1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
{
"metadata": {
"name": "",
"signature": "sha256:83bf55a24e2aa90db4083899e2e7c0a6deddf51b02a3e4634d291129436942ec"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9:Multi stage Amplifiers"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.1 Page no.305"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"A1=30 #voltage gain 1\n",
"A2=50 #voltage gain 2\n",
"A3=80 #voltage gain 3\n",
"\n",
"#Calculation\n",
"import math\n",
"A=A1*A2*A3 #overall Voltage Gain\n",
"Adb=20*math.log10(A) #Voltage Gain in dB\n",
"# Result\n",
"print \" The overall Voltage Gain of the Multistage Amplifier Adb = \",round(Adb,2),\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The overall Voltage Gain of the Multistage Amplifier Adb = 101.58 dB\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.2 Page no.312"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vcc=30.0 #V, collector bias junction voltage\n",
"Vi=1.4 #V, input voltage\n",
"Vbe=0.7 #V. base emitter voltage \n",
"B=300 #Beeta, gain factor\n",
"R1=27000.0 #Ohms, given resistance\n",
"R2=680.0 #Ohms given resistance\n",
"R3=24000.0 #Ohms\n",
"R4=2400.0 #Ohms\n",
"\n",
"#Calculation\n",
"Ve=Vi-Vbe #V, voltage at emitter terminal\n",
"Ie1=Vbe/R2 #A, emitter current at 1st stage\n",
"Ic1=Ie1 #A, collector current\n",
"Vc1=Vcc-round(Ie1,3)*R1 #collector voltage at 1st stage\n",
"Vb2=Vc1 #V, base voltage at 2nd stage\n",
"\n",
"Ve2=Vb2-Vbe #V emitter voltage at 2nd stage\n",
"Ie2=Ve2/R4 #A, emitter current at 2nd stage\n",
"Ic2=round(Ie2,3) #A collector current at 2nd stage\n",
"Vc2=Vcc-Ic2*R3\n",
"Vo=Vc2\n",
"#Displaying The Results in Command Window\n",
"print \" The Voltage at the Output Terminal of Two Stage Direct Coupled Amplifier, Vo = \",Vo,\"V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Voltage at the Output Terminal of Two Stage Direct Coupled Amplifier, Vo = 6.0 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.3 Page no.319"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"A=100 #voltage gain\n",
"f1=400 #Hz, frequency 1\n",
"f2=25*10**3 #Hz, frequency 2\n",
"f3=80 #Hz, frequency 3 \n",
"f4=40*10**3 # Hz, frequency 4 \n",
"\n",
"#Calculation\n",
"import math\n",
"Adb=20*math.log10(A)\n",
"Adbc=Adb-3 #Lower by 3dB\n",
"# Result\n",
"print \" The Gain at Cutoff Frequencies is, Adb (at Cutoff Frequencies) = \",Adbc,\"dB\"\n",
"\n",
"#plot\n",
"from pylab import *\n",
"f1=[80,400,25000,40000]\n",
"Adb1=[37,40,40,37]\n",
"a=plot(f1,Adb1)\n",
"xlim(0,40000)\n",
"xlabel(\"$f(Hz)$\")\n",
"ylabel(\"$AdB$\")\n",
"ylim(0,50)\n",
"show(a1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Gain at Cutoff Frequencies is, Adb (at Cutoff Frequencies) = 37.0 dB\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAESCAYAAAABl4lHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGTNJREFUeJzt3X9M1Pfhx/HXWe2qs/5A5KDQDisg/kBgRWnWZcNaNLaK\nGldtZymtdmlM11mzatcs34x1qeKKW9S6bGvtwnTxx7oNf0StdvbU1gq11Vl1VpuhAsI5BLSgiMr7\n+4fjKiLyBu8X+HwkxLvP3XEv3vHulff78/ncOYwxRgAAWOgS6AAAgI6D0gAAWKM0AADWKA0AgDVK\nAwBgjdIAAFjr6q8nio6OVq9evXTHHXeoW7duKiwsVGVlpaZNm6YTJ04oOjpaa9euVZ8+ffwVCQDQ\nRn6baTgcDrlcLu3bt0+FhYWSpJycHKWnp+vo0aMaPXq0cnJy/BUHANAOfl2euv48wvXr1ysrK0uS\nlJWVpfz8fH/GAQC0kV9nGo888ohSUlL01ltvSZLcbrecTqckyel0yu12+ysOAKAd/LZP46OPPlJE\nRIT++9//Kj09XfHx8U1udzgccjgczR53o20AgNb54lOi/DbTiIiIkCT1799fkydPVmFhoZxOp8rL\nyyVJZWVlCgsLu+FjjTFB//OLX/wi4Bk6Q0ZykjPYfzpKTl/xS2mcP39eX331lSSptrZWW7duVUJC\ngjIyMpSXlydJysvL06RJk/wRBwDQTn5ZnnK73Zo8ebIk6fLly5o+fbrGjBmjlJQUTZ06VcuXL/cc\ncgsACF5+KY0BAwZo//79zbaHhITo/fff90cEn0tLSwt0hFZ1hIwSOb2NnN7VUXL6isP4cvHLCxwO\nh0/X5wCgM/LVeycfIwIAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBqlAQCwRmkA\nAKxRGgAAa5QGAMAapQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBqlAQCwRmkA\nAKxRGgAAa5QGAMAapQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBqlAQCwRmkA\nAKxRGgAAa34rjStXrig5OVkTJkyQJFVWVio9PV1xcXEaM2aMqqur/RUFANBOfiuNxYsXa8iQIXI4\nHJKknJwcpaen6+jRoxo9erRycnL8FQUA0E4OY4zx9ZOUlJTomWee0c9//nP95je/0YYNGxQfH68d\nO3bI6XSqvLxcaWlpOnLkSPOADoeMMaqpkQoKfJ0U6Hx69pQiI6XwcKlr10Cngb80vnd6m1/+C82Z\nM0dvvPGGzp0759nmdrvldDolSU6nU263u8XHZ2dn6+OPpcJCacCANPXtm+bryECnce6cVFoqVVRI\n/ftfLZCoqKv/Xn85MlL65jcDnRjt4XK55HK5fP48Pp9pbNy4UZs3b9ayZcvkcrm0aNEibdiwQX37\n9lVVVZXnfiEhIaqsrGwe8H9t+cQT0qOPSk8/7cu0QOd16ZJUXn61QEpLpZKSG1++664bF8q1l0ND\npf+tNCNIddiZxu7du7V+/Xpt2rRJdXV1OnfunDIzMz3LUuHh4SorK1NYWNhNf8+nn0r/93++Tgt0\nXt26Sffee/WnJcZIlZXNy2TvXmnduq+v19ZK99xz83KJiJDuvNN/fx/8wy/7NBrt2LFDubm52rBh\ng+bNm6d+/frplVdeUU5Ojqqrq2+4M9zhcKi62igyUjp7VrrjDn+lBdCSCxe+LpaWZi1utxQS0vIy\nWOP1Xr0C/dd0Th12pnG9xqOnfvazn2nq1Klavny5oqOjtXbt2hYf89lnUlIShQEEi+7dpZiYqz8t\nuXJFOn26eaFs3960XByOm+9jiYqSwsKkLpxVFhT8OtNoD4fDoTfeMCoulhYvDnQaAN5kzNUd9dcW\ny41mLtXVV4/+aqlcoqKuLpfddVeg/6Lg0WlmGu2xd+/VneAAOheHQ+rd++rP0KEt3+/iRamsrHmZ\nfPLJ19dPnZLuvrv1WUufPuzEvxUdYqYRE2OUn3/z/1QAbm8NDVcPK77ZkWGlpVJ9feuHHXeGc1p8\nNdPoEKXxzW8adoID8IqamtYPO+4M57Tc1qXx0ENGH34Y6CQAbhed4ZyW23qfxgMPBDoBgNuJr85p\naemw4450TgulAQDt4HBI/fpd/Rk+vOX73eicluPHpY8+sjun5drLwXBOS4dYnjp40LATHECn1dI5\nLddfvtk5LY2XG89pua33aVy+bNgJDuC21pZzWiIipJMnb+PSCPKIABA0Gs9pGTCA0gAAWPLVeyef\n5gIAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBqlAQCwRmkAAKxRGgAAa5QGAMAa\npQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBqlAQCwRmkAAKxRGgAAa5QGAMAa\npQEAsObz0qirq1NqaqqSkpI0ZMgQvfrqq5KkyspKpaenKy4uTmPGjFF1dbWvowAAbpHDGGN8/STn\nz59Xjx49dPnyZX33u99Vbm6u1q9fr9DQUM2bN08LFy5UVVWVcnJymgd0OOSHiADQqfjqvdMvy1M9\nevSQJNXX1+vKlSvq27ev1q9fr6ysLElSVlaW8vPz/REFAHAL/FIaDQ0NSkpKktPp1KhRozR06FC5\n3W45nU5JktPplNvt9kcUAMAt6OqPJ+nSpYv279+vs2fPauzYsfrggw+a3O5wOORwOFp8fHZ2tudy\nWlqa0tLSfJQUADoml8sll8vl8+fxyz6Na/3qV79S9+7d9fbbb8vlcik8PFxlZWUaNWqUjhw50jwg\n+zQAoM067D6NiooKz5FRFy5c0LZt25ScnKyMjAzl5eVJkvLy8jRp0iRfRwEA3CKfzzQ+//xzZWVl\nqaGhQQ0NDcrMzNTcuXNVWVmpqVOn6uTJk4qOjtbatWvVp0+f5gGZaQBAm/nqvdPvy1NtRWkAQNt1\n2OUpAEDnQWkAAKxRGgAAa5QGAMAapQEAsEZpAACsURoAAGuUBgDAGqUBALDWammcOHFCS5Ys0YkT\nJ/yRBwAQxFotjdmzZ6u0tFTTp0/XwYMH9Z3vfEe9evXSjBkzdOHCBX9kBAAEiVZL49FHH9XChQuV\nn5+v+fPna+XKlSopKdGQIUP08ssv+yMjACBItFoaXbpcvUtoaKgyMzN1//33q1evXnr55Zc937wH\nALg9tPrNfbm5uSoqKtJDDz3UbDmqX79+PgsGAAg+rZbGs88+q9TUVBUUFOiTTz7R0qVLFRYWpm9/\n+9s6duyYPzICAIJEu75Po7S0VIWFhfr973+v9957zxe5PPg+DQBoO1+9d7Y60zhz5kyzZajIyEhN\nnjxZffv29XogAEDwarU00tLSFBMTo169emnEiBFKTU1VUlKS9uzZo4qKCn9kBAAEiVaXp44dO6bY\n2FidP39eCxYsUM+ePXXgwAHV1NTo/vvv129/+1vfBmR5CgDaLGDLU7GxsZKkHj16KCYmRllZWZKk\n+vp6rVu3zuuBAADBq9XSuFa3bt30zDPPKCMjQ4MGDVJJSYmvcgEAglCbj5764osvtHLlSlVXV+vp\np5/WiBEjfJVNEstTANAevnrvbFNp1NXVye126/Tp0zp9+rTWrFmjP//5z14PdS1KAwDaLmD7NJ56\n6int2bNHNTU16t69u0JDQ1VXV6cRI0Zwch8A3GZanWnU19drzZo1amho0NSpU9W9e3f94Q9/0PPP\nP6/9+/crKSnJtwGZaQBAmwV8eaq2tlZ/+ctfdOedd+rs2bOaPXu218PcCKUBAG0X8NJoVFFRoT/+\n8Y+Ki4tTv379NGrUKK+HuhalAQBtFzSl0ejkyZMaP368Dhw44O1MTVAaANB2QVcakrR9+3Y9/PDD\n3szTDKUBAG0XlKXhD5QGALSdr947W/3mPgAAGlEaAABrlAYAwBqlAQCwRmkAAKxRGgAAa34pjeLi\nYo0aNUpDhw7VsGHDtGTJEklSZWWl0tPTFRcXpzFjxqi6utofcQAA7eSX8zTKy8tVXl6upKQk1dTU\n6IEHHlB+fr7+9Kc/KTQ0VPPmzdPChQtVVVWlnJycpgE5TwMA2qxDn6cRHh7u+TTcnj17avDgwSot\nLdX69es9Xx+blZWl/Px8f8QBALST388IP378uL7//e/r4MGDuu+++1RVVSVJMsYoJCTEc90TkJkG\nALRZwL6EyZtqamo0ZcoULV68WHfffXeT2xwOhxwOxw0fl52d7bmclpamtLQ0H6YEgI7H5XLJ5XL5\n/Hn8NtO4dOmSxo8fr3Hjxumll16SJMXHx8vlcik8PFxlZWUaNWqUjhw50jQgMw0AaLMOvU/DGKOZ\nM2dqyJAhnsKQpIyMDOXl5UmS8vLyNGnSJH/EAQC0k19mGh9++KG+973vafjw4Z4lqAULFmjkyJGa\nOnWqTp48qejoaK1du1Z9+vRpGpCZBgC0GR+NDgCw1qGXpwAAnQOlAQCwRmkAAKxRGgAAa5QGAMAa\npQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBqlAQCwRmkAAKxRGgAAa5QGAMAa\npQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBqlAQCwRmkAAKxRGgAAa5QGAMAa\npQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrfimNGTNmyOl0KiEhwbOtsrJS6enpiouL\n05gxY1RdXe2PKACAW+CX0nj22We1ZcuWJttycnKUnp6uo0ePavTo0crJyfFHFADALXAYY4w/nuj4\n8eOaMGGCPv/8c0lSfHy8duzYIafTqfLycqWlpenIkSPNAzoc8lNEAOg0fPXe2dXrv9GS2+2W0+mU\nJDmdTrnd7hbvm52d7bmclpamtLQ0H6cDgI7F5XLJ5XL5/HkCNtPo27evqqqqPLeHhISosrKyeUBm\nGgDQZr567wzY0VONy1KSVFZWprCwsEBFAQBYClhpZGRkKC8vT5KUl5enSZMmBSoKAMCSX5annnzy\nSe3YsUMVFRVyOp167bXXNHHiRE2dOlUnT55UdHS01q5dqz59+jQPyPIUALSZr947/bZPo70oDQBo\nu063TwMA0PFQGgAAa5QGAMAapQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBql\nAQCwRmkAAKxRGgAAa5QGAMAapQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwBql\nAQCwRmkAAKxRGgAAa5QGAMAapQEAsEZpAACsURoAAGuUBgDAGqUBALBGaQAArFEaAABrlAYAwFrA\nS2PLli2Kj49XbGysFi5cGOg47eZyuQIdoVUdIaNETm8jp3d1lJy+EtDSuHLlin784x9ry5YtOnz4\nsFatWqV///vfgYzUbh3hP1JHyCiR09vI6V0dJaevBLQ0CgsLFRMTo+joaHXr1k1PPPGE1q1bF8hI\nAICbCGhplJaW6t577/Vcj4qKUmlpaQATAQBuxmGMMYF68r/97W/asmWL3nrrLUnSypUrVVBQoKVL\nl34d0OEIVDwA6NB88fbe1eu/sQ0iIyNVXFzsuV5cXKyoqKgm9wlgpwEArhPQ5amUlBQdO3ZMx48f\nV319vdasWaOMjIxARgIA3ERAZxpdu3bVm2++qbFjx+rKlSuaOXOmBg8eHMhIAICbCPh5GuPGjdMX\nX3yhL7/8Uq+++qpnezCcvxEdHa3hw4crOTlZI0eOlCRVVlYqPT1dcXFxGjNmjKqrqz33X7BggWJj\nYxUfH6+tW7d6tn/66adKSEhQbGysZs+efUuZZsyYIafTqYSEBM82b2a6ePGipk2bptjYWD344IM6\nceKE13JmZ2crKipKycnJSk5O1ubNmwOes7i4WKNGjdLQoUM1bNgwLVmyRFLwjWlLOYNtTOvq6pSa\nmqqkpCQNGTLE85oOtvFsKWewjad09dSE5ORkTZgwQVIQjKUJQpcvXzYDBw40RUVFpr6+3iQmJprD\nhw/7PUd0dLQ5c+ZMk21z5841CxcuNMYYk5OTY1555RVjjDGHDh0yiYmJpr6+3hQVFZmBAweahoYG\nY4wxI0aMMAUFBcYYY8aNG2c2b97c7kw7d+40n332mRk2bJhPMi1btszMmjXLGGPM6tWrzbRp07yW\nMzs72yxatKjZfQOZs6yszOzbt88YY8xXX31l4uLizOHDh4NuTFvKGYxjWltba4wx5tKlSyY1NdXs\n2rUr6MazpZzBOJ6LFi0yP/zhD82ECROMMYF/vQdlaezevduMHTvWc33BggVmwYIFfs8RHR1tKioq\nmmwbNGiQKS8vN8ZcfSEPGjTIGGPM/PnzTU5Ojud+Y8eONR9//LE5deqUiY+P92xftWqVef75528p\nV1FRUZM3Y29mGjt2rNmzZ48x5uqLKTQ01Gs5s7OzTW5ubrP7BTrntSZOnGi2bdsWtGN6fc5gHtPa\n2lqTkpJiDh48GNTjeW3OYBvP4uJiM3r0aLN9+3Yzfvx4Y0zgX+8BX566kWA5f8PhcOiRRx5RSkqK\n57Bgt9stp9MpSXI6nXK73ZKkU6dONTnyqzHz9dsjIyO9/rd4M9O1Y9+1a1f17t1blZWVXsu6dOlS\nJSYmaubMmZ5pdbDkPH78uPbt26fU1NSgHtPGnA8++KCk4BvThoYGJSUlyel0epbUgnE8b5RTCq7x\nnDNnjt544w116fL1W3WgxzIoSyNYzs346KOPtG/fPm3evFnLli3Trl27mtzucDiCJmujYMzUaNas\nWSoqKtL+/fsVERGhn/70p4GO5FFTU6MpU6Zo8eLFuvvuu5vcFkxjWlNTox/84AdavHixevbsGZRj\n2qVLF+3fv18lJSXauXOnPvjggya3B8t4Xp/T5XIF1Xhu3LhRYWFhSk5ObvHUg0CMZVCWhs35G/4Q\nEREhSerfv78mT56swsJCOZ1OlZeXS5LKysoUFhZ2w8wlJSWKiopSZGSkSkpKmmyPjIz0ak5vZGoc\n38jISJ08eVKSdPnyZZ09e1YhISFeyRkWFub5T/7cc8+psLAwKHJeunRJU6ZMUWZmpiZNmiQpOMe0\nMedTTz3lyRmsYypJvXv31mOPPaZPP/00KMfz+px79+4NqvHcvXu31q9frwEDBujJJ5/U9u3blZmZ\nGfCxDMrSCIbzN86fP6+vvvpKklRbW6utW7cqISFBGRkZysvLkyTl5eV5XrwZGRlavXq16uvrVVRU\npGPHjmnkyJEKDw9Xr169VFBQIGOMVqxY4XmMt3gj08SJE5v9rnfffVejR4/2Ws6ysjLP5X/84x+e\nI6sCmdMYo5kzZ2rIkCF66aWXPNuDbUxbyhlsY1pRUeFZ0rlw4YK2bdum5OTkoBvPlnI2vhkHw3jO\nnz9fxcXFKioq0urVq/Xwww9rxYoVgR/LNu+Z8ZNNmzaZuLg4M3DgQDN//ny/P/9//vMfk5iYaBIT\nE83QoUM9Gc6cOWNGjx5tYmNjTXp6uqmqqvI85vXXXzcDBw40gwYNMlu2bPFs37t3rxk2bJgZOHCg\nefHFF28p1xNPPGEiIiJMt27dTFRUlHnnnXe8mqmurs48/vjjJiYmxqSmppqioiKv5Fy+fLnJzMw0\nCQkJZvjw4WbixImenXmBzLlr1y7jcDhMYmKiSUpKMklJSWbz5s1BN6Y3yrlp06agG9MDBw6Y5ORk\nk5iYaBISEsyvf/1rY4x3Xze+zBls49nI5XJ5jp4K9FgG9LOnAAAdS1AuTwEAghOlAQCwRmkAAKxR\nGgAAa5QGAMAapQEAsEZpABYuXrzYrsfV1dV5OQkQWJQGcAPbt2/XnDlzlJ+fr40bN3o+HUCScnNz\ndc8992jFihW6ePGi5s6dq8GDBys/P7/Z7ykpKdH777/vz+iAT1EawA0sXbpU06dPV3h4uM6dO6fQ\n0FDPbSkpKZowYYIyMzP1jW98Q4MHD9a0adNu+PEwMTExOnz4sC5cuODP+IDPUBrADdTV1SklJUXb\nt2/X5MmTm9xWUFCghx56yHN9586dnm92vJHHHntMq1at8llWwJ8C+h3hQDBatGiRLly4oHXr1un0\n6dPq3r17k9s/+eQTpaamej7o7b333lNubq7n9mXLlmnDhg1KTExUbGysnnvuOb355pt+/RsAX6E0\ngOukpKTIGKOJEyc2+Y7oRl9++aXeffddSVJVVZV++ctfNlm+euGFFzRhwgT95Cc/0euvvy7p6sdO\nA50BpQFc59ChQ56PxL506VKT28rLy9W/f3/P9X379jVbmqqsrNSsWbP0zjvvqGvXqy+x8+fP+zg1\n4B/s0wCuc/DgQQ0bNkySdMcddzS5raCgQMnJyZ7rn332mUaMGOG5bozRCy+8oKVLl6p79+46evSo\nJDX5uk6gI2OmAVzn1KlTnm9X7NGjh2f77t279bvf/U4hISEqLS3VgQMHtGrVKqWmpurs2bPq3bu3\nNm3apNdee02LFi1SbW2t3n77bRljmn2FLNBR8X0awP/8/e9/V319vT788EPPjuvc3FzNnDlTffv2\nbffv/de//qUjR45o2rRp3ooKBAxzZuB/unXrpuLiYr344ouebT/60Y/017/+9ZZ+7z//+U89/vjj\ntxoPCArMNIBW7Nq1S9/61rd03333tfmxhw4d0uXLl5WYmOiDZID/URoAAGssTwEArFEaAABrlAYA\nwBqlAQCwRmkAAKxRGgAAa5QGAMAapQEAsPb/7+aB+FqyhEoAAAAASUVORK5CYII=\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.4 Page no 325."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" #all the quantities of R are resistances\n",
"R1=5600.0 #Ohms\n",
"R2=56000.0 #Ohms\n",
"R3=1100.0 #Ohms\n",
"\n",
"#Calculation\n",
"Zi=R1*R2*R3/(R1*R2+R2*R3+R3*R1)\n",
"#Result\n",
"print \" The Input Impedance, Zi = \",round(Zi/10**3,3),\"kohm\"\n",
"\n",
"#(b) Calculate output Impedance \n",
"Ro1=3300.0 #Ohms\n",
"Ro2=2200 #Ohms\n",
"\n",
"#Calculation\n",
"Zo=Ro1*Ro2/(Ro1+Ro2)\n",
"\n",
"#Result\n",
"print \" The Output Impedance, Zo = \",Zo/10**3,\"kohm\"\n",
"#(c) voltage gain\n",
"hfe=120 #current amplification factor\n",
"hie=1100.0 #Ohms, dynamic input resistance\n",
"R1=6800.0 #Ohms\n",
"R2=56000.0 #Ohms\n",
"R3=5600.0 #Ohms\n",
"R4=1100.0 #Ohms\n",
"\n",
"#Calculation\n",
"Rac2=Ro1*Ro2/(Ro1+Ro2)\n",
"A2=-hfe*Rac2/hie\n",
"Rac1=R1*R2*R3*R4/(R1*R2*R3+R2*R3*R4+R1*R3*R4+R1*R2*R4)\n",
"Rac1=round(Rac1,0)\n",
"A1=-hfe*Rac1/hie\n",
"\n",
"A1=round(A1,2)\n",
"A=A1*A2 #Overall Gain\n",
"\n",
"#Result\n",
"print \" The Overall Gain, A = \",round(A,0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Input Impedance, Zi = 0.905 kohm\n",
" The Output Impedance, Zo = 1.32 kohm\n",
" The Overall Gain, A = 12535.0\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.5 Page no. 326"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Rl=10000.0 #Ohms, resistance\n",
"Rg=470000.0 #Ohms dynamic input resistance\n",
"Cs=100*10**(-12) #F Capacitance\n",
"u=25 #amplification factor\n",
"rp=8000.0 #Ohms\n",
"Cc=0.01*10**(-6) #F, capacitance\n",
"\n",
"#Calculation\n",
"import math\n",
"gm=u/rp #transconductance\n",
"Req=rp*Rl*Rg/(rp*Rl+Rl*Rg+Rg*rp) #equivalent resistance\n",
"Avm=(u/rp)*Req #voltage gain\n",
"Avmd=Avm**2 # Voltage Gain of Two Stages\n",
"Rd=(rp*Rl/(rp+Rl))+Rg\n",
"f1=1/(2*math.pi*Cc*Rd) #Lower Cutoff Frequency\n",
"f1d=f1/math.sqrt(math.sqrt(2)-1) #Lower Cutoff Frequency of Two Stages\n",
"Req =(rp*Rl)/(rp+Rl) #approximately\n",
"f2=1/(2*math.pi*Cs*Req) #Upper Cutoff Frequency\n",
"f2d=f2*math.sqrt(math.sqrt(2)-1) #Upper Cutoff Frequency of Two Stages\n",
"BW=f2d-f1d \n",
"#Bandwidth\n",
"# Result\n",
"print \" The Voltage Gain of Two Stages, Avmd = \",round(Avmd,2)\n",
"print \" The Bandwidth, BW = \",round(BW/10**3,0),\"KHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Voltage Gain of Two Stages, Avmd = 189.3\n",
" The Bandwidth, BW = 230.0 KHz\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|