n8LlwYJVzuRXwvG/DShfKAgeSeK83UDyJ\n914F7rUiIIv1Ad7zYvuswExgP/AtcE8y2z4JfAccBN5KZXwi4iO3ACcSrXsTeCmFz4UTnxh8Jcj5\nlV6UJenEsAmo7b9Q/KI33iWGJ4DpzuUiwG7c/34bA+uBLC7bSgAJtjsA8amywBFgHqYEsATIkWib\nY8DvQJjLuo7AQjf7a465q9sDtHVZ34f4C0Yr4BtgL+afvahzfRHn64PAVOA0UNAZ41FgNuYiWxqY\nDOxybjvS5TinMaWbSMxFphawDjgODHATby5gNeZu9QDQybn+Xmd8+zEXrqwu+y/oXK6DubgnFztA\nCPCR8721QHagg/Pz853HyZ4orllAe5djjsSc0/1AZTc/RwgwBtgJ7AMeda5/mvgL7+3OnzE75ne5\nzXnsrUAl5zZ9gOWYc3YKGAQ869xuO1DAuV0EMAFzng8Add3EVAT4xBnTTqCBm21uJf4c/gz8gTkv\niT0GvAFEuWwrIhYpC8QC9Z2vpwPPuNnuGWCcc7ke5qKcWHbgDFDB+fpjYKVzuQ/xiSG/y2f6A2Od\ny5OIr25q5owrLjHEkDAxxV2gQjAXlmrO16eITwDjMBfSXEBh4Ec3MbfHXLTj5HX5OSo6180GBrvs\n311iSC72KKC6872Pge7O5U2YxOXOTKCdyzGfcC4/hkk8iT0KvOhczob5/dyMufv+CpOkdxH/e86D\nOXcA92Eu4GB+T8eIP2eXiU8y44g/D5uAKc7lu4gvFfUh/ve8AGjoXC6D+6rHR4DFzljKYW5A2rrZ\nLhKTHL/BJCV3yUNspBJDxnMWczcIpuTQyM02H2PucoOALph/+sSqYC5icdVO83BfLVAac0e6H3M3\nWtW5viGwyLm8FnORiPMD5q4zTmfMHfRe4DaXfUB8Mjrg/LmuAr8A/2Iu/K72A00xVWONgD8xd+Sn\nMKUMMInhbjc/h6vkYj/lPA7OmMu6vOdptdhS5/e9iT4f536gF+YC+g0mKd0CODAX67mYC2rc7zk/\nJhkcwFzwXc/fJuLP2R/EVwceSHTsuBLjZsx5zZcopvswCTMSWIFJRjkTbTMDOIcp3Y3HlGJi3Px8\noZibgXrAMEwykQASancA4nMOl+Ug5+sw4u8IXwY+w1zgwjF3svVS2E/cvtx5D1NK+AzT2DjSg89c\ndVkuhynB1MHc0c4kYVXMv87vscB1l/Wx3Pj3ewyoCTwAvAZsxFzEEv8ccT9bNPE3R4mrf5KK/V+X\n5ZhEn0t8zpISt48Ykv4fHISpzkqsEnAFKOmybhTmZ22LKVlEJBFvLAnPZ3L//7GJXgcBd5Lwd5BY\nDDDU5fVW4Hs3250jPjnuch6rEPBrMvsWP1KJIeMpQ/yFvhvmDnAn5oJZE3MBB3OHOB5TIrjgZj9H\nMXeU5Z2vuyZxvLwun+/jsn4r8XX89xNfXeTu81cxd/fFgBZJbOfJ3Xhx4Bqmrn8s5ueN+zniqsR6\nYqpjwNT3x1VjxLUBeBO7a1xXuLEEk1prgceJv3BXwtyd5wMmYqp7ChEfs+vvoK+HxwhKtNzZudwI\nU7K4kmj7dcBTLq9ruNlnDky1FZiSWxSmzSux5UAT53IlTJuPkkIAUWLIeI5i6rAPYy4kHySx3SeY\nKgd3jc5gLrCPYhpz9wCXiL8jdrgsj8Q0cu/GNCLGrX8Vc1E9gKm2+pH4i43rnfU+TPXEEcwFfUsS\n8bgeM/E+4twO7HDu7xVMqeFfzMVyCaYKKBr40CXGiZi71uhUxO76epZzv+4an5OS+GeKMw3z+9vr\njOEDTJIYh6nOOQ48jKkyKwy8jWnM3Yup33f3e0ocuyPRdtecn5/s3HfibZ7CJNF9wCHi2ypcFcP8\nrRzGVBH1dHlvKvFPbc3A3HAcwPz99XKzLxHxkbIk/Tilv2UlvkG0Puaik16k59hTI7mGc8mE1MaQ\n8Xhaz221MphGxWBMvfQj9objlfQcu4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIg4zcAMpZBUb9wq\nmBEir+F+eGgREfEzq8dKmomZ7CUpv2Km+BubzDYiIuJHVieGzSQcyz6xnzGDr0Uls42IiPiRRlcV\nEZEElBhERCSBdDG6aoUKFRwnTpxIeUMREXF1gvj5zj0WKCWGZGfnOnHiBA6HQ18OByNGjLA9hkD5\n0rnQudC5SP6L+JkLvWJ1iWEhZh7gwphJ6kcAWZzvTQFuwsyelRcz7+tgzKxif1kcl4iIJMHqxJDU\nPMFxfgRKWxyDiIh4IVCqksRD4eHhdocQMHQu4ulcxNO5SLtk6/YDiMNZXyYiIh4KCgqCVFznVWIQ\nEZEElBhERCQBJQYREUlAiUFERBJQYhARkQSUGEREJAElBhERSUCJQUREElBiEBGRBJQYREQkASUG\nERFJQIlBREQSUGIQEZEElBhERCQBJQYREUlAiUFERBJQYhARkQSUGEREJAElBhERSUCJQUREElBi\nEBGRBJQYREQkASUGERFJQIlBREQSUGIQEZEElBhERCQBqxPDDOAScCCZbd4FjgH7gJoWxyMiIimw\nOjHMBJon835LoCJwC/Ao8IHF8YiISAqsTgybgd+Teb81MNu5vAPIDxSzOCYREUmG3W0MJYGzLq/P\nAaVsikVERLA/MQAEJXrtsPJgF4/sZnOTCkRFX7fyMCIi6Vaozcc/D5R2eV3Kue4GI0eO/G85PDyc\n8PDwVB2w2C01uPjtLywY0Zbeo1enah8iIoEoIiKCiIiINO8n8d26FcoCq4Db3bzXEhjk/F4PmOD8\nnpjD4fBdQaJxthXMztOBHetm0rFWD5/tV0QkkAQFBUEqrvNWJ4aFwD1AYcxjqyOALM73pji/T8I8\nuXQV6AvsdbMfnyaGoCD4o+k9jMu6m04zdnJb0dt8tm8RkUARqInBV3yeGBzfHeFa/TDuGVaYdUMj\nyZc9n8/2LyISCFKbGAKh8dkeVaqQvWcfxmzLRY9lPYh1xNodkYhIQMi8iQFgxAju2nmJ/Ccu8GrE\nq3ZHIyISEDJ3YihUiKDhw5n2VT5mRE5n+ZHldkckImK7zJ0YAJ54gmxnL7Ch8FAeXfUoh346ZHdE\nIiK2UmLIkgXGjaPy6CmMa/wmbRa14bd/frM7KhER22Tep5IS765FC2jalGduO8/+n/bzRfcvCA22\nu/+fiEjq6XFVL7hNDEeOwF13Eb3/Wx7Y2I9bC9/KhOYTfHZMERF/0+OqaVWlCvTuTejLI1jUfhFf\nHP+CaXun2R2ViIjfqcTg6vJlkyBWruT78vloNKMRSzou4Z6y9/js2CIi/qISgy/kywdvvAFPPkml\nAhWZ324+nT/pzMnfT9odmYiI3ygxJNarlylSzJ5N0wpNeenul2i1sBWXr122OzIREb9QVZI7e/bA\nAw+YBun8+Rn0+SCO/XaM1d1W60klEUk39FSSF1JMDAADB5o+Du+9R3RsNK0WtqJc/nK83/L9uJMt\nIhLQlBi84FFi+PVXqFoV1qyBmjW5fO0yDWc0pH+t/gypN8RnsYiIWEWNz75WqBCMHg1PPAGxseTL\nno/V3VYzZtsYVhxZYXd0IiKWUWJITr9+EBsLM2cCcHP+m1neeTn9V/Vn94XdNgcnImINVSWlJDIS\nmjeHQ4egcGEAlh9ZzhOfP8G2ftu4Of/NPotLRMSX1MbgBa8SA8DgwXD1KkyL7wk94ZsJTN07lS19\nt1AgRwGfxSYi4itKDF7wOjFcvmwaohcvhoYN/1v99JqnifwxkrU91pItNJvP4hMR8QUlBi94nRjA\nJIVRo2DvXvMYKxDriKXzJ50JDQ5lfrv5BAepyUZEAoeeSrJax45QqhSMG/ffquCgYOa2ncu5P8/x\n3PrnbAxORMR3VGLwxsmTEBYGu3ZBuXL/rf7tn99oNKMR/Wv1Z2j9oT6LU0QkLVRi8Ify5WHYMHjs\nsQSZpWCOgqzpsYbx34xn4YGFNgYoIpJ2SgzeGjoULl6EhQkTQJl8Zfii+xcMXjOY9SfW2xSciEja\nqSopNXbsgIcegoMHTQ9pF5t/2Ez7xe1Z3W01dUvWTVugIiJpoKeSvJDmxACmb8PlyzBr1g1vrTy6\nkgGfDSCidwSVC1dO44FERFJHicELPkkMV65AtWowfTrcd98Nb8+MnMmrX73Kln5bKJW3VBoPJiLi\nPTU++1uePPDhh/Doo6ZXdCJ9a/blibpPcP/c+/nl719sCFBEJHVUYkirnj2hSJEE/RtcvbDhBTac\n2sDGXhvJmy2vjw4qIpKyQC0xNAeOAMeA5928XwBYBuwDdgC3WRyP740fb55Q+uYbt2+/fu/r1C5e\nmzaL2vBP1D9+Dk5ExHtWJoYQYBImOVQFugK3JtpmOLAXuAPoBUy0MB5rFC4MEyeaIbr//feGt4OC\ngni/5fsUz12cjks6EhUTZUOQIiKeszIxhAHHgdNAFLAIaJNom1uBTc7lo0BZoIiFMVmjY0eoUsWM\npeRGSHAIsx+aTXBQMD2X9SQmNsbPAYqIeM7KxFASOOvy+pxznat9QDvnchhwM5D+HuEJCoLJk2Hq\nVDPInhtZQrKwuONifvn7FwZ8NoBYR6yfgxQR8Uyohfv2pHn3TUz1USRwwPnd7e30yJEj/1sODw8n\nPDw8zQH61E03wTvvQJ8+sHs3ZM16wybZQ7OzvMtyms1rxlNfPMV7Ld6LaxwSEUmziIgIIiIi0ryf\nlK5KocBsoHsq9l0PGIlpYwB4AYgF3krmM6eA24G/Eq0P3KeSXDkc0KYN3HFHktVKAJevXea+ufcR\nfnM4bzd9W8lBRCxh1VNJ0ZjqndTMQrMbuAXTbpAV6AysTLRNPud7AI8AX3FjUkg/goJgyhT46CNT\nakhCvuz5WNtjLetPrueVTa/4MUARkZR5UpV0CtiCuaj/7VznANw/uB8vGhgErMU8oTQd+A4Y4Hx/\nCuZppVnO/R0EHvY89ABVvLh5hLV3b9izB7Jnd7tZwRwFWd9zPeGzw8kSkoVX7lGCEJHA4EkRY6Tz\ne1zlS5Bz+VUrAkpC+qhKiuNwQIcOULEivJVczRlc+usS4bPD6Vm9J8PvGm5hUCKS2WisJC9YnhgA\nfvrJtDV88kmCeaLduXjlIvfMuof+tfrzXEPNBCcivmFlYigKPIep9snhXOcAmnh7sDRIf4kBYNky\nM7HPt99C7tzJbnruz3M0nt2YR2s9yrCGw/wQnIhkdFYOiTEfM6xFeUy10mlMw7KkpG1bU1oYlvKF\nvlTeUmzqvYmP9n7EmK1j/BCciIh7nmSSvUAtYD9Q3bluN1DHqqDcSJ8lBjBzNlSvbkZibdEixc1V\nchARX7GyxHDd+f1H4EFMkijg7YEyrXz5YPZs6N8ffkl5+O1SeUsR0TuCaZHTeH3z634IUEQkIU8y\nSStgM1AaeA/Ii6lSStwnwUrpt8QQZ9gwOHnSNEZ70KHt4pWLNJnThK7VuupRVhFJFT2V5AVbEsO/\n/0JYGAwZAn37evSRS39dosmcJrSt0pZRjUeph7SIeMXKqqQKwCrgF+BnYAWmIVq8kS0bzJ8Pzz0H\nJ0549JFiuYsR0TuCz77/jGHrh+HL5CgikhRPEsMCYDFQHCgBLAEWWhlUhlWtGrz8MnTvDlGezctQ\nJFcRvuz9JV//8DWDPh+kUVlFxHKeFDFcn0aKsw8zuY6/pP+qpDgOB7RsCXXqJDvQXmKXr13mgQUP\nUKlQJaa2mkpIcIiFQYpIRmBFG0NB5/vPAX8QX0rojHkq6X/eHiwNMk5iALh0CWrUgEWL4J57PP7Y\n1etXabOoDQVzFGReu3lkDblxaG8RkThWJIbTuJ9TIW6spHLeHiwNMlZiAPj8cxg40PSKLljQ449d\ni75Gl0+6EBUbxScdPyFHlhwpf0hEMiU9leSFgEgMAEOHwunT8OmnHj3CGicqJoo+K/pw/s/zrOy6\nkrzZ8loXo4ikW1Y+lSRWeeMNkxg++MCrj2UJycLctnOpWqQqTWY34eerP1sTn4hkSiox2O377814\nShs2mNFYveBwOHjpy5dYemQp63qso3S+0hYFKSLpkUoM6VWlSjBuHHTuDH95N3ldUFAQo+8dTf+a\n/Wk0sxFHfjliUZAikpl4mklKYqboDCG+8flri2JyJ+OWGOL06WOCmj07VR+f9e0s/rfhf6zsupKw\nkmG+jU1E0iUrG5/fwjyiehiIcVnfytuDpUHGTwxXr0LduqZndJ8+qdrFqqOr6LeyH/Pbzef+Cvf7\nNj4RSXesTAzfA7cD/3q7cx/K+IkB4OBBaNwYIiLgtttStYstZ7bQfnF7xt0/ju7Vu/s2PhFJV6xs\nYzgBqCeVP1SrBm+/DR07et3eEKdRmUZ82etLXtj4Au9se8fHAYpIZuBJJlmKGf5iI/GlBgfwlFVB\nuZE5Sgxx+vaF6GiYM8er/g2uzl4+S/P5zbm//P280+wdgoP0nIFIZmNlVVIfN+scQOpaSVMncyWG\nv/+GO++EJ5+ERx9N9W5+/+d3Hvr4IYrlKsactnPIHprdh0GKSKBTz2cvBHxiANO/oVEj+OILqF07\n1bu5Fn2N3st7c/HKRZZ3WU7BHJ4PvyEi6ZsVbQxLnN8PuPna7+2BxEuVKsHkyaa94bffUr2b7KHZ\nWdh+IWElw2gwvQGnfj/lwyBFJCNKLpOUAC5g+i+4c9rXwSQj85UY4gwdCkeOwGefQXDa2gne3/k+\nozePZkWXFdQtWddHAYpIoFJVkhfSVWKIioImTeC++2DEiDTvLq6vw0cPfkTbW9v6IEARCVRKDF5I\nV4kB4OJF0/ltyhR44IE0727PhT20WdSGIfWG8Ez9ZzSXtEgGpcTghXSXGAC2boW2bWH7dqhQIc27\nO3P5DA8ueJAGpRvwXov3yBKSxQdBikggsXoQvZxAZW93DjQHjgDHgOfdvF8YWAN8CxzE/aOxAmYE\n1hEjTHK4ejXNuyuTrwxb+m3hzOUztJjfgt//+d0HQYpIRuBJYmgNRAJrna9rAis9+FwIMAmTHKoC\nXYFbE20zyLnvGkA48A4Q6sG+M6fHHzePrvbr55MiT95seVnZdSXVilaj/vT6HP/tuA+CFJH0zpPE\nMBK4E4i7pYwEynvwuTDgOObppShgEdAm0TYXgbjpx/ICvwLRHuw7cwoKMpP6nDxphs7wgdDgUCY0\nn8CQekNoOKMhm05t8sl+RST98iQxRAF/JFoX68HnSgJnXV6fc65zNRW4DfNY7D5gsAf7zdyyZ4el\nS2HiRNP5zUcG1hnIwvYL6fJpF6bsnuKz/YpI+uNJtc0hoLtz21swYyRt8+BzntR1DMe0L4QDFYD1\nmHGZriTecOTIkf8th4eHEx4e7sHuM6jSpWHxYmjXDrZsMZ3hfKBJuSZs6buF1otac+CnA4xvNl6N\n0iLpSEREBBEREWnejyet1TmBl4C4Af7XAqOAayl8rh6mGqq58/ULmJLGWy7bfA6MBrY6X2/ENFLv\nTrQvPZXkzrRpMHYs7NgB+fL5bLd/XPuDbp9241r0NZZ0XEKhnIV8tm8R8R+rnkoKBVZj7uzrOL9e\nJOWkAObifgum53RWzGQ/iRutjwD3OZeLYZ58OunBvgWgf3+4/37o0gViYlLe3kP5s+dnVddV1ClR\nh7pT63Lg0gGf7VtEAl9KiSEac5efPxX7jsY8dbQWM/vbx8B3wADnF8DrmGSzD9gAPAekfmCgzGjc\nONM7+nl3TwOnXkhwCG83fZtRjUfRZE4TPjn8iU/3LyKBy5MixkrMI6rrgbgH6DUfQyD57TczTPfw\n4WYuBx/be3EvbT9uS4/be/B/jf+PkOAQnx9DRHxP8zF4IcMlBjAD7d19N3zyifnuYz9f/ZlOn3Qi\nR2gO5rebT4EcBXx+DBHxLQ2J4YUMmRgA1q+Hnj3Nk0oVK/p891ExUTy/4XlWHF3B0k5LueOmO3x+\nDBHxHSsTg7sB/B141snNV5QYPDV5Mrz7rhlTqYA1d/ULDixg8JrBTGg2ge7Vu1tyDBFJOysTQ2GX\n5exAB6AQ8LK3B0sDJQZvDBkCBw6YDnBZs1pyiP2X9tPu43Y0r9iccc3GkTXEmuOISOr5uyppL1Ar\nlZ9NDSUGb8TEwEMPQdGipq+DRcNq/3HtD3ov781PV39iSccllMpbypLjiEjqWDm6am1MEqiFebR0\nIGaAPAlUISGwcCFERsKbb1p2mPzZ87Os8zLaVG5D3al1WX9ivWXHEhH/8SSTRBA/vEU0ZlC8scBR\na0JySyWG1LhwAerVMwPudeli6aE2ndpE96XdGVhnIC/d/RLBQWmbhlRE0k5PJXkh0yQGgP37zbSg\nn34Kd91l6aEuXLlAl0+6kD00O/PazaNorqKWHk9EkmdlVdJgzJDYQcB0TPtCM28PJDapXh3mz4cO\nHUxfBwuVyFOCL3t/SZ0Sdag1pRZf//C1pccTEWt4khgeBv7EDKJXEOgFWFdxLb7XtKmpTmrRwswf\nbaHQ4FBev/d1praaSqclnRj99WhiHZ6M0i4igcKTxBBXDHkAmIuZglPSm9694eGHoWVLuHLDqOY+\n1+KWFux+dDdrTqyh+bzmXPrrkuXHFBHf8CQx7AHWAS0xA+LlxbOJeiTQvPiiGVOpfXu4ft3yw5XK\nW4pNvTcRVjKMWh/VYuPJjZYfU0TSzpNGiWDMIHonMDO5FcLMxLbfwrgSU+Ozr0RHm/aGXLlg7lwI\n9s/TQxtPbqTX8l70vqM3r4a/qgmARPzAysbn+phHU/8AemIm7bns7YEkQISGmj4OP/wAw4b5LUPe\nW/5eIgdE8u2P33L3rLs59bu7kVZEJBB4khg+xAy3fQcwFDgOzLEyKLFYjhywahWsXQtjxvjtsEVz\nFeWzbp/RsWpHwqaFseDAAr8dW0Q850kRIxJTlTQCOA9MQ0NiZAznz0PDhvDKK9Cvn18PHXkxkq6f\nduXOUnfyXov3yJstr1+PL5IZWFmVdAUztWcP4DPMcBiqIM4ISpaEdetMo/Ty5X49dM3iNdnz6B6y\nhWSj5pSabD+73a/HF5GkeZJJigNdgV3AZqAMEI5/q5NUYrDS3r3QvDksWgRNmvj98MuPLGfgZwP/\nG04jNDjU7zGIZERWD4lRFqiImZc5JxCK6fTmL0oMVouIgE6d4LPPICzM74e/cOUC/Vb04/drvzOv\n7TxuKXSL32MQyWisrEp6FFgCTHG+LgUs8/ZAEuDCw2H6dGjdGg76vw9jiTwl+KL7F/Ss3pMGMxow\nZfcUfHkzICKe8yST7APCgG8wjdAAB4DbrQrKDZUY/GXBAvMY61dfWTI9qCcO/3yYXst6USx3Maa1\nmkbxPMVtiUMkvbOyxPCv8ytOKPHDcEtG060bjBhhxlc6c8aWEKoWqcr2h7dTu3htakypweJDi22J\nQySz8iSTjMF0busFDAIeBw4DL1oYV2IqMfjb+PHwwQem5FDcvjv2Hed20Ht5b2rcVIP3W75PoZyF\nbItFJL2xssTwPPAzpvpoAPA5pvezZGRPPw29epm5HH7+2bYw7ix1J5EDIimeuzi3f3A7q46usi0W\nkcwipUwSihlNtYofYkmOSgx2eeklWL0aNm6EggVtDeWr01/Rb2U/GpVpxIRmEyiQo4Ct8YgEOqtK\nDNGYcZJuTkVMkhGMGgX33gvNmsEff9gayj1l72HfwH3kyZqH2z+4ndXfr7Y1HpGMypNMshnzNNJO\nzJhJYBqfW1sVlBsqMdjJ4YAhQ2DHDtNTOq/9w1dsOrWJ/qv606B0AyY2n0jBHPaWZkQCkZUd3O5x\ns60D+Mrbg6WBEoPdHA544gnYtw/WrIE8eeyOiKvXrzJ843CWHF7CpJaTaHdrO7tDEgkoViSGHMBA\nTI/n/cAMIMrL/TcHJmDGV5oGvJXo/WeB7s7lUOBWoDDmKShXSgyBIDYWHnsMDh2CL74IiOQAsOXM\nFvqv7E+1otWY1HISN+W+ye6QRAKCFW0Ms4HamKTQEhjr5b5DgEmY5FAVM97SrYm2GYuppqoJvABE\ncGNSkEARHGweYa1a1cwf7YcpQj3RqEwjvh34LZUKVaL6B9WZ9e0s9ZoWSYPkMolr7+ZQzCB6NZPe\n/Ab1MUN1N3e+/p/z+5tJbL8A2AhMd/OeSgyBJK7kcPCgKTkEQJtDnMiLkfRf1Z+COQoy5cEplC9Q\n3u6QRGxjRYkhOollT5UEzrq8Pudc505OoBnwaSqOI/4WV3KoXt08rXQ5cCb0q1m8Jjv67+D+8vcT\nNjWMMVvHEB2bmj9fkcwrufGNq2PmYoiTw+W1A0jpNtGbe/JWwBaSqUYaOXLkf8vh4eGEh4d7sXvx\nueBgmDwZnnrKdIJbtw4KBEa/gtDgUIY1HEa7W9vx2OrHWHBwAR89+BF1S9a1OzQRS0VERBAREZHm\n/XhdxPBCPWAk8VVJLwCx3NgADWa01o+BRUnsS1VJgcrhgGefhS+/hPXroXBhuyNKwOFwMP/AfJ5d\n9yydbuvEa01e02xxkmlYOSRGau0GbsHM5ZAV6AysdLNdPuBuYIWFsYhVgoJg7FjTGB0eDj/+aHdE\nCQQFBdGjeg8OPX6Iq9evUvX9qnx6+FM1Toskw8oSA0AL4h9XnQ68gRlvCeLnd+iNaV/olsx+VGII\ndA4HvPYazJtnhs8oVcruiNz6+oevGfjZQMoVKMekFpMoV6Cc3SGJWMbqGdzspsSQXowda9oeNmyA\n8oH5RND1mOuM2z6OsdvGMrT+UJ6p/wzZQrPZHZaIzykxeEGJwWIffgijR8PatabPQ4A6/cdpnvri\nKb7/9XsmtZzEfeXvszskEZ9SYvCCEoMfzJtnZoJbtQrq1LE7mmStOrqKp9Y8RVjJMN65/x1K5Q3M\najARbwWes536AAAUs0lEQVRi47NkZj16mL4OLVuayX4CWKvKrTj0+CEqF6pMjQ9r8PbWt7kec93u\nsERsoxKDWOvLL6FLF5g+HVq1sjuaFB3/7ThD1gzh+G/Hmdh8Is0qNrM7JJFUU1WSF5QY/GzXLpMU\nxoyBnj3tjiZFDoeD1cdWM2TNEG4rehvjm43X0BqSLqkqSQJX3bqwaZOZDW78eLujSVFQUBAPVnqQ\ng48f5M6Sd1J3al2GbxzOX9f/sjs0Eb9QYhD/uPVW2LIFPvoI/ve/dFFkyx6aneF3DWf/wP2cuXyG\nKpOqMG//PGIdsXaHJmIpVSWJf/36Kzz4IFSuDFOnQpYsdkfksW1ntzF4zWBCgkKY2Hwid5a60+6Q\nRJKlNgYvKDHY7OpV6NwZYmJgyRLIndvuiDwW64hl7r65DP9yOI3LNuaNe9+gdL7Sdocl4pbaGCT9\nyJULli+HEiWgcWO4dMnuiDwWHBRM7xq9OTroKOXyl6PGlBq8sukVtT9IhqLEIPYIDYVp0+CBB6BB\nA/j+e7sj8krurLkZ1WQUkQMiOfH7CSpPqsz0vdOJiY2xOzSRNFNVkthv+nR48UVYutQkiXRo5/md\nDF07lCvXrzCm6Rjur3C/3SGJqI3BG0oMAWjNGujVywzA16GD3dGkisPhYNmRZTy/4XnKFyjPmKZj\nqF6sut1hSSamxOAFJYYAFRkJrVvD4MHwzDPmF5UORcVEMWXPFF77+jWaV2zOqMaj1EAttlDjs6R/\nNWvCtm0wZw489hhERdkdUapkCcnCoLBBHB10lJJ5SlJjSg2eW/8cv//zu92hiXhEiUECS+nSpiPc\nDz+Y/g6XL9sdUarly56P0feOZv/A/fz+z+9UmlSJt7e+zT9R/9gdmkiylBgk8OTNa4brrljRNEaf\nOmV3RGlSMm9Jpraeyua+m9lxfgeVJlVi2t5pRMdG2x2aiFvppRJXbQyZ1aRJ8PrrpiNcw4Z2R+MT\nO87t4IWNL3D+ynlea/wa7au2JzhI92jie2p89oISQzoT98TS2LHmewbgcDjYcHIDL2x8AQcORjcZ\nTbMKzeL+kUV8QonBC0oM6dDhw2bo7g4dTAkiJMTuiHzC4XCw9LulvLTpJQrnLMzoJqO5++a77Q5L\nMgglBi8oMaRTv/5qEkOuXLBggWmLyCBiYmOYf2A+IyNGUrFgRUY1HqVB+iTN9LiqZHyFCsG6dVCm\nDNSrB8eO2R2Rz4QEh9Drjl4cHXSUDlU70GFJB1otbMXei3vtDk0yIZUYJH2aMgVeecX0eWiW8abf\nvBZ9jWl7p/HGljcIKxnGyHtGcsdNd9gdlqQzqkryghJDBrF5sxm+e8gQGDYs3faUTs4/Uf8wZc8U\n3tr6Fg1KN2DEPSM0zIZ4TInBC0oMGcjZs9CuHVSoYAbjy5XL7ogs8XfU33y4+0PGbBtDg9INeOXu\nV1SCkBSpjUEyp9Kl4euvIUcOqF8fTpywOyJL5MySk6H1h3LiqRM0Kt2I5vOb0/bjtmqDEEsoMUj6\nlyMHzJgBAweantKrV9sdkWVyZsnJ0/Wf5sRTJ2hctjGtF7bmwQUPsuPcDrtDkwxEVUmSsWzbBp06\nQf/+pnE6OGPf+1yLvsaMyBm8tfUtKheqzEt3v6R+EPKfQG1jaA5MAEKAacBbbrYJB8YDWYBfnK8T\nU2IQz/34o2mUzpkT5s0zj7lmcNdjrjN331ze2PIGxfMU58W7XlRPagnIxBACHAXuA84Du4CuwHcu\n2+QHtgLNgHNAYUxySEyJQbwTFQXDh5sxlhYvhrAwuyPyi+jYaBYfWszrm18nW2g2Xmj0Am2rtCUk\nOGP0FBfvBGJiqA+MwJQaAP7n/P6myzaPAzcBr6SwLyUGSZ1ly2DAAFOt9MQTGfKRVndiHbGsOrqK\n17e8zuVrl3mu4XP0qN6DrCFZ7Q5N/CgQn0oqCZx1eX3Ouc7VLUBBYBOwG+hpYTySGbVta9odpk+H\nLl3gzz/tjsgvgoOCaVOlDd88/A2TH5jMwoMLqfBuBcZvH89f1/+yOzwJcFYmBk/uybMAtYCWmOqk\nlzHJQsR3KlaE7dshf36oXRu+/dbuiPwmKCiIJuWasL7nepZ3Xs72c9spN7EcL3/5Mj9d/cnu8CRA\nhVq47/OA60S3pTGlBldnMW0K/zi/vgbuAG4YBGfkyJH/LYeHhxMeHu7TYCWDy57dDKOxYAE0bQqj\nRpkqpkxStQRQu0RtFndczLFfjzFu+zgqT6pM59s680z9Z7ilkO7HMoKIiAgiIiLSvB8r/ytCMY3P\n9wIXgJ3c2PhcBZiEKS1kA3YAnYHDifalNgbxnaNHzVNLlSrB1KmQL5/dEdni0l+XmLRzEh/u+ZC7\nytzFsAbDqF+6vt1hiQ8FYhtDNDAIWIu50H+MSQoDnF8AR4A1wH5MUpjKjUlBxLcqV4ZvvoEiRaBm\nTdiROTuHFctdjFFNRnF68GmalGtC96XdaTijIUu/W0pMbIzd4YmN0ks5WiUGscbSpfDYY/DMM/Ds\nsxm+Q1xyomOjWfbdMsZuH8uvf//KkHpD6FOjD7mz5rY7NEmlQHxc1ZeUGMQ6Z85A9+6mHWLOHChe\n3O6IbOVwONh6divjvxnPV6e/4uGaD/PknU9SKm8pu0MTLwViVZJI+lCmDGzaBI0amaqlVavsjshW\nQUFBNCrTiE87fcrOR3byb8y/VP+gOl0/7crO8zvtDk/8QCUGEVdbt0KPHtCiBYwda4bVEC5fu8z0\nyOm8t/M9bsp9E4PvHEz7W9uTJSSL3aFJMlSV5AUlBknW5cuml/SePTB/PtSqZXdEASMmNoaVR1cy\nccdEjv92nMfrPs4jtR6hSK4idocmbigxeEGJQTyyYIGZHe7pp+G55yBE4w252vfjPt7d8S5Ljyzl\noSoP8WTYk9QqriQaSJQYvKDEIB47cwZ69zaD8s2ZA+XL2x1RwPnl71+Ytncak3dNpnS+0gyqO4j2\nVdtrXKYAoMTgBSUG8UpsLEyYAG+8Yb4efjhT9Zj2VHRsNCuPruT9Xe9z+OfDPFLrEQbUHkDJvImH\nSBN/UWLwghKDpMqhQ9CzJ5QoYXpMZ/LHWpNz+OfDTN41mQUHFtCkXBMer/s4jcs21vwQfqbE4AUl\nBkm169fhtdfMuEsTJ5qhNXSxS9KVf68wb/883t/1PtGx0QysM5Ded/SmQI4CdoeWKSgxeEGJQdJs\n1y7T9lC1KkyeDEWL2h1RQHM4HGw5s4UPdn/AF8e/oG2VtgysM5C6JeqqFGEhJQYvKDGIT1y7ZiYA\nmjMH3n3XzDUtKfrp6k/M+nYWU/ZMIV+2fAyoPYBut3cjT7Y8doeW4SgxeEGJQXzqm2+gb1+oVg3e\nf1+lBw/FOmJZf2I9U/ZMYdPpTXSq2olHaz9K7RK17Q4tw1Bi8IISg/jctWswciTMnAnjxkG3bmp7\n8MLFKxeZETmDaZHTKJC9AI/UeoRut3cjX/bMOSS6rygxeEGJQSyzaxf06wc33wwffAClS6f8GflP\nrCOWDSc3MHXvVDac3MBDVR6if83+NCjdQG0RqaDE4AUlBrHU9evw5pvw3nvwf/9nZorLxMN5p9ZP\nV39i7r65TN07FYCHaz5Mrzt6USx3MZsjSz+UGLygxCB+cegQPPKIGUpj6lSoUsXuiNIlh8PBtrPb\nmBY5jWXfLaNxucb0q9GPFre0IDTYytmJ0z8lBi8oMYjfxMSYx1lffRWeegqefx6yZbM7qnTryr9X\nWHxoMdMjp3Pqj1P0rN6TvjX6cmuRW+0OLSApMXhBiUH87uxZM2Lr8eOmc9xdd9kdUbp35JcjzIyc\nyZz9c7g53830rdGXztU6kz97frtDCxhKDF5QYhBbOBxmKtHBg6F5c3j7bShY0O6o0r3o2GjWHl/L\nrH2zWHdiHS0qtqBPjT40Ld+UkODMPSKuEoMXlBjEVpcvw0svwZIlJjn07KlHW33k179/5eNDHzPr\n21mc+/McPar3oNcdvahWtJrdodlCicELSgwSEHbtgsceg9y5TTtE1ap2R5ShfPfzd8zdP5e5++dS\nJGcRelbvSdfbu3JT7pvsDs1vlBi8oMQgASMmxvR3ePVVM5z3yy9Drlx2R5WhxMTGEHE6grn757Li\n6ArqlapHj9t78FCVh8iVNWOfayUGLygxSMD58Ud49ln4+msYPx7atVP1kgWuXr/KiqMrmLd/HtvO\nbqN15dZ0v70795a/N0M++qrE4AUlBglYX31lnl4qUcJ0kKtc2e6IMqxLf11i0cFFzD8wnzOXz9D5\nts50r949Q434qsTgBSUGCWhRUTBpEowebYbXePllyKORR6107NdjzD8wnwUHFhDriKXb7d3oWq1r\nuu8focTgBSUGSRd+/NF0iNuwAd56C7p3V/WSxRwOB3su7mHBgQV8fOhjiuQsQtdqXelSrQs357/Z\n7vC8psTgBSUGSVe2b4cnn4SsWc28D3Xq2B1RphATG8PmM5tZcGABS79bSqVClehSrQsdq3akeJ70\nMa2rEoMXlBgk3YmNhdmz4cUXoVkzeP11zTntR1ExUWw4uYFFhxax6ugq7rjpDjrf1pn2t7anSK4i\ndoeXpEBNDM2BCUAIMA14K9H74cAK4KTz9afAa272o8QgAvDnn6btYfp0eOYZePppyJ7d7qgylWvR\n11hzfA2LDy3m82OfU7dkXTrf1pm2VdpSKGchu8NLIBATQwhwFLgPOA/sAroC37lsEw4MBVqnsC8l\nBqeIiAjCw8PtDiMgZOpzceIEPPcc7NkDb71FRNGihDdubHdUAcGffxd/R/3N58c+Z8nhJaw5voZ6\nperRsWpHHqryEIVzFvZLDMlJbWKwcpD4MOA4cBqIAhYBbdxsl16qswJCRESE3SEEjEx9LipUgE8/\nhVmzTGLo1cu0RYhf/y5yZslJh6od+LjDx1wYeoH+Nfuz7sQ6KrxbgaZzmzJl9xR+uvqT3+LxFSsT\nQ0ngrMvrc851rhxAA2Af8DmgMQFEvBEebobWqF0bOnaEzp3h5MkUPya+lytrLjre1pHFHRdzYegF\nBtQeQMQPEVR6rxKNZzdm0s5JXLhywe4wPWJlYvCksmYvUBq4A3gPWG5hPCIZU0gI1KgBR49CtWoQ\nFgYTJtgdVaaWK2suOlTtwML2C7n4zEWG3DmEned3Um1yNRpMb8C5P8/ZHWKyrKzGqQeMxDRAA7wA\nxHJjA7SrU0Bt4LdE648DFXwcn4hIRncCqGh3EK5CMUGVBbIC3wKJuxEWIz45hWHaI0REJANrgXky\n6TimxAAwwPkF8ARwEJM0tmFKGSIiIiIiIu41B44Ax4Dn3bxfGFiDKWEcBPr4LTL/mgFcAg4ks827\nmPO0D6jpj6BsktK56I45B/uBrUB1P8VlB0/+LgDqAtFAO8sjso8n5yIciMRcKyKsD8k2KZ2LdH3d\nDMFUOZUFsuC+TWIk8IZzuTDwK6YtI6O5C3OxT+oX3RLzeC/AncA3/gjKJimdi/pAPudyczL3uQDz\nf/Ql8BnQ3h9B2SSlc5EfOASUcr62v7eZdVI6FyPx8rpp5eOq3vKkQ9xFIK9zOS/mB4z2U3z+tBn4\nPZn3WwOzncs7MP8ExawOyiYpnYvtwGXn8g7iLwQZUUrnAuBJ4BPgZ+vDsVVK56IbZoiduOdCf7E8\nIvukdC68vm4GUmLwpEPcVOA24AKm+mCwf0ILOO7OVUa+IHrqYeJLUplRSczN1AfO1+l04BefuAUo\nCGwCdgM97Q3HVl5fNwOpGsaTP+LhmCqmcEy/hvWYznFXrAsrYCXug5KZLwIAjYF+QEO7A7HRBOB/\nmL+FIDL3cDNZgFrAvUBOTMnyG0y7XGbj9XUzkEoM5zG9oOOUJr4YGKcBsMS5fALTIS4zzn2Y+FyV\ncq7LrKpj7opak3JVS0ZWG1MFewrTvjCZlAeozKjOAuuAfzBVJ19jLoaZkdfXzUBKDLsxxb+ymA5x\nnYGVibY5ghmtFUydemXih+zOTFYCvZzL9YA/ME8lZEZlgKVAD0wbVWZWHijn/PoEeIwb/4cyixVA\nI0xjfE7MQxqHbY3IPun+uplSh7jCwCpMPdkBTANTRrQQUx94HXPn04+E5wFgEuY87cMUmTOqlM7F\nNMwdYaTza6cNMfqLJ38XcWaSsR9X9eRcPIt5MukA8JS/A/SjlM5FZrluioiIiIiIiIiIiIiIiIiI\niIiIiIiIiPjKl8D9idYNwfTsTcppzFg5/jKVG0cD9pURzu9BbtbFmY4Z9mA/sIz4EWdFRDKkRzBj\nzrvajunZmpRT+DcxWKEGMNH51QYYncQ6gDwun3sHeMl/YYqI+F9BzJAfcYM+lgV+cC53xdwlHwDe\ndPlMXGIoS8Jx6p8l/m47AhgH7AK+w0xwswz4Hhjl8pkemCG9I4EPcT+UTATxPdD/Al7D3MFvB4q6\n2X4kZuj0rzGlm3bAWOfP8oXLz1oF+A143+Wz7tbFCcKUpAa6eU/EI4E0VpJIUn7DDHXR0vm6C/Ax\nUAKTDBpj7qTrcuMcHok5iB+J1gH86/zcB5jxdQYC1TCzXBXAVA91wgxEVhOIxcwa526/ceJG86yB\nufA/kkQs5ZyxtwbmYUa9rI4Z+O0BzKBvA4G5mAHhRiWxLs5MzNj71TFDhYikihKDpBcLMQkBzACL\nCzEX9AjMWEkxwHzgbg/25VpXHzfI3EHn1yXMmDMnMQP03YsZtXQ3psTQBHNBT851YLVzeQ+m1JKY\nA1MyiHEeNxhY63zvgPMz+zBtKb9hktbLSayL0xeTLPcDL6YQo0iSAmk+BpHkrATGY+7ac2Iu0qUT\nbRPEjfNSRJPwBihHom3+dX6PdVmOex33/zEbM6a9p6KS2E9i1122Se4zr7r5rLt1cZ9dBDyXcpgi\n7qnEIOnFX5jZuGYCC5zrdgH3AIUwwyt3Ab5K9LlLmDr+gkA24EEvjukANgIdgCLOdQUxJYlAU9H5\nPQhTNRVpYyySzqnEIOnJQszcC52cry9iZizbhLkgfoYZXhjiSwVRwP9h2ijOk/SY/K5tD66+wzzh\nsw5zIxUFPA6cSSZOR6LlpGbXS7xdUu+lJAiYRfy8vruBJ7z4vIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIiIiIiIiIj9/h8kPPiCgRrEnAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x112341d50>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.7 Page No : 270"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy.linalg import solve\n",
      "\t\t\t\n",
      "# Variables\n",
      "p1 = 10e6 \t\t\t#N/m**2 \t\t\t#initial pressure\n",
      "T1 = 273.+27 \t\t\t#K \t\t\t#inital temperature\n",
      "V1 = 50.e-3 \t\t\t#m**3 \t\t\t#inital volume\n",
      "M = 28. \t\t\t#g/mol \t\t\t#molecular mass\n",
      "R = 8314.3/M \t\t\t#J/kgK\n",
      "y = 1.4 \t\t\t#gamma\n",
      "\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "#Part(a)\n",
      "print 'Parta';\n",
      "m = (p1*V1)/(R*T1)\n",
      "print \"Mass of nitrogen stored in bottle = %.3f kg\"%(m)\n",
      "\n",
      "#Part(b):(i)\n",
      "print 'Partb:i';\n",
      "p2 = 15e6 \t\t\t#N/m**2 \t\t\t#final pressure\n",
      "V2 = V1 \t\t\t#m**3 \t\t\t#final volume\n",
      "T2 = (p2*V2)/(m*R)\n",
      "print \"Temperature of nitrogen at maximum permitted temperature = %.1f K\"%(T2)\n",
      "\n",
      "#Part(b):(ii)\n",
      "print 'Partb:ii';\n",
      "C = solve([[1, -1.4],[1, -1]],[[0],[R]]) \t\t\t#J/kgK \t\t\t#C = [Cp;Cv]\n",
      "delta_U = m*C[1]*(T2-T1)*.001 \t\t\t#kJ \t\t\t#Change in internal energy\n",
      "print \"Change in internal energy = %.1f kJ\"%(delta_U)\n",
      "\n",
      "#Part(b):(iii)\n",
      "print 'Partb:iii';\n",
      "delta_H = m*C[0]*(T2-T1)*.001 \t\t\t#kJ \t\t\t#Change in enthalpy\n",
      "print \"Change in enthalpy = %.1f kJ\"%(delta_H)\n",
      "\n",
      "#Part(b):(iv)\n",
      "print 'Partb:iv';\n",
      "delta_S = m*(C[1]*math.log(T2/T1)+R*math.log(V2/V1))*.001 \t\t\t#kJ/K \t\t\t#Change in entropy\n",
      "print \"Change in entropy = %.4f kJ/K\"%(delta_S)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Parta\n",
        "Mass of nitrogen stored in bottle = 5.613 kg\n",
        "Partb:i\n",
        "Temperature of nitrogen at maximum permitted temperature = 450.0 K\n",
        "Partb:ii\n",
        "Change in internal energy = 625.0 kJ\n",
        "Partb:iii\n",
        "Change in enthalpy = 875.0 kJ\n",
        "Partb:iv\n",
        "Change in entropy = 1.6894 kJ/K\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.8 Page No : 271"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\t\t\t\n",
      "# Variables\n",
      "T1 = 800. \t\t\t#K \t\t\t#initial temperature\n",
      "p1 = 1.5e6 \t\t\t#N/m**2 \t\t\t#initial pressure\n",
      "T2 = 540. \t\t\t#K \t\t\t#final temperature\n",
      "T2s = 485. \t\t\t#K \t\t\t#final temperature for reversible process\n",
      "Q = 0. \t\t\t#adiabatic process\n",
      "y = 1.4\n",
      "Cv = 718. \t\t\t#J/kgK \t\t\t#specific heat at constant volume\n",
      "\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "delta_U = Cv*(T2-T1) \t\t\t#kJ/kg \t\t\t#change in internal energy\n",
      "W = (Q-delta_U)*.001 \t\t\t#kJ/kg \t\t\t#work done per kilogram\n",
      "print \"Work done per kilogram = %.1f kJ/kg\"%(W);\n",
      "\n",
      "p2 = p1*(T2s/T1)**(y/(y-1)) \t\t\t#N/m**2 \t\t\t#final pressure\n",
      "delta_S = (y*Cv)*math.log(T2/T1)-(y*Cv-Cv)*math.log(p2/p1)\n",
      "print \"Change in entropy = %.3f kJ/kgK\"%(delta_S*.001)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Work done per kilogram = 186.7 kJ/kg\n",
        "Change in entropy = 0.108 kJ/kgK\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9 Page No : 279"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\n",
      "# Variables\n",
      "xCO2 = 0.1 \t\t\t#mole fraction of CO2\n",
      "xO2 = .09 \t\t\t#mole fraction of O2\n",
      "xCO = 0.01 \t\t\t#mole fraction of CO\n",
      "xN2 = 0.8 \t\t\t#mole fraction of N2\n",
      "\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "M = xCO2*44 + xO2*32 + xCO*28 + xN2*28 \t\t\t#kg/kmol \t\t\t#avg. molar mass\n",
      "R = 8314.3/M \t\t\t#J/kgK \t\t\t#gas constant\n",
      "yCO2 = xCO2*(44/M) \t\t\t#mass fraction of CO2\n",
      "yO2 = xO2*(32/M) \t\t\t#mass fraction of O2\n",
      "yCO = xCO*(28/M) \t\t\t#mass fraction of CO\n",
      "yN2 = xN2*(28/M) \t\t\t#mass fraction of N2\n",
      "\n",
      "print \"Molar Mass = %.2f kg/kmol\"%(M);\n",
      "print \"Gas constant = %.1f J/kgK\"%(R);\n",
      "print \"Mass fraction of CO2 = %.4f \"%(yCO2);\n",
      "print \"Mass fraction of O2 = %.4f \"%(yO2);\n",
      "print \"Mass fraction of CO = %.4f \"%(yCO);\n",
      "print \"Mass fraction of N2 = %.4f \"%(yN2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Molar Mass = 29.96 kg/kmol\n",
        "Gas constant = 277.5 J/kgK\n",
        "Mass fraction of CO2 = 0.1469 \n",
        "Mass fraction of O2 = 0.0961 \n",
        "Mass fraction of CO = 0.0093 \n",
        "Mass fraction of N2 = 0.7477 \n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.10 Page No : 280"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# variables\n",
      "m = 1.9 \t\t\t#kg\n",
      "T = 273.+20 \t\t\t#K\n",
      "p = 150.e3 \t\t\t#Pa\n",
      "yO2 = 0.1 \t\t\t#mass fraction of O2\n",
      "yN2 = 0.75 \t\t\t#mass fraction of N2\n",
      "yCO2 = 0.12 \t\t\t#mass fraction of CO2\n",
      "yCO = 0.03 \t\t\t#mass fraction of CO\n",
      "\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "#Part(a)\n",
      "print \"Parta\";\n",
      "M = 1/((yO2/32)+(yN2/28)+(yCO/28)+(yCO2/44)) \t\t\t#kg/kmol \t\t\t#molar mass\n",
      "print \"Molar mass = %.2f kg/kmol \"%(M)\n",
      "R = 8314.3/M \t\t\t#J/kgK \t\t\t#Gas constant\n",
      "print \"Gas constant = %.2f J/kgK \"%(R)\n",
      "V = m*R*T/p \t\t\t#m**3 \t\t\t#Volume\n",
      "\n",
      "#Part(b)\n",
      "print \"Partb\"\n",
      "xO2 = yO2*(M/32) \t\t\t#mole fraction O2\n",
      "print \"Mole fraction of O2 = %.3f\"%(xO2)\n",
      "pO2 = xO2*p \t\t\t#partial pressure O2\n",
      "print \"Partial pressure of O2 = %.2f kPa\"%(pO2*.001)\n",
      "VO2 = xO2*V \t\t\t#partial volume of O2\n",
      "print \"Partial volume of O2 = %.4f m**3\"%(VO2)\n",
      "\n",
      "\n",
      "xN2 = yN2*(M/28) \t\t\t#mole fraction N2\n",
      "print \"Mole fraction of N2 = %.3f\"%(xN2)\n",
      "pN2 = xN2*p \t\t\t#partial pressure N2\n",
      "print \"Partial pressure of N2 = %.2f kPa\"%(pN2*.001)\n",
      "VN2 = xN2*V \t\t\t#partial volume of N2\n",
      "print \"Partial volume of N2 = %.4f m**3\"%(VN2)\n",
      "\n",
      "\n",
      "xCO2 = yCO2*(M/44) \t\t\t#mole fraction CO2\n",
      "print \"Mole fraction of CO2 = %.3f\"%(xCO2)\n",
      "pCO2 = xCO2*p \t\t\t#partial pressure CO2\n",
      "print \"Partial pressure of CO2 = %.2f kPa\"%(pCO2*.001)\n",
      "VCO2 = xCO2*V \t\t\t#partial volume of CO2\n",
      "print \"Partial volume of CO2 = %.4f m**3\"%(VCO2)\n",
      "\n",
      "\n",
      "xCO = yCO*(M/28) \t\t\t#mole fraction CO\n",
      "print \"Mole fraction of CO = %.3f\"%(xCO)\n",
      "pCO = xCO*p \t\t\t#partial pressure CO\n",
      "print \"Partial pressure of CO = %.2f kPa\"%(pCO*.001)\n",
      "VCO = xCO*V \t\t\t#partial volume of CO\n",
      "print \"Partial volume of CO = %.4f m**3\"%(VCO)\n",
      "\n",
      "# note : rounding off error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Parta\n",
        "Molar mass = 29.67 kg/kmol \n",
        "Gas constant = 280.27 J/kgK \n",
        "Partb\n",
        "Mole fraction of O2 = 0.093\n",
        "Partial pressure of O2 = 13.91 kPa\n",
        "Partial volume of O2 = 0.0964 m**3\n",
        "Mole fraction of N2 = 0.795\n",
        "Partial pressure of N2 = 119.19 kPa\n",
        "Partial volume of N2 = 0.8265 m**3\n",
        "Mole fraction of CO2 = 0.081\n",
        "Partial pressure of CO2 = 12.14 kPa\n",
        "Partial volume of CO2 = 0.0842 m**3\n",
        "Mole fraction of CO = 0.032\n",
        "Partial pressure of CO = 4.77 kPa\n",
        "Partial volume of CO = 0.0331 m**3\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.11 Page No : 283"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy.linalg import solve\n",
      "\t\t\t\n",
      "# Variables\n",
      "R = 1841. \t\t\t#J/kgK \t\t\t#Gas constant\n",
      "Cp = 6310. \t\t\t#J/kgK \t\t\t#specific heat at constant pressure\n",
      "MN = 28. \t\t\t#kg/kmol \t\t\t#molar mass N2\n",
      "MH = 2. \t\t\t#kg/kmol \t\t\t#molar mass H2\n",
      "CpN = 1042. \t\t\t#J/kgK \t\t\t#specific heat of N2\n",
      "CpH = 14210. \t\t\t#J/kgK \t\t\t#specific heat of H2\n",
      "\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "Y = solve([[8314.3/MN, 8314.3/MH],[CpN, CpH]],[[R],[ Cp]])\n",
      "YN = round(Y[0],1) \t\t\t#mass fraction of N2\n",
      "YH = round(Y[1],1) \t\t\t#mass fraction of H2\n",
      "XN = YN*(8314.3/(R*MN)) \t\t\t#volume fraction of N2\n",
      "XH = YH*(8314.3/(R*MH)) \t\t\t#volume fraction of H2\n",
      "print \"Mass fraction of N2 = %.1f \"%(YN)\n",
      "print \"Mass fraction of H2 = %.1f \"%(YH)\n",
      "print \"Volume fraction of N2 = %.4f \"%(XN)\n",
      "print \"Volume fraction of H2 = %.4f \"%(XH)\n",
      "\n",
      "# note : rounding off error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mass fraction of N2 = 0.6 \n",
        "Mass fraction of H2 = 0.4 \n",
        "Volume fraction of N2 = 0.0968 \n",
        "Volume fraction of H2 = 0.9032 \n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.12 Page No : 284"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\n",
      "# Variables\n",
      "m = 1.9 \t\t\t#kg\n",
      "T = 273.+20 \t\t\t#K\n",
      "p = 150. \t\t\t#kPa\n",
      "pdat = 100. \t\t\t#kPa \t\t\t#datum pressure\n",
      "Tdat = 273. \t\t\t#K \t\t\t#datum temperature\n",
      "yO2 = 0.1 \t\t\t#mass fraction of O2\n",
      "yN2 = 0.75 \t\t\t#mass fraction of N2\n",
      "yCO2 = 0.12 \t\t\t#mass fraction of CO2\n",
      "yCO = 0.03 \t\t\t#mass fraction of CO\n",
      "xO2 = 0.093 \t\t\t#mole fraction of O2\n",
      "xN2 = 0.795 \t\t\t#mole fraction of N2\n",
      "xCO2 = 0.081 \t\t\t#mole fraction of CO2\n",
      "xCO = 0.031 \t\t\t#mole fraction of CO\n",
      "R = 280.22 \t\t\t#J/kgK\n",
      "M = 29.67 \t\t\t#kg/kmol \t\t\t#mixture molar mass\n",
      "CpO2=0.922 \t\t\t#kJ/kgK\n",
      "CpN2=1.042 \t\t\t#kJ/kgK\n",
      "CpCO2=0.842 \t\t\t#kJ/kgK\n",
      "CpCO=1.041 \t\t\t#kJ/kgK\n",
      "\n",
      "#Part(a)\n",
      "print \"Parta\";\n",
      "Cp = yN2*CpN2 + yO2*CpO2 + yCO2*CpCO2 + yCO*CpCO \t\t\t#kJ/kgK \t\t\t# specific heat of mixture at constant pressure\n",
      "Cv = Cp - R*.001 \t\t\t#specific heat of mixture at constant volume\n",
      "print \"Cp = %.3f kJ/kgK\"%(Cp)\n",
      "print \"Cv = %.4f kJ/kgK\"%(Cv) \n",
      "\n",
      "#Part(b)\n",
      "print \"Partb\";\n",
      "U = m*(Cv*(T-Tdat)) \t\t\t#kJ \t\t\t#internal energy\n",
      "print \"Internal energy = %.2f kJ\"%(U)\n",
      "\n",
      "#Part(c)\n",
      "print \"Partc\"\n",
      "H = U + m*R*T*.001 \t\t\t#kJ \t\t\t#enthalpy\n",
      "print \"Enthalpy = %.1f kJ\"%(H)\n",
      "\n",
      "#Part(d)\n",
      "print \"Partd\"\n",
      "SO2 = CpO2*math.log(T/Tdat)-(8.3143/32)*math.log(xO2*(p/pdat)) \t\t\t#kJ/kgK \t\t\t#entropy of O2\n",
      "SN2 = CpN2*math.log(T/Tdat)-(8.3143/28)*math.log(xN2*(p/pdat)) \t\t\t#kJ/kgK \t\t\t#entropy of N2\n",
      "SCO2 = CpCO2*math.log(T/Tdat)-(8.3143/44)*math.log(xCO2*(p/pdat)) \t\t\t#kJ/kgK \t\t\t#entropy of CO2\n",
      "SCO = CpCO*math.log(T/Tdat)-(8.3143/28)*math.log(xCO*(p/pdat)) \t\t\t#kJ/kgK \t\t\t#entropy of CO\n",
      "\n",
      "S = m*(yO2*SO2+yN2*SN2+yCO2*SCO2+yCO*SCO) \t\t\t#kJ/K \t\t\t#entropy\n",
      "print \"Entropy = %.4f kJ/K\"%(S)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Parta\n",
        "Cp = 1.006 kJ/kgK\n",
        "Cv = 0.7258 kJ/kgK\n",
        "Partb\n",
        "Internal energy = 27.58 kJ\n",
        "Partc\n",
        "Enthalpy = 183.6 kJ\n",
        "Partd\n",
        "Entropy = 0.3006 kJ/K\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.13 Page No : 288"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\n",
      "# Variables\n",
      "V_He = 0.3 \t\t\t#m**3 \t\t\t#volume of Helium\n",
      "p_He = 20e5 \t\t\t#Pa \t\t\t#pressure of Helium\n",
      "T_He = 273.+30 \t\t\t#K \t\t\t#Temperature of Helium\n",
      "V_O2 = 0.7 \t\t\t#m**3 \t\t\t#volume of O2\n",
      "p_O2 = 6e5 \t\t\t#Pa \t\t\t#pressure of O2\n",
      "T_O2 = 273.+2 \t\t\t#K Temperature of O2\n",
      "R_He = 2077. \t\t\t#J/kgK\n",
      "R_O2 = 260. \t\t\t#J/kgK\n",
      "Cv_He = 3116. \t\t\t#J/kgK\n",
      "Cv_O2 = 662. \t\t\t#J/kgK\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "m_He = (p_He*V_He)/(R_He*T_He) \t\t\t#kg \t\t\t#mass of Helium\n",
      "m_O2 = (p_O2*V_O2)/(R_O2*T_O2) \t\t\t#kg \t\t\t#mass of O2\n",
      "T_ad = (m_He*Cv_He*T_He+m_O2*Cv_O2*T_O2)/(m_He*Cv_He+m_O2*Cv_O2) \t\t\t#K \t\t\t#Temperature after mixing\n",
      "T_final = 300 \t\t\t#K \t\t\t#final temperature\n",
      "Q = (Cv_He*m_He+Cv_O2*m_O2)*(T_final-T_ad) \t\t\t#J \t\t\t#Magnitude of heat transfer\n",
      "print \"Magnitude of heat transfer = %.2f kJ\"%(Q*.001)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnitude of heat transfer = 88.30 kJ\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.14 Page No : 289"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\n",
      "# Variables\n",
      "T_E = (273.+20) \t\t\t#K \t\t\t#temperature of ethane\n",
      "p_E = 200. \t\t\t#kPa \t\t\t#pressure of ethane\n",
      "T_M = 273.+45 \t\t\t#K \t\t\t#temperature of methane\n",
      "p_M = 200. \t\t\t#kPa \t\t\t#pressure of methane\n",
      "m_E = 9. \t\t\t#kg/s \t\t\t#mass rate of ethane\n",
      "m_M = 4.5 \t\t\t#kg/s \t\t\t#mass rate of methane\n",
      "Cp_E = 1766. \t\t\t#J/kgK \t\t\t#specific heat of ethane\n",
      "Cp_M = 2254. \t\t\t#J/kgK \t\t\t#specific heat of methane\n",
      "\n",
      "\t\t\t\n",
      "# Calculations and Results\n",
      "#Part(a)\n",
      "print \"Parta\";\n",
      "T = (m_E*Cp_E*T_E+m_M*Cp_M*T_M)/(m_E*Cp_E+m_M*Cp_M) \t\t\t#K \t\t\t#mixture temperature\n",
      "print \"Mixture temperature = %.1f K\"%(T)\n",
      "\n",
      "#Part(b)\n",
      "print \"Partb\";\n",
      "R_E = 8314.3/30 \t\t\t#J/kgK \t\t\t#gas constant for ethane\n",
      "R_M = 8314.3/16 \t\t\t#J/kgK \t\t\t#gas constant for methane\n",
      "R = (m_E/(m_E+m_M))*R_E+(m_M/(m_E+m_M))*R_M \t\t\t#J/kgK \t\t\t#gas constant of mixture\n",
      "M = 8314.3/R \t\t\t#kg/kmol \t\t\t#mixture molar mass\n",
      "x_E = (m_E/(m_E+m_M))*(M/30) \t\t\t#mole fraction of ethane\n",
      "x_M = (m_M/(m_E+m_M))*(M/16) \t\t\t#mole fraction of methane\n",
      "\n",
      "delta_S_E = Cp_E*math.log(T/T_E) - R_E*math.log(x_E) \t\t\t#J/kgK \t\t\t#change in entropy of ethane\n",
      "delta_S_M = Cp_M*math.log(T/T_M) - R_M*math.log(x_M) \t\t\t#J/kgK \t\t\t#change in entropy of methane\n",
      "\n",
      "print \"Rate of entropy production = %.4f kJ/sK\"%((m_E*delta_S_E+m_M*delta_S_M)*.001)\n",
      "\n",
      "# note : rounding off error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Parta\n",
        "Mixture temperature = 302.7 K\n",
        "Partb\n",
        "Rate of entropy production = 3.3681 kJ/sK\n"
       ]
      }
     ],
     "prompt_number": 11
    }
   ],
   "metadata": {}
  }
 ]
}