1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
{
"metadata": {
"name": "",
"signature": "sha256:e45efbc918d6e082147a3abf5687f38acaf875f9fd899adb5638679d888fbdcb"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6: Vaccum Tubes"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.1 Page no.195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"from pylab import *\n",
"#Given Circuit Data\n",
"V=[0,0.5,1,1.5,2] #V, voltage\n",
"I=[0,1.6,4,6.7,9.4] #mA, current\n",
"\n",
"#Calculation\n",
"dVp=0.5 #V, change in plate voltage\n",
"dIp=2.7*10**(-3) #A, change in plate current\n",
"rp=dVp/dIp # Dynamic Plate Resistance\n",
"\n",
"#Result\n",
"print \"The Dynamic Plate Resistance is rp= \",rp,\"ohm\"\n",
"\n",
"#plot\n",
"\n",
"a=plot(V,I)\n",
"xlabel(\"V\") \n",
"ylabel(\"I (mA)\") \n",
"\n",
"show(a)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Dynamic Plate Resistance is rp= 185.185185185 ohm\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGqNJREFUeJzt3XtwVPX5x/HPlqA2IAgqwQJqRZiEewBFmAJLERBa0tSo\nNXjlok5RFLSdUtsZwZ9WqDoKxnpBiRFsoCIiFUglyHIRgUIAUSKxhEiCEqsEIQYhhPP749tguIRs\nNrvnsvt+zWQmJkv2mZ3jPvt8zznfj8+yLEsAgJj1I6cLAAA4i0YAADGORgAAMY5GAAAxjkYAADGO\nRgAAMS5ijWDMmDFKSEhQ165dT/xs//79GjJkiDp27KihQ4fqwIEDkXp6AECQItYIRo8erZycnJN+\nNm3aNA0ZMkQFBQUaPHiwpk2bFqmnBwAEyRfJG8qKioo0cuRIbd++XZKUmJioVatWKSEhQfv27ZPf\n79enn34aqacHAATB1nMEpaWlSkhIkCQlJCSotLTUzqcHAJxBnFNP7PP55PP5av0dAKD+QlnksXUi\nqF4SkqQvv/xSrVq1qvWxlmXxFaavRx55xPEaouWL15LX081fobK1EaSkpCgrK0uSlJWVpdTUVDuf\nHgBwBhFrBOnp6erXr5927typdu3aKTMzU5MnT9by5cvVsWNHvf/++5o8eXKknh4AEKSInSPIzs4+\n489zc3Mj9ZSohd/vd7qEqMFrGV68nu4Q0ctHQ+Xz+Rq03gUAsSjU9062mACAGEcjAIAYRyMAgBhH\nIwCAGEcjAIAYRyMAgBhHIwCAKDB3buj/1rFN5wAADXfwoDR+vLR5c+h/g4kAADxq/XopOVlq0kTa\ntCn0v8NEAAAeU1UlTZsmzZwpvfCCdP31Dft7NAIA8JDiYum228z3mzZJ7do1/G+yNAQAHrFwodS7\ntzR0qLRiRXiagMREAACu99130qRJ5s1/8WKpT5/w/n0mAgBwsa1bzRRw+LC0ZUv4m4BEIwAAVzp+\nXHrmGWnIEOlPf5LmzJGaNYvMc7E0BAAuU1oq3XmnVFZmLhFt3z6yz8dEAAAukpNj7g3o1Utasyby\nTUBiIgAAVzhyRJo8WVqwQPr73yU7UzxpBADgsPx8KT3dfPrftk1q2dLe52dpCAAcYlnSyy9LAwZI\n995rpgG7m4DERAAAjti/X7rrLmnXLmn1aikpyblamAgAwGaBgNSjh3TppdKGDc42AYmJAABsU1kp\nTZkiZWZKr74qDR/udEUGjQAAbFBYKI0aJbVoYe4QTkhwuqIfsDQEABE2d67ZGuLmm6UlS9zVBCQm\nAgCImJrpYcuXm/MCbsREAAARUDM9bPNm9zYBiYkAAMIq3OlhdqARAECY1EwP27xZatvW2XqCxdIQ\nAITBqelhXmkCEhMBADTId99JDz4o5eZGJj3MDkwEABCi6vSwiorIpYfZgUYAAPV0/Lj07LP2pIfZ\ngaUhAKiHmulhGzZIV1zhdEUNx0QAAEE6NT0sGpqA5FAjeOKJJ9S5c2d17dpVo0aN0pEjR5woAwCC\ncuSINGmSdPfdUna29NhjUuPGTlcVPrY3gqKiIs2aNUt5eXnavn27qqqqNG/ePLvLAICg5Oebk8B7\n9piTwwMHOl1R+NneCJo1a6bGjRuroqJCx44dU0VFhdq0aWN3GQBwVm5JD7OD7SeLW7ZsqYceekiX\nXnqpfvzjH2vYsGG69tprT3vclClTTnzv9/vltzPJGUBMc1N62NkEAgEFAoEG/x2fZVlWw8sJ3q5d\nuzRy5EitWbNGzZs314033qgbbrhBt9xyyw9F+XyyuSwAkGTSw26/XUpLM3sGnXuu0xUFL9T3TtuX\nhjZt2qR+/frpwgsvVFxcnK6//nqtW7fO7jIA4CSVleaegFGjpJdekp55xltNoCFsbwSJiYlav369\nDh8+LMuylJubq06dOtldBgCcUFgo9e8v5eWZO4TdEiFpF9sbQffu3XX77berd+/e6tatmyTp7rvv\ntrsMAJDk/vQwO9h+jiAYnCMAEGkHD5qrgTZtMvcGuDk4JlieOUcAAE6rTg+Lj3d/epgd2GsIQMyo\nqpKmT5dmzPBOepgdaAQAYkJJiUkPsyxvpYfZgaUhAFFv4UKzUdyQId5LD7MDEwGAqBUN6WF2YCIA\nEJWiJT3MDjQCAFEl2tLD7MDSEICoEY3pYXZgIgAQFaI1PcwOTAQAPO3IEWnyZOmtt8wdwtEYHBNp\nNAIAnpWfL6WnS+3bm5PD0RocE2ksDQHwnFhKD7MDEwEAT6lODyssNOcCEhOdrsj7mAgAeEYgYDaI\nu+wys3EcTSA8mAgAuF5lpTR1qjR7tvm67jqnK4ouNAIArlZYaOIjW7QwdwjHYnBMpLE0BMC13niD\n9DA7MBEAcJ2a6WHLlxMcE2lMBABcpTo9rEkT0sPswkQAwBVID3MOjQCA46rTwyTSw5zA0hAAR9VM\nD8vNpQk4gYkAgCMqKqRJk0gPcwMmAgC227rVTAGkh7kDjQCAbSyL9DA3YmkIgC1KS6XRo82mcaSH\nuQsTAYCIq04P69mT9DA3YiIAEDGkh3kDjQBARJAe5h0sDQEIK9LDvIeJAEDYkB7mTUwEAMKC9DDv\nYiIA0CCkh3kfjQBAyEgPiw4sDQEICelh0cORieDAgQMaN26cPvnkE/l8Ps2ePVvXXHONE6UAqCfS\nw6KPIxPBAw88oBEjRig/P18fffSRkpKSnCgDQD1Vp4fFx5MeFk18lmVZdj7ht99+q+TkZBUWFtb6\nGJ/PJ5vLAnAWpId5Q6jvnbYvDe3evVsXX3yxRo8erW3btqlXr16aMWOG4uPj7S4FQBBID4t+tjeC\nY8eOKS8vTxkZGbrqqqs0ceJETZs2TY8++uhJj5syZcqJ7/1+v/x+v72FAtDChdJvfys98ID0hz9I\njRo5XRFqCgQCCgQCDf47ti8N7du3T3379tXu3bslSWvXrtW0adP07rvv/lAUS0OAo2qmh/397wTH\neEWo7522nyxu3bq12rVrp4KCAklSbm6uOnfubHcZAGpBeljssX0ikKRt27Zp3LhxOnr0qNq3b6/M\nzEw1b978h6KYCADbHT8uzZwpPf649Mwz0q23Ol0R6ivU905HGkFdaASAvUpLpTvvlMrKzFIQwTHe\n5JmlIQDuUp0e1qsX6WGxir2GgBhFehiq0QiAGER6GGpiaQiIIaSH4UzqnAgOHDigDz/8UEVFRfL5\nfLr88svVt2/fk67yAeB+1elhu3ZJq1dLbPGFarVOBGvWrFFKSooGDBigefPmac+ePSoqKlJ2drb6\n9++vlJQUrV271s5aAYSoZnrYhg00AZys1ong7bff1tNPP60OHTqc8fcFBQV68cUX9bOf/SxixQFo\nGNLDEIyQ7iMoLS1VQgRTKLiPAGi4mulhr71GcEwsiPh9BGVlZXrllVc0ePBg9WATcsDV5s4lPQzB\nO+vJ4oqKCr3zzjvKzs7W1q1bdfDgQS1atEj9+/e3qz4A9UB6GEJR60SQnp6uLl26aNWqVZo4caJ2\n796tFi1ayO/3qxF70QKuQ3oYQlXrRJCfn69WrVopKSlJSUlJvPkDLkV6GBqq1kawdetW5efnKzs7\nW4MGDdLFF1+sQ4cOad++fWrdurWdNQKoRXV6mGWRHobQBX3V0KZNm5Sdna0333xTbdu21bp16yJX\nFFcNAXUiPQynsm0basuytGbNGg0YMKDeTxYsGgFQu+++kx58kPQwnC5i4fWFhYV67rnnVFRUpGPH\njp14skg2AgBntnWr2Syud2+THtasmdMVIRrU2QhSU1M1btw4jRw5Uj/6kbnIyOfzRbwwAD8gPQyR\nVGcjOO+883T//ffbUQuAM6iZHrZhA8ExCL86zxHMmTNHu3bt0rBhw3Tuueee+HnPnj0jVxTnCABJ\nJj1szBjz9cgjUuPGTlcEN4vYOYJPPvlEc+bM0cqVK08sDUnSypUr6/1kAIJDehjsVOdE0L59e+Xn\n5+ucc86xqyYmAsS0mulhs2YRHIPgRWzTua5du6qsrCykogAEj/QwOKXOpaGysjIlJibqqquuOnGO\nwOfzafHixREvDogVpIfBSXU2gqlTp572My4fBcInEJBuv11KSzM3iNW4JgOwRa3nCCzLqvMNP5jH\nhFQU5wgQAyorpSlTpMxM6dVXpeHDna4IXhf2cwR+v19PPvmkCgoKTvvdzp07NX36dA3kUgYgJIWF\nUv/+Ul6euUOYJgAn1doI3nvvPV144YW69957dckll6hjx47q0KGDLrnkEt13331KSEhQbm6unbUC\nUYH0MLhNUJvOVVVV6euvv5YkXXTRRRHPJmBpCNGoZnpYdjbBMQi/iGYWN2rUSAkJCUpISCCgBggB\n6WFwszqvGgIQOtLD4AU0AiBCiotNephEehjcLailIQD1s3ChyQwYOlRasYImAHerdSJo2rRprfcI\n+Hw+HTx4MGJFAV5VMz1s8WLSw+ANtTaC8vJyO+sAPI/0MHgVS0NAAx0/Lj37rDRkiPSnP0lz5tAE\n4C2cLAYaoGZ62Pr1ZutowGscmwiqqqqUnJyskSNHOlUC0CA5OebegF69pDVraALwLscmghkzZqhT\np046dOiQUyUAIalOD1uwwOwW6vc7XRHQMI5MBCUlJVq6dKnGjRvHVhLwlPx8cyXQnj3Stm00AUQH\nRxrBpEmT9OSTT56UgQy42bFj0lNPmR1Dx48nPQzRxfaloXfffVetWrVScnKyAoFArY+bMmXKie/9\nfr/8fPSCQ7ZskcaNk1q0kDZs4FwA3CMQCJz1fTRYQe0+Gk4PP/yw5syZo7i4OH3//fc6ePCg0tLS\n9Prrr/9QFLuPwgUOH5amTpVmz5b++lfpjjskwvngZqG+d9reCGpatWqVnnrqKf3zn/886ec0Ajjt\n/fele+4xVwTNmEFmALwh1PdOx+8jIP8YblJWJv3ud9Ly5dLzz0tc3YxY4OhEUBsmAtjNsswJ4Ace\nMCHyjz/O3cHwHs9OBIDTSkpMcthnn5lm0K+f0xUB9uL6TcSs48elv/3N3B3cs6e5OogmgFjERICY\nlJ8v3XWXaQarVkmdOjldEeAcJgLElKNHpUcflQYMkEaNktaupQkATASIGR9+aKaAn/5UysuT2rVz\nuiLAHWgEiHqHDpmcgDffNPcE3HgjN4YBNbE0hKi2ZInUubNUXi598ol00000AeBUTASISl99Ze4J\n+Pe/pcxMafBgpysC3IuJAFHFsqSsLKlrV+nSS6WPPqIJAHVhIkDUKCw0+wN98420bJm5NwBA3ZgI\n4HnVWQFXXy0NHSpt3EgTAOqDiQCeRlYA0HBMBPCkw4dNbvB110kTJpjdQmkCQGhoBPCc99+XunWT\nPv/cnAy+804uCQUagqUheEbNrIC//U365S+drgiIDkwEcD3LMncFd+4sxcebG8NoAkD4MBHA1aqz\nAv7zH+mtt6S+fZ2uCIg+TARwpZpZAb16mU3iaAJAZDARwHWqswIsi6wAwA5MBHCNU7MC1qyhCQB2\nYCKAK1RnBVxxBVkBgN1oBHDUoUPSww+bE8EzZkg33MA9AYDdWBqCY95911wSWlEhffwxgTGAU5gI\nYLvSUpMVsGkTWQGAGzARwDaWJb32mtke4rLLyAoA3IKJALbYtctkBZSVSTk55v4AAO7ARICIqs4K\n6NPH7BS6YQNNAHAbJgJEDFkBgDcwESDsKiqkP/yBrADAK2gECKvqrIA9e8gKALyCpSGExf790u9/\nT1YA4EVMBGgQy5L+8Q+pSxeyAgCvYiJAyEpKpPHjzaWhZAUA3sVEgHqrmRXQuzdZAYDXMRGgXnbs\nMLuESmQFANGCiQBBOXJEmjpVGjhQuuUWsgKAaGJ7IyguLtagQYPUuXNndenSRTNnzrS7BNTThx9K\nPXtKmzebZaDx46Uf8RECiBo+y7IsO59w37592rdvn3r06KHy8nL16tVLixYtUlJS0g9F+XyyuSyc\nAVkBgLeE+t5p++e61q1bq0ePHpKkpk2bKikpSV988YXdZaAOZAUAscPRk8VFRUXasmWL+vTpc9rv\npkyZcuJ7v98vv99vX2ExjKwAwDsCgYACgUCD/47tS0PVysvL5ff79ec//1mpqaknF8XSkO0sS8rK\nMnsE3Xmn9Mgj5gYxAN4R6nunIxNBZWWl0tLSdOutt57WBGA/sgKA2Gb7OQLLsjR27Fh16tRJEydO\ntPvpUQNZAQAkB5aG1q5dqwEDBqhbt27y/e/s4xNPPKHrrrvuh6JYGoq4mlkBL73ENtFANAj1vdOx\ncwRnQyOInIoKc2PYa69J06dLd9zB1UBAtPDM5aNwDlkBAM6EvYZiAFkBAM6GiSCKVVZKc+aQFQDg\n7JgIolBpqfTyy9KLL0odOkgLFkj9+jldFQC3YiKIIhs3SrfdJiUmSsXF0rJlUiBAEwBwdlw15HFH\nj0pvvinNnCl99ZV0773SmDFSy5ZOVwbAblw+GmO+/NIs/bz8stkcbsIEs/7fqJHTlQFwCpePxgDL\nMtkAo0aZUJivvpJyc83Xr35FEwAQGiYCD/j+e2n+fOm558x+QPfdJ40eLV1wgdOVAXATloaiUEmJ\nWf6ZNUvq0UO6/35p+HDSwQCcGUtDUcKyTB7wTTeZu4C//VZavVr617+kX/yCJgAg/LiPwCUOH5ay\ns83yz3ffmeWfV16RmjVzujIA0Y6lIYft2WO2fZg9W7rqKnP1z9ChfPIHUH8sDXmIZZkbvdLSzP7/\n338vffCBtGSJyQWgCQCwE0tDNqqokObOlTIyzD5AEyaY7aDPP9/pygDEMhqBDXbvNss/mZlmu4en\nn5auvZYtoAG4A4sQEWJZ0ooVUmqqWfu3LLMX0OLF0pAhNAEA7sFEEGbl5Wbr54wM82Y/YYL0xhtS\nkyZOVwYAZ0YjCJNdu6Tnn5eysqSBA00j8Pv55A/A/VgaaoDjx6X33jObvV1zjdS4sZSXJy1cKA0a\nRBMA4A1MBCE4dMh88s/IkM4912z98I9/mBQwAPAaGkE9FBSYN/+5c6XBg80W0P3788kfgLfRCOpw\n/LiUk2O2fti8WbrrLmnbNqldO6crA4DwoBHU4ttvzc1eGRlmv58JE6S335bOO8/pygAgvGgEp8jP\nN2/+2dlmz5+sLKlvX5Z/AEQvGoGkqipp6VKz/PPRR9Ldd0sffyz95CdOVwYAkRfTjaCszOz6+fzz\n0kUXmat/brzRXAkEALEiJhvBxx+b5Z/5803YS3a21KeP01UBgDNiphFUVZl9fp57Tvr0U+mee8z5\ngNatna4MAJwV9Y3gm2+kV181u3/+5Cfm6p+0NOmcc5yuDADcIWobwbZt5tP/W29JKSnSggVS795O\nVwUA7hNVjeDYMWnRItMAdu2SfvtbaedOqVUrpysDAPeKikbw3/9Ks2ZJL7wgXX65Wf759a/NJnAA\ngLPzdCPIyzOf/hctkq6/3pwMTk52uioA8BbPNYLKSrPN88yZUnGxNH689Nln5j4AAED9OZJHkJOT\no8TERHXo0EHTp08P6t+Ulkr/939m6efFF6WHHpIKC6XJk2kCdQkEAk6XEDV4LcOL19MdbG8EVVVV\nuu+++5STk6MdO3YoOztb+fn5tT7+3/+WbrtNSkw0E8CyZdLKlWYpKM5z84wz+J8tfHgtw4vX0x1s\nbwQbN27UlVdeqcsvv1yNGzfWzTffrHfeeee0x73xhkn9uukmqXt3cxXQyy9L3brZXTEARDfbP1Pv\n3btX7Wps5t+2bVtt2LDhtMdlZkp//KOJgWzUyM4KASC22N4IfEHu57xihU8rVkS4mBgydepUp0uI\nGryW4cXr6TzbG0GbNm1UXFx84r+Li4vVtm3bkx5jWZbdZQFAzLL9HEHv3r312WefqaioSEePHtX8\n+fOVkpJidxkAgP+xfSKIi4tTRkaGhg0bpqqqKo0dO1ZJSUl2lwEA+B9H7iMYPny4du7cqYyMDGVl\nZZ31foL7779fHTp0UPfu3bVlyxabK/WWuu7PCAQCat68uZKTk5WcnKzHHnvMgSrdb8yYMUpISFDX\nrl1rfQzHZfDqej05LuunuLhYgwYNUufOndWlSxfNnDnzjI+r1zFqOeTYsWNW+/btrd27d1tHjx61\nunfvbu3YseOkxyxZssQaPny4ZVmWtX79eqtPnz5OlOoJwbyeK1eutEaOHOlQhd6xevVqKy8vz+rS\npcsZf89xWT91vZ4cl/Xz5ZdfWlu2bLEsy7IOHTpkdezYscHvnY5MBFJw9xMsXrxYd9xxhySpT58+\nOnDggEpLS50o1/WCvT/D4kR8nfr3768WLVrU+nuOy/qp6/WUOC7ro3Xr1urRo4ckqWnTpkpKStIX\nX3xx0mPqe4w61gjOdD/B3r1763xMSUmJbTV6STCvp8/n07p169S9e3eNGDFCO3bssLvMqMBxGV4c\nl6ErKirSli1b1OeUrN36HqOObdIQ7P0Ep35SCPbfxZpgXpeePXuquLhY8fHxWrZsmVJTU1VQUGBD\nddGH4zJ8OC5DU15erhtuuEEzZsxQ06ZNT/t9fY5RxyaCYO4nOPUxJSUlatOmjW01ekkwr+f555+v\n+Ph4SeaEfWVlpfbv329rndGA4zK8OC7rr7KyUmlpabr11luVmpp62u/re4w61giCuZ8gJSVFr7/+\nuiRp/fr1uuCCC5SQkOBEua4XzOtZWlp64lPCxo0bZVmWWrZs6US5nsZxGV4cl/VjWZbGjh2rTp06\naeLEiWd8TH2PUceWhmq7n+Cll16SJN1zzz0aMWKEli5dqiuvvFJNmjRRZmamU+W6XjCv54IFC/TC\nCy8oLi5O8fHxmjdvnsNVu1N6erpWrVqlr7/+Wu3atdPUqVNVWVkpieMyFHW9nhyX9fPBBx9o7ty5\n6tatm5L/l8T1l7/8RXv27JEU2jHqszhdDwAxzbGlIQCAO9AIACDG0QgAIMbRCAAgxtEIgDr8/Oc/\n13vvvXfSz5599lmNHz/eoYqA8KIRAHVIT08/7ZLG+fPna9SoUQ5VBIQXl48Cddi/f7+SkpK0d+9e\nxcXFqaioSAMHDtTnn3/udGlAWDARAHVo2bKlrr76ai1dulSSNG/ePP3mN79xuCogfGgEQBBqLg/N\nnz9f6enpDlcEhA9LQ0AQysvL1b59e+Xk5Ojmm2/Wzp07nS4JCBsmAiAITZs21aBBgzR69GhOEiPq\n0AiAIKWnp2v79u0sCyHqsDQEADGOiQAAYhyNAABiHI0AAGIcjQAAYhyNAABiHI0AAGLc/wNshpbl\nb3wzYgAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.2 Page no.202"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from math import *\n",
"from pylab import *\n",
"#Calculation\n",
"dip=(14.0-10.7)*10**(-3) #A\n",
"dvp=20 #V\n",
"rp=dvp/dip\n",
"diP=(12.4-5.3)*10**(-3) #A\n",
"dvG=1 #V\n",
"gm=diP/dvG\n",
"u=gm*rp\n",
"ut=(192-150)/1\n",
"\n",
"# Result\n",
"print \" The Plate AC Resistance is rp= \",round(rp/10**(3),2),\"kohm\"\n",
"print \" The Mutual Conductance is gm= \",gm/10**(-3),\"mS\"\n",
"print \" The Graphical Amplification Factor is u= \",round(u,2)\n",
"print \" The Theoretical Amplification Factor is ut= \",ut\n",
"\n",
"\n",
"#plot\n",
"#At Vg=0\n",
"V1=[0,50,100,150]\n",
"I1=[0,3.5,11.2,20.0]\n",
"\n",
"#at Vg=-1\n",
"V2=[60,100,150,200]\n",
"I2=[0,4,12.4,21.5]\n",
"\n",
"\n",
"#at Vg=-2\n",
"V3=[100,150,200]\n",
"I3=[0,5.4,14.1]\n",
"\n",
"#at Vg=-3\n",
"V4=[160,200,250]\n",
"I4=[0,3.4,12.4]\n",
"\n",
"#at Vg=-4\n",
"V5=[220,250,300]\n",
"I5=[0,2.5,11.3]\n",
"\n",
"figure(1)\n",
"import numpy \n",
"import pylab\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"\n",
"\n",
"a1=plot(V1,I1)\n",
"a2=plot(V2,I2)\n",
"a3=plot(V3,I3)\n",
"a4=plot(V4,I3)\n",
"a5=plot(V5,I4)\n",
"xlabel(\"Vp (V)\") \n",
"ylabel(\"Ip(mA)\") \n",
"ax.annotate('vg=0', xy=(152,21),\n",
" arrowprops=dict(facecolor='black', shrink=0.5),\n",
" )\n",
"ax.annotate('vg=-1', xy=(200,21.5), \n",
" arrowprops=dict(facecolor='black', shrink=0.5),\n",
" )\n",
"ax.annotate('vg=-2', xy=(200,14.1), \n",
" arrowprops=dict(facecolor='black', shrink=0.5),\n",
" )\n",
"ax.annotate('vg=-3', xy=(250,12.4),\n",
" arrowprops=dict(facecolor='black', shrink=0.5),\n",
" )\n",
"ax.annotate('vg=-4',xy=(300,11.3), \n",
" arrowprops=dict(facecolor='black', shrink=0.5),\n",
" )\n",
"show(a1)\n",
"show(a2)\n",
"show(a3)\n",
"show(a4)\n",
"show(a5)\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Plate AC Resistance is rp= 6.06 kohm\n",
" The Mutual Conductance is gm= 7.1 mS\n",
" The Graphical Amplification Factor is u= 43.03\n",
" The Theoretical Amplification Factor is ut= 42\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEMCAYAAAAWDss+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4THf7x/H3INZYi9hSexCyEVRLS1u0pUrTIrZYq1TV\n0lItRVdUqfWprZpHK3aqTy0tFTshQpCEICFkQ6RJJLLMnN8fp/KrJSSRyZkzc7+uq1dJxuRzMsm5\n57sbFEVREEIIIcygiNYBhBBCWC8pMkIIIcxGiowQQgizkSIjhBDCbKTICCGEMBspMkIIIczGbEUm\nKiqKDh060LRpU5o1a8b8+fMBmDZtGrVq1cLDwwMPDw927NhhrghCCCE0ZjDXOpnY2FhiY2Nxd3cn\nJSWFFi1asGXLFtatW0fZsmUZN26cOb6sEEIIC1LMXE9crVo1qlWrBoC9vT1NmjTh2rVrAMj6TyGE\nsA2FMiYTGRlJUFAQzzzzDAALFizAzc2NIUOGkJiYWBgRhBBCaMBs3WV3paSk0L59eyZPnkz37t2J\nj4+nSpUqAEyZMoWYmBhWrFhxbyiDwZyRhBDCallaT5FZWzKZmZl4eXnRr18/unfvDkDVqlUxGAwY\nDAaGDh1KQEDAQ/+toihW+9/UqVM1zyDXJ9dni9dnzdemKJZVXO4yW5FRFIUhQ4bg7OzMmDFjsj8e\nExOT/efNmzfj4uJirghCCCE0ZraB/4MHD/Lzzz/j6uqKh4cHAF9//TV+fn6cPHkSg8FA3bp1WbJk\nibkiCCGE0JjZikzbtm0xmUwPfPzVV18115fUjfbt22sdwazk+vTNmq/Pmq/NUpl94D8/DAaDxfYv\nCiGEpbLEe6dsKyOEEMJspMgIIYQwGykyQgghzEaKjBBCCLORIiOEEMJspMgIIYQwGykyQgghzEaK\njBBCCLORIiOEEMJspMgIIYQwGykyQgghzEaKjBBCCLORIiOEEMJspMgIIYQwGykyQgghzEaKjBBC\nCLORIiOEEMJspMgIIQrVwoULadCgAUWKFCEhIUHrOMLMpMgIIQpV27Zt2b17N7Vr19Y6iigExbQO\nIISwLJMmTcLR0ZGRI0cCMG3aNMqUKUNERAR79uzB0dEROzs7Bg8ejJeXV56f393dvaAjCwsmLRkh\nxD1mzJjBunXrsv++fv16qlevzuXLlwkNDWXVqlUcPnwYg8EAwLhx4/Dw8Hjgv1mzZml1CcKCSEtG\nCPGA+Ph4YmJiiI+Pp2LFigQGBtKzZ08AHBwc6NChQ/Zj58yZo1VMoQPSkhHCgowePZqGDRvi5uZG\nUFCQZjnefvttNmzYwLp16+jVqxcAiqI89LFjx459ZEumc+fOeHh48M477xRafmE5pCUjhIXYtm0b\nFy5cIDw8nKNHjzJixAiOHDmiSZZevXoxdOhQbt68yb59+9i/fz++vr74+PgQHx+Pv78/ffv2BWDu\n3LmPfK6dO3fm+LmcCpewHtKSESKfDAYDixcvzv77tGnT+Pbbbxk5ciRNmjShU6dOdOnShY0bN+bq\n+bZu3YqPjw8ArVu3JjExkbi4OLNkfxhFUXh/+/sAODs7k5KSQq1atXBwcMDLy4tatWrh7OxM//79\nad68OeXLl8/X15k/fz6Ojo5cu3YNV1dXaeFYOWnJCPEE1q1blz0La/369UyaNAl/f39CQ0OJi4uj\nSZMmDBkyBFAHyPfs2fPAc3h7ezNhwgSuXbuGo6Nj9sdr1arF1atXcXBwKJRr+eH4Dxy9ejT778HB\nwdl/NhgMzJ49mzJlynDz5k1at26Ni4tLvr7O6NGjGT169BPnFfogRUaIJ1DQA+T3dx/dncFlbhcS\nLvCZ/2fsH7SfJu80eehjunbtSmJiIhkZGXz22WdUrVq1ULIJfZMiI8QTuDtAHhsbS69evbh06dIj\nB8j9/f0f+PjdlkzNmjWJiorK/vjVq1epWbOmuaJnM5qMDNg8gMntJtO4cuMcH/ewVpgQjyNFRogn\nUJAD5N26dWPhwoX07t2bI0eOUKFChULpKvv20LeULFaS91u/b/avJWyPFBkhnsDDBsh3796Ns7Mz\njo6OeRogf+2119i2bRsNGjSgTJkyrFy50szp4VTsKb47/B2B7wRSxCDzgETBMygWOIfQYDDI1EZh\n8XL6Ob19+/Y9A+SHDh2yyPGL9Kx0Wi5ryfg24/Fx98n+uPz+6ZclvnbSkhGigOllgHyq/1TqV6rP\nALcBWkcRVkxaMkLkk55/Tg9eOchb69/i1LunqFrm3iKo5+uydZb42kknrBA2JiUjBZ8tPix+bfED\nBQZkFb4oWNKSESKf9PpzOuL3EaRlpvFT95+0jiIKmCX+TJqtJRMVFUWHDh1o2rQpzZo1Y/78+QAk\nJCTQsWNHnJyc6NSpE4mJieaKIIS4z/bw7WwL38a8V+ZpHUXYCLO1ZGJjY4mNjcXd3Z2UlBRatGjB\nli1bWLlyJZUrV2bChAnMnDmTW7duMWPGjHtDWWA1FuJ+evs5TUhLwPU/rvy3x395se6LWscRZmCJ\nP5Nma8lUq1Yt+wQ8e3t7mjRpwrVr1+7ZBNDHx4ctW7aYK4IQBe70aUhOVv9sab/MjzNq2yjecn5L\nCowoVIUyhTkyMpKgoCBat25NXFxc9ipmBweHHHeZnTZtWvaf27dvT/v27QshqRA5u3ULunSBH3+E\nl1/WOk3erD2zlhMxJwgart0ZNaLg+fv7P3SrIkti9oH/lJQUXnjhBaZMmUL37t2pWLEit27dyv58\npUqVSEhIuDeUBTb5hG1TFOjVC6pXh3k6G86ITo7GY4kHv3n/RquarbSOI8zIEu+dZp3CnJmZiZeX\nF/3796d79+6A2nqJjY0FICYmxmIXqgnxb//9L4SGwsyZWifJG0VRGLp1KO96visFRmjCbEVGURSG\nDBmCs7MzY8aMyf54t27d8PX1BcDX1ze7+AhhqS5ehA8/hNWroWRJrdPkzbITy4i7HcfkdpO1jiJs\nlNm6yw4cOMDzzz+Pq6tr9pkY33zzDa1ataJnz55cuXKFOnXqsG7dOipUqHBvKAts8gnblJkJ7dqB\ntzd88IHWafLmYsJFWi9vzb5B+3Cu4qx1HFEILPHeKYsxhXiEqVPhyBHYvh2K6Gh/DKPJSHvf9vRo\n3INxbcZpHUcUEku8d8oGmULk4NAhWLIEgoL0VWAA5hyeQ1FDUcY8M+bxDxbCjKTICPEQSUnQr59a\nZKpX1zpN3pyOO82sQ7M4NuyYnBEjNCfdZUI8xIABULo0/PCD1knyJsOYQatlrRjdejSDPQZrHUcU\nMku8d0pLRoj7+PlBQAAEBmqdJO+m753O0+WfZpD7IK2jCAFIkRHiHpcvq7PItm+HMmW0TpM3h6MO\ns+LECk69eyp7RqcQWpMOWyH+YTRC//4wfjy0aKF1mry5nXEbny0+LHptEQ72DlrHESKbFBkh/jFr\nFhQtqi681JuJuybSulZrvJy9tI4ixD2ku0wI4NgxmDtXHYcpWlTrNHnzx8U/2HpuK8EjgrWOIsQD\npMgIm5eSAn37wqJF4OiodZq8uZV2iyFbh/Bjtx+pULLC4/+BEIVMpjALmzdsmLp9zE8/aZ0k7/pt\n6kfFUhVZ8OoCraMIC2CJ905pyQibtnkz/PWXuqpfbzaEbCDgWgAn3z2pdRQhciRFRtis6Gh4913Y\nsgXKldM6Td7EpsQyatsotvTeQmm70lrHESJHMrtM2CSTCXx84L33oE0brdPkjaIoDPttGEObD+WZ\nWs9oHUeIR5KWjLBJ338PqanwySdaJ8m7H4N+5GrSVTb23Kh1FCEeSwb+hc05eRI6dlS3jqlbV+s0\neRNxK4JWy1uxx2cPzao20zqOsDCWeO+U7jJhU9LSoE8fmDNHfwXGpJgY+OtAJj43UQqM0A0pMsKm\nTJgAbm7qNv568/2R71EUhbHPjNU6ihC5JmMywmZs2wZbt8KpU6C3/SPPxp/lmwPfcHToUYoW0dmW\nBMKmSZERNiEuDoYOhTVroILOFsZnGDPov7k/X7/4NfUq1tM6jhB5It1lwuopCgweDIMGwfPPa50m\n777c9yXVy1ZnaPOhWkcRIs+kJSOs3uLFEB8P06ZpnSTvjl49ypLAJZwcflLOiBG6JEVGWLWQEJg6\nFQ4dAjs7rdPkTWpmKgO2DGDBqwuoXra61nGEyBfpLhNWKz1dna48YwY4OWmdJu8m7Z5Ei+ot6Nm0\np9ZRhMg3ackIq/Xpp1CvHgwZonWSvNt9aTcbQzbKGTFC96TICKu0a5c6k0yP05UT7yQy6NdBrOi2\ngkqlKmkdR4gnItvKCKtz86a64HLlSnX7GL3x2eJDGbsyLO6yWOsoQmcs8d4pLRlhVRRFPYSsVy99\nFphNoZs4FHWIk8PljBhhHaTICKvy449w8SL4+WmdJO/iUuIY+ftINvXaRJniZbSOI0SBkO4yYTXO\nn4fnngN/f2jaVOs0eaMoCj3W9qBJlSZ889I3WscROmWJ905pyQirkJkJffuqCy71VmAAfE/5EpEY\nwdq31modRYgCJS0ZYRU+/VQ9J+Z//9PfbLLLiZfxXObJ7gG7cXVw1TqO0DFLvHdKS0bo3r596ljM\nyZP6KzB3z4j5sM2HUmCEVZIV/0LXEhNhwABYvhwcHLROk3fzj84nw5jBh89+qHUUIcxCusuEbimK\num3MU0/BwoVap8m70OuhtFvZjiNDj9CgUgOt4wgrYIn3TukuE7r1yy/qiv7AQK2T5F2mMZMBWwbw\n5YtfSoERVs2s3WWDBw/GwcEBFxeX7I9NmzaNWrVq4eHhgYeHBzt27DBnBGGlIiJg7FhYvRpKldI6\nTd59vf9rnir1FMNbDNc6ihBmZdYiM2jQoAeKiMFgYNy4cQQFBREUFMQrr7xizgjCCmVlQb9+8PHH\n4O6udZq8Ox59nMXHF7Oi2wo5I0ZYPbMWmXbt2lGxYsUHPm5pfYZCX775Rm29jB2rdZK8S8tMo//m\n/sx7ZR41y9XUOo4QZqfJ7LIFCxbg5ubGkCFDSExM1CKC0KkjR9RBfl9fKKLDuZGf/PUJrg6u9G7W\nW+soQhSKQh/4HzFiBJ999hkAU6ZMYfz48axYseKBx03711m57du3p3379oWUUFiq5GR1Vf8PP0BN\nHTYC9kTsYd3ZdQS/K2fEiILh7++Pv7+/1jEeyexTmCMjI3n99dc5ffp0rj9nidPwhPYGDYJixWDZ\nMq2T5F1SehKu/3FlcZfFvNbwNa3jaKpv374EBgZiZ2dHq1atWLJkCcWKyUTXgmCJ985C73CIiYnJ\n/vPmzZvvmXkmRE7WrYODB2HuXK2T5M+YHWPo3KCzzRcYgH79+hEWFsbp06dJS0tj+fLlWkcSZmTW\ntw/e3t7s3buXGzdu4OjoyPTp0/H39+fkyZMYDAbq1q3LkiVLzBlBWIGoKBg1Cn7/HezttU6Td7+G\n/crey3s59e4praPkisFgYNGiRYwcORJQu67LlClDREQEe/bswdHRETs7OwYPHoyXl1een//VV1/N\n/nPLli25evVqgWUXlkdW/AuLZjTCyy+rB5B98onWafIu/nY8bj+4se6tdbSr3U7rOLliMBh44YUX\nsvv6mzZtyqRJk/Dz8+P3338nLi6OJk2asHz5ct58803GjRvHnj17Hngeb29vJkyYkOPXyczM5Jln\nnmH+/Pk899xz5rocm2KJ907pCBUW7bvv1EIzcaLWSfJOURTe/d+79Hftr5sCc1d8fDwxMTHEx8dT\nsWJFAgMD6dmzJwAODg506NAh+7Fz5szJ19cYOXIkL7zwghQYKydFRliswECYPRuOHYOiRbVOk3c/\nB/9MeEI4q71Wax0lz95++202bNhAbGwsvXr14tKlSzm+Qx47duxDZzjdbcl07tyZ+Ph4WrZsydKl\nSwGYPn06N2/eZJkeZ3GIvFEskIXGEoUoJUVRGjVSFD8/rZPkz5XEK0rlWZWVoJggraPknsmkKFOm\nKIBy9uxZpU2bNoqTk5MSGxurrF+/XunatatiMpmU2NhYpVKlSsrGjRvz9WWWLVumPPvss0paWloB\nX8Cj3c7KUsZfuKCkG42F+nULkyXeOx/bkjl79iz79u0jMjISg8FAnTp1aNeuHU31ePyg0I3x46Fl\nS+itwzWLJsXEoF8HMfaZsbhX09G+Nz/+CL/+CoCzszMpKSnUqlULBwcHvLy82L17N87Ozjg6OtK8\neXPKly+fry8zYsQI6tSpQ5s2bQDw8vJi8uTJBXYZOfnw4kX+zsrCTrbyKVQ5DvyvWrWKBQsW8NRT\nT9GqVStq1KiBoijExMQQEBDAjRs3+OCDD+jXr1/Bh7LAwStReLZuhQ8+UA8hy+d9TFMLji5g9ZnV\n7B+0n2JFdNIjfe4ctG0Le/diaNr0ob9/t2/fpkyZMty8eZPWrVtz6NAhqlatqkHYvPv1xg3GXrhA\nkKcn5a14TY4l3jtz/G7funWL3bt3U7Zs2Yd+PikpiZ9++slcuYSNiomBd96BjRv1WWDCboQxfe90\nDg85rJ8Ck54O3t7wxRfg7Jzjw7p27UpiYiIZGRl89tlnuikw19LTGX7+PJubNrXqAmOp8jWF+dix\nY7Rs2dIceQDLrMbC/EwmePVVeOYZmD5d6zR5l2XK4rkfn2OA6wDea/We1nFy76OPIDwcNm8Gg8Gq\nfv9MikLHU6doX6ECU+rU0TqO2Vnia5frsn727Fn8/PxYs2YN5cuXJ1CPJ0UJi7ZgASQlwZQpWifJ\nnxkHZlC+RHlGtByhdZTc+/NPWLMGgoLACscqZkdFkakofFK7ttZRbNYji0xERARr1qzBz8+P4sWL\nExkZyfHjx6ljA+8IROE6fRq+/FLdZVmPPRonYk4w/+h8Tgw/QRGDTraHvn4dBg6E//4XKlfWOk2B\nO56czOyoKI63aEFRKyygepHjb0ObNm146623MBgMbNmyhePHj1O2bFkpMKLA3bkDffrAt99C/fpa\np8m7O1l36L+5P3M7z6VWuVpax8kdRYHBg9XT3156Ses0BS7FaMQ7JISFDRvydMmSWsexaTkWGQcH\nB/7++2/i4uKIj48vzEzCxnz8MTRpAj4+WifJn8l/TaZJ5Sb0cemjdZTcW7xYnWXxxRdaJzGL0eHh\ntCtfnp46mZxgzR458J+YmMimTZtYs2YNFy5cICEhgZ07d9K6dWvzhrLAwSthHjt2qLPJTp6ESpW0\nTpN3eyP34r3Rm1PvnqJKmSpax8mdM2egQwd1W2snJ63TFLh18fFMjojghKcn9oW8VcSQIUMIDAzE\nZDJRv359fvrpp3yvJ8oPS7x35np2WVxcHOvWrcPPz4+oqCiioqLMF8oCv1Gi4F2/Du7u8PPP6j1P\nb5LTk3H9wZX5r8zn9Uavax0nd9LSoFUrGDdOPaDHyly+c4eWgYFsc3XFM4flF+aUnJycvexj/Pjx\nVKxYsVAWmt5liffOfE1hvnz5MrXNOFvDEr9RomApCrzxhtpNNnOm1mnyZ9hvw1AUheXddHQeyujR\nEBenziizssFwo6LQ/uRJXn/qKSY8/fRDH2PuYwzuUhSF9957D1dXV9599918P09eWeK987HTYI4d\nO0aPHj3w8PDAxcUFFxcXXn9dJ+/ahMVasgSuXdPvkMD/zv+PXZd2Madz/nYg1sTvv6vbKfzwg9UV\nGICvL1+muMHAh46Oj3zcunXrsv+8fv16qlevzuXLlwkNDWXVqlUcPnwYwz/fn3HjxuHh4fHAf7Nm\nzcrx+QcNGkT16tUJDg5m6NChBXNxOvbYyaJ9+/Zl9uzZNGvWjCJFdDI1U1i0sDB1Lcz+/VC8uNZp\n8u5G6g3e+e0d/Lz8KFeinNZxcicmBoYOVY8YrVhR6zQF7tDff7MoOprAFi0o8pgCau5jDFauXInJ\nZGLUqFF89dVXTJ06Nc/PYU0eW2SqVKlCt27dCiOLsAEZGep05S+/hMaNtU6Td8o/Z8R4u3jzQp0X\ntI6TOyaTuh7mnXegnb7OtcmNv7Oy6BsayhInJ2qWKPHYx5v7GAOAIkWK0Lt370e2eGzFY8dk/vjj\nD9auXcvLL79M8X/edhoMBt58803zhbLAfkVRMCZOVFsyW7bos8fml+Bf+PrA1wS+E0jJYjpZfzFn\nDmzYAPv26XOl6yMoikLf0FAqFCvG4lzMlDMYDJw9e5ahQ4dy8+ZN9u3bx/79+/H19WXr1q3Ex8fj\n7OzMsmXL8nWPu3DhAg0aNEBRFD766CNKlSrFF4XUJ5x5K5PilYpb3L3zsT9xvr6+nDt3jqysrHu6\ny8xZZIR1+usvdSbZyZP6LDAXEi4wZucYdvbbqZ8CExQEM2bA0aNWV2AAfo6L41RKCsdatMj1vzHX\nMQaKojBw4ECSkpIA8PT0ZNGiRXl+nvwKHxVeaF8rLx7bkmnUqBFhYWHZA2GFQVoy1ichAdzcYNky\neOUVrdPkXXpWOs/++CwD3Qbyfuv3tY6TO7dvQ4sWMHWqusuylbmYlsYzJ06w280NV3v7XP2bnO4t\nej7GACB+bTyRUyNpfa61xd07H/vW5tlnnyUkJEQOKRP5pigwfDh4eemzwAB89OdH1C5fm1GtRmkd\nJffGjlXXxFhhgck0megTEsKU2rVzXWAeRa/HGACkX0snfHQ4rr+7gvk2x8+3xxaZw4cP4+7uTt26\ndSnxz6CawWAgODjY7OGEdfD1VcdhVq3SOkn+bA7dzG/nf+PEOycKtUX/RDZuhN271e4yKzQtMpKn\n7Ox4v2bNAnm+PXv2FMjzFDbFpBA2KIyao2pS1rPwFp+OHj2alStXkpyc/NjHPrbI7Nixo0BCCdt0\n4YJ6XMlff4Ee9ymMTIxk+P+G85v3b1QspZOpv1FRMHKkuiamnE6mWOfB3sREVsbGctLTUz9F30yi\nF0djTDJSe1LhHWVw/PhxEhMTc/29z3FM5t/bI+QkN4/JDxmTsQ6ZmeqM2T591IXmepNhzKDdynb0\ndO7J+GfHax0nd4xGePll6NgRPvlE6zQFLiEzE/fjx1naqBGv5GOzO2u6t6SGpRLULgiPgx6UdioN\nmH9HA6PRSMeOHVm9ejUNGzbMVUsmx9WVPXr04L333uOPP/4gISEh++M3b95k586djBgxgh49euQ5\npLAdX3wBFSrA+zoZJ7/fJ7s/oUrpKoxtM1brKLk3a5Y6CDZxotZJCpyiKAw7dw6vKlXyVWCsiSnT\nRGj/UOp+UTe7wNxlzh0NFi5cyBtvvEG1atVynTXH7rJdu3bx119/sXr1aj744AOio6MBqFGjBm3b\ntqVv3760b98+119I2JaDB2HpUv0euPi/8/9j3dl1BA0P0s8hZEePwvffw/HjUMi7DxeGFbGxXLxz\nh9XOzlpH0dzlLy9jV8WO6sOrP/A5c+1oEB0dzYYNG/D3989Ta/CRYzIvvvgiL774Yq6fTAiAv/9W\nz8JauhSqP/g7YPGi/o5iyNYhbOy5kadKP6V1nNxJToa+fdVzYh6zd5cehaWmMunSJfa6u1PiCba3\nsoausqQjScQsiaFFUIuHjouYY0cDT09PevTokb3YFCA1NRUnJyfOnz//yLyPXSejKAqbNm3iwIED\nFClShLZt25q9m8ya+k1tUf/+YG8P//mP1knyLsuURfuf2tOlYRcmtZukdZzc8/GBEiXUym5l0k0m\n2pw4wfAaNRheo4bWcTRlvG3kuPtx6s2oRxWvB88vMveOBv9WtmzZgpldNnLkSC5evIi3tzeKovDD\nDz/w559/snjx4icKKKzTqlVw7BicOKF1kvz5bM9nlCleholtdTSmsXq12lUWGKh1ErP4NCKC2iVL\n8o4em8UF7OJHFyn3bLmHFpi7zLWjwf1yPbNPeYxGjRopRqMx++9Go1Fp1KjR4/7ZE8lFLGGBjh9X\nlMqVFeXUKa2T5M+O8B1Kje9qKHEpcVpHyb1LlxSlShVFOXFC6yRmsfPmTaXWoUPKjYwMraNo7sa2\nG8rh2oeVzMTMHB+T070zJSVFfY4bN5T69esrcXGF9zP+2JZMgwYNuHLlCnXq1AHgypUr2X1yQtwV\nFwdvvqkeVeLqqnWavItJjmHgrwNZ/eZqqpbRyWrvrCx1HGbiRPDw0DpNgYvPyGBQWBirmjThKTs7\nreNoKvNGJueGnsN5tTPFyud9DzotdzR47JjM888/z7Fjx2jVqhUGg4GAgABatmxJuXLlMBgMbN26\nteBDyZiMrmRkwEsvqUcof/651mnyzmgy0nFVR16o/QJT2+vo7I+pU+HwYdixA6zsrCdFUXj9zBlc\nypThm3r1tI6jKUVROPvWWUrVLUX92fUf+VhLvHc+tiR+/oi7hq2vthWq0aOhUiWYNk3rJPnz5b4v\nAZj8fOGdxf7E9u9XjxcNCrK6AgOwKDqa+IwMPpc9E4lbFUfa+TScf9Hn1O3HFhlZCyMe5Ycf1Pvd\n4cP6vNftidjDD4E/cOKdExQtopO1JbduqXPEly/X5xzxxzhz+zbTIyM53Lw5dnr8oSpAdy7f4eKH\nF3H7040iJfX5vcixyNjb2+fYUjEYDNlnJgjbtW+f2mNz8KA+t8iKvx1Pv8398O3uS/WyOrlZKwq8\n+y506wZdu2qdpsClGY14h4Qwu359GpQqpXUcTSkmhTCfMBw/dMTe7cl3mtZKjkUmJSWlMHMInbly\nBXr1Uqcs63EeiEkx0X9zfwa6D6RT/U5ax8k9X18ICYGfftI6iVlMuHSJpmXKMMDBQesomrs69yqK\nScFxvL4X15q1/TV48GAcHBxwcXHJ/lhCQgIdO3bEycmJTp06kZiYaM4IwgxSU6F7d/jwQ+iko/vz\nv808MJPUzFSmt5+udZTcCw9Xt7T28wMrfJf/v5s3+e3mTX5wcrL58d6U0ylcmXGFxr6NMRTV9/fC\nrEVm0KBBDxwVMGPGDDp27Mj58+d56aWXmDFjhjkjiAKmKDBkCDRtCuPGaZ0mfw5cOcC8o/Pw8/Kj\nWBGdHEmckaFuZz1tGjRrpnWaAheTns7Qc+f4uUkTKljhMdF5YUo3EdY/jHqz6lGqrv7fTJi1yLRr\n146KFe89g2Pr1q34+PgA4OPjw5YtW8wZQRSwWbPUM2KWLtXnxpc3Um/QZ2MfVnRbQa1ytbSOk3uf\nfQbVqqmxGj2pAAAgAElEQVTnxFgZk6LgExbGuzVq0LYAVqLrXeTUSErWLUm1gbnf6diSFfpbhri4\nOBz+6W91cHAgLi6usCOIfNq2DebPV3cw0WNvjUkxMXDLQHo160UXpy5ax8m93bvVwa+TJ/VZ2R9j\n7tWr3DYamVy78A7eslSJ+xOJ/W8snqes50A2TdulBoMhx2/ktH8tumjfvr1MpdbYuXMwcCBs2QK1\ndNQA+Le5h+dyI/UGX7/4tdZRcu/GDXXzy59+gio571elVyeSk5l55QoBLVpQzEpuqvmVlZRF2IAw\nGi1tRPEqxXP1b/z9/R+6i7IleeyK/ycVGRnJ66+/zunTpwFo3Lgx/v7+VKtWjZiYGDp06EBYWNi9\noSxw1aot+/tvaN0axo+HYcO0TpM/R64eoZtfNwKGBVCnQh2t4+SOokCPHur0vdmztU5T4G4bjTQ/\nfpzpdevSuxC3ObFUYYPDMBQz0Ghpo3w/hyXeOwt9dU+3bt3w9fUFwNfXl+7duxd2BJEHRqO6PdbL\nL+u3wNxKu0XvDb1Z+vpS/RQYUFf0X7kCX32ldRKzGHPhAm3Kl5cCA9zYcoO/9/1Ngzk6XA/wGGZt\nyXh7e7N3715u3LiBg4MDn3/+OW+88QY9e/bM3nRz3bp1VKhQ4d5QFliNbdUnn8ChQ/Dnn6DHPQoV\nReHNdW/ydPmnmffKPK3j5F5ICDz/vLrStVH+39laqo3XrzPx0iWCWrSgrI3PJsuIy+C4+3GabmxK\n+WefbOKDJd47zd5dlh+W+I2yRWvXwscfQ0CAfocDFhxdgO8pXw4OPkiJYiW0jpM7d+6o/ZPvvw9D\nh2qdpsBF3bmDZ2Agv7m40EqPW0UUIEVRONPtDGVcy1DvqyffCNQS7522/RZC5OjkSRg1Sm3B6LXA\nBEYH8sW+Lzg85LB+Cgyolb1hQ3VBkpUxKgr9w8IY6+ho8wUGIGZ5DOnX0mm60Xo3ApUiIx5w/bq6\non/RInB31zpN/iSlJ9FrQy8WvraQ+pUevT26Rdm+HTZtstrpyjOvXKEI8JGjvrdKKQhpF9OI+CQC\n973uFCmuz80vc0O6y8Q9MjPVQf62bfU73qwoCr039qZSqUr8p8t/tI6Te3Fx6uFjfn7wwgtapylw\nR5OS6Hb6NIGentQqoaOWpRkoWQpBzwdRtVdVan1QcGsCLPHeKS0ZcY8xY9Qdlb/4Qusk+bc0cClh\nN8I4MuSI1lFyz2RSFyINHmyVBSYpK4s+ISH8x8nJ5gsMwJVZVyhauig136+pdRSzkyIjsi1bBn/9\nBUeO6PNsGIDguGAm75nMgUEHKGWno20JFixQz4mZqqOTOfNgVHg4L1esyJt6HeArQMknkrn6/VVa\nBLbAUMT6ukTvJ0VGAOpM2U8/hQMHQK/bR6VkpNBzfU/mdp5Lo8o6mvZ76hR8+aW6X48e54k/xi9x\ncRxLTuZ4ixZaR9GcMc1IaL9QGnzfgJKOJbWOUyikyAiiouDtt9WjSpyctE6TP4qiMOL3ETz39HP0\nc+2ndZzcS00Fb2+YOxes8Cz7S2lpjLlwgT9cXSlTVCcnj5pRxCcR2LvaU9XbdhagSpGxcWlp6s4l\nY8bAq69qnSb/fjr5EydiThAwNEDrKHkzfrw62N9PR4Uxl7IUhb6hoXzy9NN4lC2rdRzN3dp9i+sb\nrlvV5pe5IUXGhimKulWMk5N6FpZehVwPYcKuCfj7+FOmeBmt4+Teli2wcycEBWmdxCw+j4ykfLFi\nfKDXHVULUOatTMIGhdFoRSPsKllfl+ijSJGxYXPmQGgo7N+v3yUZqZmp9Fzfk5kvz6RpVR0taLt2\nDYYPVwuNXgfBHmF/YiLLYmII8vSkiF5/uApQ+KhwKr9RmUqdKmkdpdBJkbFRO3eqG/sePQqlS2ud\nJv9Gbx+NezV3BrkP0jpK7hmN0L+/uqVCmzZapylwtzIz6RcayopGjahWPHdb1luz+LXxpASm0OKE\nbU58kCJjg8LDYcAA2LABnn5a6zT590vwL+y/sp/jw47rq4979mzIylJ3H7UyiqLw7vnzdK9cmdee\nekrrOJpLv5ZO+OhwXH93pWhp25z4IEXGxiQlwRtvwOefQ7t2WqfJv/M3zzNm5xh29d9F2RI6GlQ+\ndgy++w6OHwcrnG31U2wsoamp+DZponUUzSkmhbBBYdQcVZOynjr6GS1gUmRsiMmkTmJ64QV1OECv\n7mTdoef6nnzR4QvcqrlpHSf3UlKgTx9YuFDfTcgcnE9NZcKlS/i7u1NSr6t5C1D04miMSUZqT7Lt\nY6Vl7zIb8tln4O8Pu3aBnrvKR/4+khupN1j71lp9dZMNHqzOsFixQuskBS7DZOLZoCAGV6vGyJrW\nv1XK46SGpRLUNgiPQx6Udiq8QU9LvHdKS8ZGbNigLrY8dkzfBWb92fXsvLiTE++c0FeBWbtW3U7h\nxAmtk5jFlIgIahQvzogaNbSOojlTponQfqHU/bJuoRYYSyVFxgYEB8OIEeqMMj2fdHsx4SLvbXuP\nbX23Ub6kjqb9Xr6sHkC2fTvY22udpsDtunWLX+LjOelpW4sMc3L5y8vYVbWj+vDqWkexCFJkrNyN\nG+rZMPPnQ/PmWqfJv/SsdHpt6MXk5yfjWcNT6zi5l5UFffvChx+CFe7ddSMzk4FhYfzUuDGVrXDf\ntbxKOpJEzJIYWgS1kIL7Dxmds2KZmdCzp/qft7fWaZ7MxF0TcSzvyPut3tc6St58/TWUKKEWGSuj\nKApDwsLoU7UqL1esqHUczRlvGwntH0rDRQ0pUV2OM7hLWjJW7MMPoWRJ/R4+dteWsC1sCdtC0PAg\nfb07PHgQFi+GwED9np3wCD9ER3M1PZ31TXW004IZXfzwIuWeLUcVLznO4N+kyFipH3+EHTvUFf16\nXo5xOfEyw/83nF97/0rFUjp6t/z33+p88SVLwApnW529fZvPIiM56OFBcSssoHl1c/tNErYn4HlK\nR125hUSKjBU6fBg+/hj27YMKFbROk3+Zxkx6b+zNR89+xDO1ntE6Tu4pCrz7rrqt9RtvaJ2mwN0x\nmegTEsLMevVw0vOeRAUk80Ym54aew3m1M8XKyy31fvIdsTLXrsFbb6ktmcaNtU7zZD7961MqlarE\nuDbjtI6SN6tWqVP6jh3TOolZfHzpEo1Kl2ZQtWpaR9GcoiicG34OB28HKryg43d0ZiRFxorcuQNv\nvqnuu9i1q9Zpnsy28G34nfEjaHgQRQw66o65cEE9I2b3bn3vPJqDbTdvsvn6dZmu/I+4VXGknU/D\n+RdnraNYLFnxbyUUBQYNUguNn59+t+4HuJp0Fc+lnqx/ez3tautog7XMTGjbVp2yPHq01mkKXFxG\nBh7Hj7PW2Zl2eu6HLSB3Lt8h0DMQt11u2LtZxvonS7x3SkvGSsybBydPqhOa9FxgskxZ9NnYh9Gt\nR+urwABMmwZPPaUuvLQyJkVhYFgYQ6tXlwLDP5tf+oTh+JGjxRQYSyVFxgrs2gUzZ6oD/mV0dDDk\nw0zzn0bJYiX5uO3HWkfJG39/WLlSrfR6rvI5mH/tGn9nZfFZnTpaR7EIV+deRTEpOI531DqKxZMi\no3MXL6q9M+vWgd5///+8+CcrT67kxDsn9DUOk5CgHtDz44/63rcnBydTUvjq8mUCmjenmBUW0LxK\nOZ3ClRlXaB7QHENR+X48jhQZHUtOVmfITp2qbt+vZzHJMfhs8eHnN3/Gwd5B6zi5pygwbBh4ecEr\nr2idpsClGo14h4TwfYMG1C1VSus4mjOlq5tf1ptVj1J15fuRG1JkdMpkAh8fePZZdfNLPTOajPTb\n3I93WrzDi3Vf1DpO3ixfrjYnV6/WOolZjLt4Ec+yZenroKPCb0YRn0VQql4pqg2U6du5JUVGp774\nAuLiYM0a/Q8BfL3/a0yKiSnPT9E6St6EhcGkSeqq1xLWt1fV5uvX+TMhgSBPWcUOkLg/kbhVcXie\nkunbeSFFRoc2b1bPvQoI0PfZMAB7I/ey+PhiAt8JpGgRHe1/k56u7jr61VfgbH1rJK6lp/Pu+fP8\n6uJCuWJym8hKyiJsQBiNljaieBWd/9IVMlknozNnzkCHDurRJHp/g3n99nU8lniwotsKOjforHWc\nvBk/Hi5dgk2b9N+UvI9RUeh46hQvVazIp7Vt++jgu8IGh2EoZqDR0kZaR3kkS7x3ylsUHUlIUM+G\nmTtX/wXGpJjov7k/A9wG6K/A7NypTuez0unKs6OiMCoKHz/9tNZRLMKNLTf4e9/feJ7U+S+dRqTI\n6ERWFvTqBT16qJv76t23B78lJSOFzzt8rnWUvImPV7dW+PlndeGllTmWlMScqCiOt2hBUSssoHmV\nEZfB+RHnabqxKUXtddSda0GkyOjEhAnqkSQzZmid5MkdvHKQuUfmcmzYMYoV0dGPYEKCOlXZxwde\n1NksuFyIzcigV0gIi5yccCxZUus4mlMUhXNDz1FtcDXKP6uj474tjGa/4XXq1KFcuXIULVoUOzs7\nAgICtIpi8Xx94bff1IF+PZ8NA3Az9SZ9NvVhebflOJbX0WrpS5fgtdegSxf48kut0xS4xKwsOp86\nxaBq1Xirihy6BRCzPIb0a+k03SiHsj0JzYqMwWDA39+fSpUqaRVBFwIC1BMu9+4FvZ9wqygKg34d\nxNvOb9PVSUfbRB85ovZTTp4M772ndZoCl2o00vX0aTpUrMhkGegHIO1CGhGTInDf506R4jrafcIC\nadpXYWmzICxNTIzaO7NihXXMkv3+yPfE3Y5jQ88NWkfJvQ0b1NWuP/2ktmKsTIbJxFtnz1KvZEnm\n1K8v6z8AJUshdEAotafUpoyzzjcDtACatmRefvllihYtyvDhwxk2bNg9n582bVr2n9u3b0/79u0L\nN6DG0tPVs2GGD4du3bRO8+QCrgXwzYFvODr0KMWL6mCdgaLA7Nnq9tZ//AEeHlonKnB3d1YuZjCw\nolEjikiBAeDKrCsULV2Umu9b/rHZ/v7++Pv7ax3jkTRbJxMTE0P16tW5fv06HTt2ZMGCBbRrp27t\nbolzvQuTosCQIZCUBOvX63+WbOKdRJovac7sTrN5s8mbWsd5vKwsdbv+gwfh99/BUUdjR7mkKAqj\nwsM5c/s2O1xdKaX3wb4CknwimeBXgmkR2IKSjvqb/GCJ907NOhurV68OQJUqVejRo4cM/P/LwoVw\n/LjaQ6P3AqMoCkO2DqGLUxd9FJjkZLXpGBEBBw5YZYEBmBoZyeGkJLa6uEiB+YcxzUhov1AafN9A\nlwXGUmlSZFJTU0lOTgbg9u3b/PHHH7i4uGgRxeLs2aPuVPLrr2BvBWchLT62mMjESGZ3nK11lMe7\nehXatVMLy2+/QblyWicyi3lXr7I2Pp4drq6Uly1jskVMisDe1Z6q3tZ3XIOWNPkJi4uLo0ePHgBk\nZWXRt29fOnXqpEUUixIRoW6HtXo11K2rdZonFxQTxPS90zk05BAliln4BpInT8Lrr6vdZB99pP8m\nZA7+GxvLd1FR7PfwoKreN74rQLd23eL6xuuy+aUZyN5lFiIlBZ57DoYOtY7Te5PSk2ixtAVfdPiC\n3s16ax3n0bZvVxdYLloEb7+tdRqz2XrjBu+cP88eNzea6P0I1QKUeSuT427HabS8EZU66XtJhSXe\nO6XIWABFUe9t5cqp05X1/kZKURT6bOpDuRLlWNJ1idZxHu2HH2D6dNi4UT2cx0rtTUzk7bNn+d3F\nhZZW2g2YXyF9Q7CrZEfDBQ21jvLELPHeKR2yFuCrr+DaNfjlF/0XGIDlJ5ZzNv4sR4ce1TpKzkwm\nmDgRtm5VB/jr19c6kdmcSE7m7bNn8XN2lgJzn/g18aQEptDiRAuto1gtKTIa27oVlixRV/Zbw7lX\nQTFBfPLXJ+wftJ9SdhZ6PG1aGvTvr252eeiQVW50edf51FS6nD7NEicnXtL7lhEFLP1aOuGjw3Hd\n5krR0jLDzlxkvwQNhYSoYzAbN8I/M7p1bVPoJjr93IklXZfQuHJjreM8XHy8urlliRLw559WXWCi\n7tyhU3AwX9WtSw/Zj+weikkhbFAYNd+vSVnPslrHsWpSZDRy6xa88Ya6qLxVK63TPBmjycjkvyYz\ndudYdvTdYbnrYcLCoE0b6NhR3arfGpqOObiRmUmn4GDer1mTwdbwDqaARS+OxphkpPYk2avN3KS7\nTANZWdC7N3TtCgMGaJ3mySTeSaTvpr7czrjNsWHHqFrGQtcY7N0LPXuqZyUMGqR1GrNKzsri1eBg\nelSuzHgrXUz6JFLDUomcFonHIQ8MxaxgENTCSUtGA5MmgdEI336rdZInczb+LC2XtaRBpQb82f9P\nyy0wP/+sTt9bvdrqC8wdk4nuZ87QomxZvrKGxVYFzJRpIrRfKHW/rEtpp9Jax7EJ0pIpRLGxMGWK\nuqr/6FHQ82LrTaGbGP6/4XzX6TsGuFloc0xR4PPP1f15/P2tYyvrR8hSFPqEhFDZzo5FDRvKosKH\nuPzFZeyq2lF9uHQhFhYd3+b0IzUV5syB779X30gfPw4VKmidKn+MJiNT/aeyKngVO/ruoEUNC536\nmZEBw4apsysOH4Zq1bROZFaKojD83DluG4385uIiRyc/RMzKGGKWx9AisIUU4EIkRcaMTCZ17csn\nn6jjzQEBUK+e1qnyTzfjL7duqQfxlCuntmCsfHW7oihMuHSJkNRUdrm5UbyI9IL/m6IoRM2MIvqH\naNz3uFOiuvVO+LBE8tNoJnv3qrPGFi2CNWtg3Tp9FxjdjL9ERKgr993c1LnhVl5gAGZGRbEjIYHf\nXVwoIzsq30MxKVwce5G4X+LwOOhB6UYyDlPYpCVTwMLDYcIECApSJzL16qX/Vfy6GH8BdaCrRw+1\n6ThqlNZpCsXS6GiWRkdzwMODSnZ2WsexKKYME2EDw0iPSsd9nzt2FeX7owUpMgUkIUEdY/75Z3UT\nXz8/KKnzIyl0M/4CsGmTeozojz+quynbgPXx8UyPjGSvhwc1rHjNT35kJWdx1ussRUsXxfUPV4qW\nkhaeVqTIPKGMDLVL7Ouv1WUYoaFgDYurdTP+oigwd646s2LnTmjeXOtEheKPhARGhYfzp5sbDUpZ\n6PY9Gsm4nsHp105j726P03+cZC2MxmRMJp8URe3yd3aG3bth3z612FhDgdHN+EtWltottnKlugeZ\njRSYI0lJ9AsNZVOzZrhaw8l2BSgtIo2g54Ko9EolnJZKgbEE0pLJh4AAGD8ekpLUneJfflnrRAVH\nN+MvKSnqgFdmprqLcvnyWicqFGdu36b7mTP4Nm7MczZyzbmVciqF011O8/THT1NzVE2t44h/SJHJ\ngytX1NX6/v7wxRfqOVfWMplHV+Mv166pe/J4esLixWAjA96X0tJ4JTiYufXr86oVb+yZH4l7Ezn7\n9lkaLmxI1Z4W2vK2UdJdlgtJSeqEJQ8PaNAAzp2DwYOtp8Ak3kmk25puHLhygGPDjll2gTl1Sl10\n1KsXLF1qMwUmNiODTsHBfPL003g7OGgdx6Jc33Sds2+fxdnPWQqMBZIi8whZWepZL40aQXS0en+b\nPh2sqRtcN+MvADt2qH2T334LH3+s/7nhuZSYlUXnU6fwcXBgZE3pBvq36CXRhI8Kx3WHKxVfkvNy\nLJF0l+Vgxw513MXBAbZtU1sx1kY34y+gtlo++wy2bIHnntM6TaFJNRrpevo0HSpWZHJt2Zb+LkVR\nuPzFZWJ9Y/HY50GpBjLDzlJJkbnP6dPw4YcQGam+YX79det7w6yr8ReTSR0I27xZHeBv0EDrRIUm\nw2TirbNnqVeyJHPq15f9tv6hGBXC3w8n6XASzQ82p3i14lpHEo8gReYfd3dI3rpV/f/w4dbZ3a+b\n9S+gHpPs4wMxMeomlzY02G1SFAaGhVHMYGBFo0YUkQIDgOmOulV/5q1M3Pe6U6yc3MIsnc2PyaSm\nwpdfQrNm6s7I586pSy+sscDoavzl+nV46SX1PAQrPyb5foqi8H54ONfS01nr7IydbHgJQNbfWQS/\nGgxFwHWbqxQYnbDZn16TCVatUgf1g4PVtS/ffqvfLfgfZ1PoJtr7tmfK81OY98o87IpacBU9d06d\nQfbii+o+PXrfnyePpkZGcjgpia0uLpSylimMTygjNoOT7U9SpmkZnP2cKVLCZm9dumOTbwX27lUH\n9YsVU3dItuZxZF2Nv4C6dcLbb8M336jzxG3MvKtXWRsfz34PD8rr+VS7ApR2IY1TnU9RfVB1nv70\naRmb0hmb+im2xh2SH0VX4y+gHr4zdqx6TLI1baOQS/+NjeW7qCj2e3hQtbgMZgMkByZz+vXT1Jle\nhxrDamgdR+SDTbQ5ExJgzBi1B+aZZyAsDHr3tu4Co6vxF0VRB8Y+/RT++ssmC8zWGzeYcOkSO11d\nqW1j3YM5ubXrFsGvBuO02EkKjI5ZdUvGWndIfhxdrX/JyFCn8p0+rc4gq257Z6/vTUxk6Llz/O7i\nQhMbOGQtN+LXxhM+OpymG5pS4XkrHSi1EVZZZBRFPV5k4kRo3Fjt5m/SROtU5qe78ZfERPWY5DJl\n1IEyG7zBnkhO5u2zZ/FzdqZluXJax7EIVxdcJWpWFG673LB3saLtNWyU1RUZa94h+VF0N/4SGQld\nuqgv0Jw51rMRXB6cT02ly+nTLHFy4qWKsiWKoihETI7g+obreOz3oGQd6Ta0BlYzJnPlCvTtq56+\nO2gQnDhhOwVGV+MvAMeOqVP6hg+HefNsssBE3blDp+Bgvqpblx620If7GEqWwvlh57m16xYeB6TA\nWBPdFxlr3yH5cXS1/gXUvcdeew3+8x8YPVrrNJq4kZlJp+BgRtWsyWAbHIO6nzHNyBmvM6RfTcd9\ntzvFq8jMOmui2+6yrCxYsQKmTYPOndUdkmvV0jpV4dHd+IuiqK2Wb7+F7dvVs2BsUHJWFq8GB9O9\ncmU+dHTUOo7mMm9lcqbbGUrWLkmj9Y0oUlz373vFfXRZZGxhh+RH0d34i9GoziHfs0c9JtlGdxO+\nYzLR/cwZmtvb83XdulrH0Vz6tXSCOwdTsXNF6n9bH0MRK15TYMN0VWRsYYfkxzkbf5bua7vzWsPX\nmN1xtuV3j6WkgLc33LkDBw/azDHJ98tSFPqEhPCUnR2LnZxsftV6algqwa8EU+O9Gjz90dNaxxFm\npEnbdMeOHTRu3JiGDRsyc+bMxz4+NhaGDVMH8l9/Hc6cgW7d9Ftg/P398/Xv9DL+kn190dHwwgtQ\ntara5LSSApPX109RFIafO0eK0ciqJk0oauE/uPn9+cytpKNJnGx/kjrT6xR6gTH3tYkHFXqRMRqN\njBo1ih07dhASEoKfnx+hoaEPfay17pCc1x90o8nI5L8mM3bnWHb03WHxCyz9/f3VZmebNuo6mOXL\n9f+i/UteXj9FUZhw6RIhqalsataMEjrYUdmcN+Kb229y+vXTNFrRiGo+1cz2dXIiRabwFXp3WUBA\nAA0aNKBOnToA9O7dm19//ZUm962WXLVKnTXWpo269qVevcJOahl0N/4CcPGiuk3/vHlqV5kNmxkV\nxfaEBPa5u2NvK1MecxC7KpZLH13CZasL5Z6Rhae2otCLzLVr13D816yaWrVqcfTo0Qcet2iR9e+Q\n/Djxt+N57sfn9DP+ArBxo3qK5fbt0K6d1mk09d/YWJZGR3PAw4NKVtSSy4/oZdFc/vIybnvcKNPE\n9nZ2sGUGRVGUwvyCGzduZMeOHSxbtgyAn3/+maNHj7JgwYL/D2XhfdZCCGGpCvmW/liF3pKpWbMm\nUVFR2X+Pioqi1n0LXCztmySEECJ/Cn0U0tPTk/DwcCIjI8nIyGDt2rV069atsGMIIYQoBIXekilW\nrBgLFy6kc+fOGI1GhgwZ8sCgvxBCCOugyXzKV199lXPnznHhwgUmTZp0z+fyuoZGD+rUqYOrqyse\nHh60atUKgISEBDp27IiTkxOdOnUiMTFR45S5M3jwYBwcHHBxccn+2KOu5ZtvvqFhw4Y0btyYP/74\nQ4vIefKw65s2bRq1atXCw8MDDw8Ptm/fnv05vV1fVFQUHTp0oGnTpjRr1oz58+cD1vMa5nR91vAa\n3rlzh9atW+Pu7o6zs3P2vdPiXzvFgmRlZSn169dXIiIilIyMDMXNzU0JCQnROtYTq1OnjnLz5s17\nPvbRRx8pM2fOVBRFUWbMmKFMnDhRi2h5tm/fPuXEiRNKs2bNsj+W07WcPXtWcXNzUzIyMpSIiAil\nfv36itFo1CR3bj3s+qZNm6Z89913DzxWj9cXExOjBAUFKYqiKMnJyYqTk5MSEhJiNa9hTtdnLa/h\n7du3FUVRlMzMTKV169bK/v37Lf61s6iVYf9eQ2NnZ5e9hsYaKPdNZti6dSs+Pj4A+Pj4sGXLFi1i\n5Vm7du2oeN/ZJzldy6+//oq3tzd2dnbUqVOHBg0aEBAQUOiZ8+Jh1wcPn4yix+urVq0a7u7uANjb\n29OkSROuXbtmNa9hTtcH1vEali5dGoCMjAyMRiMVK1a0+NfOoorMw9bQ3P0B0TODwcDLL7+Mp6dn\n9tTtuLg4HBwcAHBwcCAuLk7LiE8kp2uJjo6+Z+agnl/PBQsW4ObmxpAhQ7K7I/R+fZGRkQQFBdG6\ndWurfA3vXt8zzzwDWMdraDKZcHd3x8HBIbtb0NJfO4sqMta6PubgwYMEBQWxfft2Fi1axP79++/5\nvMFgsJprf9y16PE6R4wYQUREBCdPnqR69eqMHz8+x8fq5fpSUlLw8vJi3rx5lC1b9p7PWcNrmJKS\nwltvvcW8efOwt7e3mtewSJEinDx5kqtXr7Jv3z727Nlzz+ct8bWzqCKTmzU0elT9n4OpqlSpQo8e\nPQgICMDBwYHY2FgAYmJiqFpVB9vF5CCna7n/9bx69So1a9bUJOOTqFq1avYv79ChQ7O7HPR6fZmZ\nmXh5edG/f3+6d+8OWNdrePf6+vXrl3191vYali9fni5duhAYGGjxr51FFRlrXEOTmppKcnIyALdv\n34Z9q+AAAAQcSURBVOaPP/7AxcWFbt264evrC4Cvr2/2L4Me5XQt3bp1Y82aNWRkZBAREUF4eHj2\n7Do9iYmJyf7z5s2bs2ee6fH6FEVhyJAhODs7M2bMmOyPW8trmNP1WcNreOPGjexuvrS0NP788088\nPDws/7Ur9KkGj7Ft2zbFyclJqV+/vvL1119rHeeJXbp0SXFzc1Pc3NyUpk2bZl/TzZs3lZdeeklp\n2LCh0rFjR+XWrVsaJ82d3r17K9WrV1fs7OyUWrVqKT/++OMjr+Wrr75S6tevrzRq1EjZsWOHhslz\n5/7rW7FihdK/f3/FxcVFcXV1Vd544w0lNjY2+/F6u779+/crBoNBcXNzU9zd3RV3d3dl+/btVvMa\nPuz6tm3bZhWvYXBwsOLh4aG4ubkpLi4uyqxZsxRFefS9xBKurdD3LhNCCGE7LKq7TAghhHWRIiOE\nEMJspMgIIYQwGykyQgghzEaKjLBJL7744gMbBn7//feMHDkyT8/Tu3dvLl68yODBg1m6dOk9n9uy\nZQuvvfYaGRkZPP/885hMpifOLYTeSJERNsnb25s1a9bc87G1a9fSp0+fXD/HhQsXSElJoX79+g99\nvjVr1tCnTx+KFy9Ou3btdLM/nRAFSYqMsEleXl78/vvvZGVlAeo+V9HR0bRt2xZ/f3+ef/55unbt\nSuPGjRkxYsRDN1dcs2ZN9mLhF198kbCwsOyV17dv32b37t33LIzz8/MrpKsTwnJIkRE2qVKlSrRq\n1Ypt27YBasHo1atX9uePHTvGwoULCQkJ4eLFi2zatOmB5zh48CCenp4AFC1aFC8vL9atWwfAb7/9\nRocOHbC3twfA3d2dQ4cOmfuyhLA4UmSEzfp3F9fatWvx9vbO/lyrVq2oU6cORYoUwdvbmwMHDjzw\n7y9fvpy9L939z7dmzZp7nq9EiRKYTCbu3LljrssRwiJJkRE2q1u3buzevZugoCBSU1Px8PDI/ty/\nd6tVFCXH3Wv/3Y3Wpk0bYmJiOHXqFIcPH6ZLly4PPNaSd/gVwhykyAibZW9vT4cOHRg0aNADA/4B\nAQFERkZiMplYt24d7dq1e+Df165d+56NFw0GA7169cLHx4fXXnuN4sWLZ38uPT2dokWLUqJECfNd\nkBAWSIqMsGne3t6cPn36nq4tg8FAy5YtGTVqFM7OztSrV++hu2S3bduW48ePP/b5AIKCgmjTpo15\nLkIIC1ZM6wBCaOmNN97AaDTe8zFFUShXrhy//fbbI/+tt7c377//PsOHD8/+mJub2wPPB+oR1X37\n9i2Y0ELoiLRkhLhPbk8qrVevHmXLluXixYuPfFx6ejoHDhzQ9ZlBQuSXbPUvhBDCbKQlI4QQwmyk\nyAghhDAbKTJCCCHMRoqMEEIIs5EiI4QQwmykyAghhDCb/wMHqb/IR0Mj3wAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 30
}
],
"metadata": {}
}
]
}
|