summaryrefslogtreecommitdiff
path: root/Basic_Electronics_and_Linear_Circuits/ch5.ipynb
blob: bb34b349eea092c2f0eef833be26df868b89d8f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
{
 "metadata": {
  "name": "Ch5"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5: Transistors"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.1 Page No 134"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.1\n",
      "#Program to Calculate Collector and Base Currents\n",
      "\n",
      "#Given Circuit Data\n",
      "alpha=0.98                       #alpha(dc),  current gain\n",
      "Ico=1*10**(-6)               #Ampere, collector leakage current\n",
      "Ie=1*10**(-3)                 # Ampere, emitter current\n",
      "\n",
      "#Calculation\n",
      "Ic=alpha*Ie+Ico             #Collector Current\n",
      "Ib=Ie-Ic                          #Base Current \n",
      "#result\n",
      "print \" The Collector Current is Ic=  \",Ic*1000,\"mA\"\n",
      "print \" The Base Current is Ib= \",Ib*10**6,\"microA\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The Collector Current is Ic=   0.981 mA\n",
        " The Base Current is Ib=  19.0 microA\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.2 Page No 141"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.2\n",
      "#Program to Determine Dynamic Input Resistance of the Transistor at #the point: Ie=0.5 mA and Vcb= -10 V.\n",
      "\n",
      "#From the Input Characteristics \n",
      "dIe=(0.7-0.3)*10**(-3)                        #A, change in emitter current\n",
      "dVeb=(0.7-0.62)                                  #V, change in emitter base voltage\n",
      "#Calculation\n",
      "ri=dVeb/dIe                                      #Dynamic Input Resistance at Vcb= -10 V \n",
      "#Result\n",
      "print \" The Dynamic Input Resistance is ri=  \",ri,\"ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The Dynamic Input Resistance is ri=   200.0 ohm\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.3 Page No 144"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.3\n",
      "# Determine Short Circuit Current Gain of the Transistor\n",
      "\n",
      "#Given Data \n",
      "dIe=1*10**(-3)                  #A, change in emitter current\n",
      "dIc=0.99*10**(-3)             #A, change in the collector current\n",
      "\n",
      "#Calculation\n",
      "hfb=dIc/dIe                       #Short Circuit Current Gain\n",
      "#Result\n",
      "print \"The Short Circuit Current Gain is alpha or hfb= \",hfb"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.4 Page No 147 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.4(a)\n",
      "# Determine Common Base Short Circuit Current Gain (alpha)\n",
      "#of the Transistor\n",
      "\n",
      "#Given Data \n",
      "dIe=1*10**(-3)                           #A, change in emitter current\n",
      "dIc=0.995*10**(-3)                    #A, change in collector current\n",
      "\n",
      "#Calculation\n",
      "alpha=dIc/dIe                              #Common Base Short Circuit Current Gain\n",
      "#Result\n",
      "print \" The Common Base Short Circuit Current Gain is alpha= \",alpha\n",
      "\n",
      "#(b)\n",
      "beeta=alpha/(1-alpha)                  #Common Emitter Short Circuit Current Gain\n",
      "# Result\n",
      "print \" The Common Emitter Short Circuit Current Gain is beeta= \",beeta\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The Common Base Short Circuit Current Gain is alpha=  0.995\n",
        " The Common Emitter Short Circuit Current Gain is beeta=  199.0\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.5 Page No 147 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.5\n",
      "# Determine DC Current Gain in Common Base Configuration\n",
      "\n",
      "#Given Data \n",
      "Beeta=100.0                            #dc current gain\n",
      "\n",
      "#Calculation\n",
      "Alpha=Beeta/(Beeta+1)    #DC Current Gain in Common Base Configuration\n",
      "# Result\n",
      "print \" The DC Current Gain in Common Base Configuration is Alpha= \",round(Alpha,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The DC Current Gain in Common Base Configuration is Alpha=  0.99\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.6 Page No 150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.6\n",
      "#Refer Figure 5.20 in the Textbook\n",
      "# Determine the Dynamic Output Resistance, \n",
      "#DC Current Gain & AC Current Gain from given output characteristics\n",
      "\n",
      "#Given Data \n",
      "Vce=10                                       #V, collector emitter voltage\n",
      "Ib=30*10**(-6)                        #A, base current\n",
      "\n",
      "#Calculation from Given Output Characteristics at Ib = 30uA\n",
      "dVce=(12.5-7.5)                      #V, change in collector emitter voltage\n",
      "dic=(3.7-3.5)*10**(-3)           #A, change in collector current\n",
      "Ic=3.6*10**(-3)                      #A, collector current at operating point \n",
      "ro=dVce/dic                            # Dynamic Output Resistance\n",
      "Beeta_dc=Ic/Ib                      # DC Current Gain\n",
      "Beeta_ac=((4.7-3.6)*10**(-3))/((40-30)*10**(-6))                #AC Current Gain, From Graph, Bac=delta(ic)/delta(ib) for given Vce\n",
      "\n",
      "# Result\n",
      "print \"Dynamic Output Resistance ,ro = \",ro/10**(3),\"kohm\"\n",
      "print \" DC Current Gain ,Bdc = \",Beeta_dc\n",
      "print \" AC Current Gain ,Bac = \",Beeta_ac"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Dynamic Output Resistance ,ro =  25.0 kohm\n",
        " DC Current Gain ,Bdc =  120.0\n",
        " AC Current Gain ,Bac =  110.0\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.7 Page No 159"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.7\n",
      "#Refer Figure 5.27 in the Textbook\n",
      "# Determine the Q point from given collector characteristics in fig. 5.27\n",
      "\n",
      "#Given Data \n",
      "Vcc=12                                #V, collector bias juncyion voltage\n",
      "Rc=1000.0                           #Ohms, collector resistance\n",
      "Vbb=10.7                            #V.  base bias junction voltage\n",
      "Rb=200000.0                      #Ohms, base resistance\n",
      "Vbe=0.7                              #V, base emitter voltage\n",
      "\n",
      "#Calculation\n",
      "Ib=(Vbb-Vbe)/Rb             # base current\n",
      "#Value of Ib comes out to be 50uA. A dotted Curve is drawn for \n",
      "#Ib=40uA and Ib=60uA.   At the Point of Intersection:\n",
      "Vce=6                                 #V, collector emitter voltage\n",
      "Ic=6*10**(-3)                   #A, collector current\n",
      "# Result\n",
      "print \" Q point:  Ib = \",Ib/10**(-6),\"microA\"\n",
      "print \" Vce = \",Vce,\"V\"\n",
      "print \" Ic =  \",Ic/10**(-3),\"mA\"\n",
      "#Plot\n",
      "\n",
      "#DC Load LIne  AT Ib=50 microA\n",
      "Vce1=[0,12]\n",
      "Ic1=[12,0]\n",
      "a1=plot(Vce1,Ic1)\n",
      "xlim(0,14)\n",
      "ylim(0,17)\n",
      "\n",
      "\n",
      "# AT Ib=20 microA\n",
      "Vce2=[0,1,12]\n",
      "Ic2=[0,1.5,3]\n",
      "a2=plot(Vce2,Ic2)\n",
      "\n",
      "# AT Ib=40 microA\n",
      "Vce3=[0,1,12]\n",
      "Ic3=[0,4,5]\n",
      "a3=plot(Vce3,Ic3)\n",
      "\n",
      "#At IB=50\n",
      "Vcex=[3.2,9]\n",
      "Icx=[5.5,6]\n",
      "ax=plot(Vcex,Icx,linestyle='--')\n",
      "qx=plot(6.1,5.9,marker='o',label='$Q  point$')\n",
      "legend()\n",
      "\n",
      "# AT Ib=60 microA\n",
      "Vce4=[0,1,12]\n",
      "Ic4=[0,6.5,8]\n",
      "a4=plot(Vce4,Ic4)\n",
      "\n",
      "# AT Ib=80 microA\n",
      "Vce5=[0,1,12]\n",
      "Ic5=[0,9,10]\n",
      "a5=plot(Vce5,Ic5)\n",
      "\n",
      "# AT Ib=100 microA\n",
      "Vce6=[0,1,12]\n",
      "Ic6=[0,12,12.5]\n",
      "a6=plot(Vce6,Ic6)\n",
      "\n",
      "# AT Ib=120 microA\n",
      "Vce7=[0,1,12]\n",
      "Ic7=[0,14.2,15]\n",
      "a7=plot(Vce7,Ic7)\n",
      "xlabel(\"$Vce(volt)$\")\n",
      "ylabel(\"$Ic(mA)$\")\n",
      "show(a1)\n",
      "show(ax)\n",
      "show(qx)\n",
      "show(a2)\n",
      "show(a3)\n",
      "show(a4)\n",
      "show(a5)\n",
      "show(a6)\n",
      "show(a7)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Q point:  Ib =  50.0 microA\n",
        " Vce =  6 V\n",
        " Ic =   6.0 mA\n"
       ]
      },
      {
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEOCAYAAACNY7BQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX++PHXDPu+CyqihJq44ZrpTSNNzcrtZplampre\n6ndbrmVp91q2maaWlX67N8u1MrO6Wm6lKWWZJWpqauK1QXFXdmQbmPP74wgyMsgMDHNm4P18PHgI\nZ87MvEH4vM/5LO+PTlEUBSGEEOIKvdYBCCGEcC6SGIQQQpiRxCCEEMKMJAYhhBBmJDEIIYQwI4lB\nCCGEGXetA7CFTqfTOgQhhHBJtqxMcLk7BkVRXPbjxRdf1DwGiV/7OBpi/K4ce32I31YulxiEEELU\nLUkMQgghzEhicKDExEStQ6gViV9brhy/K8cOrh+/rXRKTTqgNKLT6WrUXyaEEA2ZrW2nS81KEkLU\nT6GhoWRmZmodhssLCQkhIyOj1q8jdwxCCM3J37Z9VPVztPXnK2MMQgghzDg8MUyYMIHIyEg6dOhg\ndvzdd98lPj6e9u3b89xzzzk6LCGEEFc4fIxh/PjxPP7444wdO7b82Pbt2/nqq684cOAAHh4eXLx4\n0dFhCSGEuMLhdwy9e/cmJCTE7Nh7773H9OnT8fDwACAiIsLRYQkhhLjCKcYYjh07xg8//MDNN99M\nYmIiycnJWockhBANllNMVy0pKSEzM5Ndu3axe/du7rvvPv7880+L586cObP888TExAa38ESIhmbb\nhm2sfWct+iI9Ji8Tw54YRt+7+jrs+df673//y6lTp4iJiSEjI4PTp08zffp03NzcavR606ZNo2/f\nvgwYMKDGMV0rKSmJpKSkmr+AogGDwaC0b9++/Os77rhDSUpKKv86Li5OuXTpUqXnaRSuEKKOVfW3\n/d3675SH4x5WtrO9/OPhuIeV79Z/Z9Xr1vb5FZlMJmXy5MnKhx9+aHZ86tSpyhtvvGHz69VE3759\nFaPRWOXjVf0cbW07naIradiwYWzbtg2AlJQUiouLCQsL0zgqIYTW1r6zljHHx5gdG3N8DF+9+5VD\nnl/R7NmzKSkpYcKECWbHExMT+fzzz21+PVudPn0aRVFwd6/7jh6HdyWNGjWK77//nvT0dJo1a8bL\nL7/MhAkTmDBhAh06dMDT05MVK1Y4OiwhhBPSF1m+ds36JoskXVK1z88hx/IDhbbFkZWVxezZs/n1\n118rPZadnY3RaGT//v3s2bOHo0eP0qtXLy5cuICXlxdjx47l9OnTLFmyhC5durB7924efPBBQkJC\n2LJlC1988QWfffYZe/bs4ZdffuHMmTN069aN0tJSNmzYwJIlS9iyZQuLFy8mKiqKlStX8uCDD9r2\nDdjI4Ylh1apVFo+vXLnSwZEIIZydyctk8XjwwGASNydW+/wvB34J31p4wNu2OHbu3ElISAg33nhj\npce2bdvGnXfeyfnz57nxxhv55ptvmDNnDpcvX6Zz586MGDGC4cOHs2nTJsLCwtDr9cybN48RI0Yw\ncOBA5s2bB8DFixdp06YNW7Zs4dVXX0VRFJ599lkA+vfvz9KlS3n66afp2rWrbcHXgFN0JQkhhCXD\nnhjGx3Efmx37KO4jhjw+xCHPL1NcXEyTJk0qHT937hzbtm3j2WefZcCAAXz77bcMHjwYgH379hEW\nFsbq1avp1q1beff44cOH8fX1pV+/fixbtoyHHnoIgDvuuIMtW7aU3w38/PPPdO/eHVA3KNu3b59D\nkgI4yawkIYSwpGz20Np316rdP94w+vHRVs8qqu3zyyQmJvLMM8+Qn5/PL7/8Qm5uLgMGDGDKlCl8\n+eWXBAYGArB161YefvhhAJYvX87UqVO5ePEiLVu2BKCgoIAvvviCNWvWAGoPyrfffsuGDRu46667\n2L59O9OmTQNgxYoVTJo0ic2bNxMTE0N8fDwAn376Kffff79N8dtKEoMQwqn1vatvraaX1vb5AMHB\nwaxatYp//vOfeHh4EB4ezs6dO1m4cCGlpaWAOtaQkZHBtm3bKC4upkePHvz1r38lJyeHOXPmsH79\nen777Tc++OADmjZtCsANN9zA+vXrGThwIPn5+QQHBxMUFASAn58fFy5cIC4ujtDQUIKCgli1apVD\npuhLdVUhhOZc7W97//79LFq0iJEjR3Ly5EnGjx/Pf//7X3bt2sWcOXM0i8te1VXljkEIIWwUExPD\nhg0bSEtL48svv+TIkSO8+eabtGzZkpycnPKuJVcldwxCCM3J37Z9yH4MQggh6oQkBiGEEGYkMQgh\nNGUsNWodgriGDD4LIapkLDVy2XiZfGN++cflYvOv8435lc8xWjin2PI5MrbgfGTwWQgXpCgKRpOx\nzhrrsg9FUfDz9MPXwxc/D/Xfso+y42bHPKo/du3zPPQe6PV6+du2A5muKoSTKmu0rWqsy84psb6x\nLjtHr9NXboSraawjfCMsN97XPK/sHA83D4f8zEJCQtDpdA55r/rs2t0xa0ruGESDoigKxaXFNl1F\n55dY31iXfV6x0a6q0bXlqtrSOY5qtIXrs7XtlMQgnEZZo12TLo/rXo1f8+Gmd7OtYXa3oYH39MPH\n3UcabeFUJDGIOqEoCkWlRXXSWFc8x13vft1G19Yr72ufJ422aIgkMTRAFRttq7s8rtOnXdXzPPQe\ndmmsq+om8fHwwV0vw15C2JskBiejKAqFJYW2zQ6x0Kd9vavvgpKC8kbbmr5pP0+/8u4Raxt4abSF\ncF2SGGqoxFTC/zL+Z/eukoKSAjzdPG3q7vB1t2Eq4JU+bTe9W538XIQQrs/pp6tOmDCBDRs20KhR\nIw4ePGj22Pz585k6dSqXLl0iNDTUoXEt3beUad9No3lQ82qvokN9Qq3uJpFGWwjhahyeGMaPH8/j\njz/O2LFjzY6npaWxZcsWmjdv7uiQADiWcYypvaYy7ZZpmry/EEI4C4fXSurdu7fFRRhTpkzhjTfe\ncHQ45QxZBloEt9Ds/YUQwlk4xWjiunXriI6OpmPHjtWeO3PmzPLPExMT7bbNnSHTQGxwrF1eSwgh\ntJSUlERSUlKNn6/J4HNqaiqDBw/m4MGD5Ofnc9ttt7FlyxYCAwOJjY0lOTmZsLCwysHW4eBz2Bth\nHPl/R2jk16hOXl8IIbTichv1HD9+nNTUVBISEoiNjeXUqVN07dqVCxcuOCyGnKIcikqKiPCNcNh7\nCiGEs9K8K6lDhw6cP3++/OvY2Fj27Nnj0FlJhkx1fEGKeAkhhAZ3DKNGjaJXr16kpKTQrFkzli5d\nava4Fo1zalYqsSEyviCEEKDBHcOqVauu+/iff/7poEiukhlJQghxleZjDM7AkCUzkoQQoowkBmSq\nqhBCVCSJgSt3DDLGIIQQgCQGFEWROwYhhKigwSeG9IJ0PN08CfIO0joUIYRwCg0+MZStYRBCCKGS\nxCDjC0IIYUYSg4wvCCGEGUkMsoZBCCHMSGKQriQhhDDT4BNDalaq3DEIIUQFDToxmBQTJ7JO0DxY\nm+1EhRDCGTXoxHA29yzB3sH4evhqHYoQQjgNzfdj0JKMLwjh/EwmMBqhqAiKi6/+W9Xn1h6z5TmJ\niTB/vtY/Ccdp2IlBpqoKgcnk+IbWlueUloKn59UPLy/zf6s7ZunxwEDbXsfCTsP1WsNODHLHIByg\nrOF1RENbk9ep2PBa29hWdyw4uPaNd9nn7u4gmys6VoNODKlZqfRq1kvrMEQtlZY631VuxWOlpWoD\nV5tG99rHfX1r33iXfS4Nr7iWJolhwoQJbNiwgUaNGnHw4EEApk6dyvr16/H09CQuLo6lS5cSFFS3\nhe0MWQZGdxhdp+9RH5SWOldDe+0xk8k+V6YV//X1tU+XhTS8whXpFEVRHP2mO3bswN/fn7Fjx5Yn\nhi1bttCvXz/0ej3Tpk0DYPbs2ebB6nTYM9wWC1rw3djviAuNs9tr1kRJifNd5Vb8XFHsc2Vam4b6\nesfc3KThFeJ6bG07Nblj6N27N6mpqWbH+vfvX/55jx49+OKLL+o0BmOpkbN5Z4kJigHg8mX4+Wdt\nGueyhteejWlAgP0ab2l4hWhYnHKMYcmSJYwaNcriY126zOS229SGLzExkcTExBq9R1pOGlH+UXi4\neVx5T3U6Wnx89Q1nWcNrr6ted6f8XxBCuKqkpCSSkpJq/Hyna5Jee+01PD09GT3act//gAEzWbwY\nHn0UunSp+ftcO1X1yBGYMgWeeKLmrymEEM7g2ovml156yabnO9XK52XLlrFx40Y+/vjjKs+ZPRv2\n7YO0NGjdGhYtUhe/2Co1K9VsqmpKCtx4Y02iFkKI+sVpEsPmzZuZO3cu69atw9vb+7rnxsTA8uWw\neTOsWwft2sGXX6p99dYyZBloEdSi/OujR9VEI4QQDZ0miWHUqFH06tWLo0eP0qxZM5YsWcLjjz9O\nXl4e/fv3p3Pnzjz22GPVvk6nTvDtt/DuuzBzJtxyC+zcaV0MFRe3Xb4Mly6pCUcIIRo6Taar1tT1\nplyVlsLKlTBjBvToAa+/Dq1aVf1avT7sxZzb59C7eW/27YOxY+HKzFkhhKhXbJ2u6jRdSbXl5gYP\nPaSOFXTtCj17wuOPw8WLls+veMdw9KiMLwghRJl6kxjK+PjA9OnqLCOdTp1+OmsW5OdfPafAWEBm\nQSZNApoAkhiEEKKiepcYykREwDvvqIvW9u1TG/6lS9UupxPZJ4gJikGvU799SQxCCHFVvU0MZVq1\ngjVr4LPP4MMPoXNnWLPVQIvgFuXnyFRVIYS4yukWuNWVnj1hxw5YuxYe+dCAe3Qs+9qrM5tSUmSq\nqhBClGkwiQHUMYfhw+FHHwPHf49l0CB1iqunJ4SEaB2dEEI4h3rflWTJiRwDo+6IJSVFHazOzobn\nnoOsLK0jE0II7TXIxFA2VTUwEP7yF7j3XkhPV7uTFixQK58KIURD1SATQ2pWankBvaNH1QHpDz6A\nbdtgyxZo2xZWr7atxIYQQtQXDS4x5BTlUFRSRLhvOGA+VbV9e9iwARYvhjfeUFdQ//CDhsEKIYQG\nGlxiMGSqU1V1V3aesTRVtW9f2L0bnnxSLZUxdKi6YE4IIRqChpcYKpTCKCqCU6cgNrbyeXo9jBkD\nf/wBvXtDnz7wyCNw7pyDAxZCCAdreImhwgY9x4+rFVU9Pas+39sbnnlG7XLy81NLfL/0EuTlOShg\nIYRwsIaXGLIMZgPP1q54Dg1Vt/5MTr66d8P770NJSR0GK4QQGmiYiaEWVVVjY+GTT9QNgj75BDp2\nhK+/lhlMQoj6o8ElhtSs1PI6SbUpnte9O2zfrs5eeu45uO02dcBaCCFcXYNKDIqimI0x1Laqqk4H\nd98NBw6oA9VDh8KoUfDnn3YKWAghNODwxDBhwgQiIyPp0KFD+bGMjAz69+9P69atGTBgAFl1VJvi\nUv4lPN08CfIOAuxXVdXdHSZNgmPH1P0funeHKVMgI6P2ry2EEI7m8MQwfvx4Nm/ebHZs9uzZ9O/f\nn5SUFPr168fs2bPr5L0rji+kp4PRCI0a2e/1/fzghRfg8GEoKFCTzty5UFhov/cQQoi65vDE0Lt3\nb0KuKWX61VdfMW7cOADGjRvH2rVr6+S9LXUjXVnnZleRkfDee2qZ759+Ut/no4/AZLL/ewkh6p4t\n+yXXB05Rdvv8+fNERkYCEBkZyfnz5+vkfRy9z3ObNur+Dz/8AFOnwptvqncQ/frV7fsK0dCVlJSQ\nm5tr9pGXl1ftsarOufvuu1mzZo3W35bDOEViqEin05WXq7Bk5syZ5Z8nJiaSmJho9WunZqXSoZE6\ntuHI7Tz79IFdu9Sd5CZPVt93zhyoMMwiRINmNBpr3XhX/NpoNBIQEEBAQAD+/v7ln1s6Fh4eXu05\nPj4+Wv+IbJKUlERSUlKNn+8UiSEyMpJz584RFRXF2bNnaXSdjv+KicFWhiwDQ24cAqiJYfToGr+U\nzXQ6uO8+GDZM7Wbq1w8GD4aXX4amTR0XhxD2UNaQ2+NqPDc3l5KSkkqNc1WNdURERLXn+Pj4XPcC\ns7679qL5pZdesun5TpEYhgwZwvLly3nuuedYvnw5w4YNq5P3sedU1Zry9FSL840bB7NnqwvkHn0U\nnn0WAgMdH49oGIqLi2t89W3pnNLSUquuxgMCAswa8qrO8fb2btANubPRKQ4eVRk1ahTff/89ly5d\nIjIykpdffpmhQ4dy3333cfLkSVq0aMFnn31GcHBw5WB1uhoPApkUE76v+ZL5XCaeeh/8/CAzU93B\nTUsnT8KMGfDNN+q/kyeDh4e2MQntlTXk9upeKWvIre1eqe4cachdi61tp8MTQ23UJjGcyjlF98Xd\nOfv0WY4fV0trnzhh5wBr4bff1LuG1FT1TmL48LqZMSXqRlFRkd2uxvPy8jCZTDY31tc7x8vLSxry\nBszWttMpupIcwRm6ka6nUyf49lv1zmHqVLVg39y50KuX1pHVT0VFRbUa3Lz2a0VRrG68o6Kiqm3Q\npSEXWrI6MRQUFLBq1SoOHjxISUkJ+fn56PV6AgIC6NGjB/feey96vfNW2LBXjaS6NnAg3H47rFwJ\nI0equ8i9/jq0aqV1ZNpRFMWsa8UeDXrFhry6Br1x48bVniMNuahPrEoMW7du5fDhw9x1111MmDDB\n7DFFUThw4AALFiygX79+JCQk1EmgtXXtGob27TUO6Drc3OChh9RZTG+/DT17qjWYXngBIiK0jq56\niqKUX5Hba/qhTqezuuukSZMm1Z7j5eWl9Y9JCKdVbWIoLCykRYsW3H777RYfv3TpEgkJCSQkJHDo\n0CG7B2gvhiwDf2n2F0BNDPfco3FAVvD1henT4eGH4ZVX1DpMU6bAU0+pj9lLxYbcXt0rFRvy6zXo\ngYGBNG3atNpGXxpyIRzH5sHnwsJCzp8/z8WLFzl//jyrV69mxYoVdRWfmdoMPicuS2RGnxn0u6Ef\nTZqoC85iYuwcYB07dgyefx5+/llhxoxChg7NIz/fPt0rZd2CtZ2tUvbheb1t8YQQDlUns5IeeOAB\ndu3aRV5eHj4+PoSHh1NYWEj37t05cuQIP//8c62CtlZtEkPzBc3ZPm47Ee43EBmpbs3pqCERRVEo\nLCy06/RDk8kNvT6A8PAAGjWqfYMuDbkQ9VedzEpasmQJq1evxmQycd999+Hj48N//vMf/va3v/Hb\nb7/VOFhHMZYaOZt7lmaBzTjwmzqQe72kcG1DXpur8bJj7u7uVjXewcHBNGvWrNoG3sPDk7VrYdo0\ntWjfG29A586O+5kKIeovqxKDp6cnDz74IJcvX2blypV4enpSeKWWdKdOneo0QHtIy0mjcUBjPNw8\nqpyRtHHjRv72t7+ZNeTWXGmHhIQQExNTbaPvUQer1oYPVzcKWrwYBg2CAQPg1Vddr4tMCOFcbFrH\n4Ofnx+TJk7l06RLvv/8+n3/+OWFhYdx22211FZ9dWLOGYdOmTUycOJEnn3zyyhW5ayw/9vCAxx6D\nBx5Q1z107qwOVk+fDhYWjwshRLVq1MseHh7O888/z0033cSTTz5p75jszppy23v27OG2224jJCTE\nZZJCRYGB6sylAwfUTYhat4YFC6CoSOvIhBCuplbDrzExMSxYsMBesdQZQ9b17xhKSkrYv38/netB\nJ33TpvDBB7BtG2zZAm3bwurV4DqFT4QQWqtVYjhw4IDTdyPB1a4kk8nyPs+HDx8mJiaGwHpU3rR9\ne9iwQR1/eOMNdQX1Dz9oHZUQwhXYnBhWrFjBU089xbJly/Dz82PVqlV1EZddlXUlnTmjdrlc2/4n\nJyfTtWtXbYKrY337wu7daqnvsWNh6FA4ckTrqIQQzqxGdwwvvPACjRo1Yu7cuRw7dszeMdldWZ2k\no0fVvvdrJScn061bN8cH5iB6PYwZA3/8Ab17qzvKPfIInDundWRCCGdkc2IIDw/H09OTO++8k3//\n+9+8+OKLdRGX3RQYC8gsyKRJQJPrDjzX58RQxtsbnnlGHWfx84N27eCll9TFfkIIUcbmxLB582bu\nvvtu7rnnHubMmcOvv/5aF3HZTWpWKjFBMeh1eouJobi4mN9//90l1mPYS2ioWtY7OZnyu6j334eS\nEq0jE0I4A5sTQ2JiIklJSaxcuZKePXuSnJxcF3HZTXVTVQ8dOkRsbCz+/v4aRKet2Fj45BNYt079\nt2NH+PprmcEkRENnc2LQ6XTs3r0bX19f+vTpw2OPPWa3YF5//XXatWtHhw4dGD16NEV2mIRf3eK2\n+j6+YI3u3WH7dnX20nPPwW23qQPWQoiGyebE8P333/Pxxx8zePBg7r33XhYuXGiXQFJTU1m8eDF7\n9+7l4MGDlJaW8umnn9b6dcvWMBQUwNmz6lVyRfV5RpItdDq1vMaBA+pA9dCh6h4Qf/6pdWRCCEez\nOTHcc889jBgxgq+//poVK1Zw88032yWQwMBAPDw8yM/PL98hrmnTprV+3bIZScePq0nB/ZoiIHLH\nYM7dHSZNUkt8x8erdxNTpkBGhtaRCSEcpdpaSWUbuISHhwPQu3fv8sd8fHzMGtWTJ08SU8MKbqGh\noTz99NPExMTg4+PDwIEDq9wcyBZlYwxHd1WeqlpUVMSRI0ecdtc5Lfn5qTvG/e1vMHOm2gX37LPw\n+OPq7CYh6gOTyUhJSQZGYzpGYzolJekYjZfKvy475u/fmRYtnHsGpj1Vmxi8vLzYsmULOTk5DB8+\nHB8fn0rnZGZmsmbNGuLj42ucGI4fP86CBQtITU0lKCiIe++9l48//pgxY8aYnTdz5szyzxMTE0lM\nTLzu65aNMWy1ML5w8OBBWrVqha89t0OrZyIj4b331AVy06bBwoXw2mswerTj9rMQojqKomAy5V/T\nwJd9XLJwTD1uMuXj7h6Ch0cYHh5huLuHlX/u4RGOr29r3N3D8PGJ0/pbtElSUhJJSUk1fr7VO7id\nPXuWpUuXcuHCBQoLCzEajbi5ueHr60t0dDSTJk0iKCioxoGsXr2aLVu28MEHHwCwcuVKdu3axaJF\ni64Ga+NmE9mF2TR9sym503N56CEdffrAxIlXH//3v//N7t27+fDDD2scd0Pzww8wdSoYjWo11379\ntI5I1DeKYqKkJBuj8VKlxryqK3qjMR0AD49wCw282shfe8zdPQx39yB0uvp/hVMnG/UANG7cmOef\nf96su+jMmTM0adLE9igtaNOmDa+88goFBQV4e3uzdetWbrrpplq9Zlk3kk6n4+hRte+8Ihl4tl2f\nPuq2qGvWwOTJ6l3YG2+otZmEuJbJVHylq8ZyY27pir6kJAs3N78rDXl4pcbcz6+j2fGyBt/NTe78\n7cWm/RgAnnvuOZYvX46npyelpaVs2rSJQYMG1TqQhIQExo4dS7du3dDr9XTp0oXJkyfX6jXLupEU\npeqpqrV9j4ZIp4P77oNhw9Rupr59YfBgePlltbqrqH/UrprLVnXPVDxmMhXg7h5qduV+tTGPwNe3\njYUr+lB0OpubJmFHVncllVm6dCnjx48v//rrr79m8ODBdg/MEltvh976+S0MWQb+1fUd2rRR9ynQ\n6dTHCgoKCAsLIyMjA28ZTa2VrCyYPVut5Proo+ogdT0qVFvvqF01mVZ1z1Q8rtO5W9U9UzEBuLkF\noiv7oxOaqbOupDKNGjVi5MiRPPDAA8TExPD77787LDHYqmwNQ9ndQsXfzwMHDtCmTRtJCnYQHKwm\nhscegxkz1NlfM2aoXU0uuOeRSzGZimwecC0tzcbNLbDKxtzbO6bSIKyHRxh6vfytNBRWJYYlS5Yw\nYcIEAO666y5atWrFsmXL2LFjB4888kidBlgbhiwDfWP7kvJT5amqsn7B/mJiYPly+O039a7h7bfV\nhDF8uHlSFpUpikJpaZ7NA64mU1EVM2rC8PJqjJ9fewtX9CHSVSOuy6rfjmnTprFjxw569OjBTTfd\nREJCArNmzQLUFcvOqmyMYWcV4ws9e/bUJrB6rlMn+PZb+OYbdQbT/PnqDKZevbSOzDEUpbRCV80l\nq6/o9XrPKgdcfXxaExhoacA1QLpqhN1ZlRiefvppevTowS+//MKsWbM4ePAg4eHh3HTTTZw7d84p\nN+tRFIXUrFR1cdtRdZOaipKTk/n73/+uTXANxMCBcPvtsHIljByp7iL3+uvQqpXWkVnPZCq87uCq\npSv60tIc3NyCqhhwDcPbu4XFPnq93kvrb1cIwMrBZ0VRKl2VnDt3jl9++YWFCxeyZcuWOguwIlsG\nUC5cvkD8onjSn02nTRv4/POrUyrz8/MJDw8nMzMTLy/5Y3SE/Hy1a2n+fLUG0wsvQESE495f7arJ\nue7gqqUrekUpsXLAteLVfDA6nZvjvjkhqlEng8+WblWjoqIYOnQoISEh1kfnQGU1koxGSE2Fli2v\nPvbbb7/Rrl07SQoO5OsL06fDww/DK6+odZimTIGnnlIfs4WilGA0Zlg1XfLqsQz0ep8qB1z9/OKr\nGHD1k64a0eDUegSqT58+9ojD7srGFwwGaNLEvL6PDDxrJyIC3nlHrbn0/PPQvn0BM2deYujQdEwm\n6wZcS0tzy8sYWFrh6uPT0uIUSr3eU+tvXwiXUG+nJpQXz6ti4PnWW2/VJrB6Su2qybZpwPXxx9Mx\nmUxkZ4exfn04UVFhREaG4empNuZeXjH4+3ep1MCrXTX1v4yBEFqp14khITKBlB8sT1WdMmWKNoG5\ngGsrTloz4FpSkole72vWDVOxMffza2exjo1e7wvoWLtWXQcRE6OW2OjcWeufghANV/1NDJkGht04\njP8eVadPlsnLy+PEiRO0a9dOu+AcpOqKk9e/or+24uS1A65lFSfNE0Aoen3NV7MNH65uFLR4MQwa\nBAMGwKuvqolCCOFY9TcxVOhKGjny6vF9+/bRoUMHPFxsSa5axiDL6gHXsit60Fc54OrjE4u7e7dK\nA65qGQPHd9V4eKh3DQ88oK576NxZHayePl1dXS2EcIx6mRhMiom07DSaBzWvNMbgDAPP1VecrHxF\nr1ac9Lcw4Bp+ZZVrgsUBV1esOBkYqM5ceuQRePFFtSvw+efVpOEp48dC1Ll6mRjO5J4hxCeE4nwf\n8vLMK378ZTO9AAAgAElEQVQmJyfTv39/u7xPbSpOWppRo37dCF/feAtX+Q2v4mTTpvDBB/D77/Dc\nc/DuuzBrllrZVWaQClF36mVLUzZV9ehR9WqzYiOSnJzMtGnTLD5PnRt/yawrxvqKk5UHXH184ggM\n7FEpCUjFSdu0bw8bNsC2bVdLbMybp+4NIYSwv/qZGKqYqpqdnc3p06eJj4+v9Jxz55aTkvIYXl5N\nLA64Xq04aV7HRipOOk7fvrB7N6xapZY4SUhQi/RZ+O8UQtRC/UwMV+4YUvaZJ4Z9+/aRkJCAu3vl\nb/vixc9p02YJjRqNrPSYcB56PYwZA/fco+4/3aeP+vnMmRAVpXV0QtQP9XKVUMV9GCquYahq4Nlk\nKiIr63tCQm53YJSiNry94Zln1J35/PygXTt46SXIy9M6MiFcX71MDGV1kqydkZSd/dOVBVhhDoxS\n2ENoqDrmkJxM+YXA++9DSYnWkQnhupwqMWRlZTFixAji4+Np27Ytu3btqtHrGLIMNA+K5dgx6+4Y\nMjI2Exo6sKZhCycQGwuffALr1qn/duwIX38Ntm1cK4QAJxtjePLJJ7nzzjv5/PPPKSkp4fLlyza/\nhrHUyLm8c5DTjJAQCAhQj2dmZnL+/HlaX1sfAzUx3Hjj+7UNXziB7t1h+3Z1FtOzz17dJKh7d9i2\nYRtr31mLvkiPycvEsCeG0feuvlqHLITTcZrEkJ2dzY4dO1i+fDkA7u7uBAUF2fw6J7NP0ti/MX8e\n8zDrRtq7dy+dO3fGzc28Tn5R0WmKik4TENC9VvEL56HTqeU17rgDli6FoUOhY6ttRKWu4qGTY8rP\n+/j4xwANJjmkG42kFhaSV1pq9tHax4fesrRcVOA0icFgMBAREcH48ePZv38/Xbt25e2338b3mmL9\nM2fOLP88MTGRxMRE89epYqpq1d1I3xIa2l82VqmH3N1h0iR1Y6D7O601SwoAY46PYe27a50mMZQq\nCrnXNNq5JSU08vSknZ9fpfO3Z2ay9Ny5Sg39XyMimNmiRaXzN2dkMD8tjQA3N/wrfAS4ye9+fZOU\nlERSUlKNn+80iaGkpIS9e/eycOFCunfvzlNPPcXs2bN5+eWXzc6rmBgsKZ+qmlw5MQwfPrzS+er4\nwh32+BaEk/L3h5bRejhu4cHCmr1msclU3hB76vVEWajVsT8vj7WXLlVquG8NDuap6OhK5y87d46n\njx83a7T93dwYHh5uMTFEenrSLySkvHEvOz+yirohYyIjGRMZWbNvWLiUay+aX3rpJZue7zSJITo6\nmujoaLp3V7t0RowYwezZs21+ndRsdUbSj0fVKp1lkpOTee2118zOVZQSMjO30LLlW7WKXTgvRVEw\nASYvk8XHD2UX8d6pM1xWrjbcHf38GGthUcSaCxd4JCWF3NJSTFDeGI9u1Ig5cXGVzjcqCqWKQoSH\nB7He3uUNeEsfH4uxTGzcmImNG1v9vbX186OthYQhRG05TWKIioqiWbNmpKSk0Lp1a7Zu3Vqj0tiG\nTAODWg7iwwpdSenp6WRkZNCy4v6eQE7Obry8muHl1cQe34Kws0yjkT/y8692q1z5N8bbm7vDKk8t\n3pqZyfN//lnp/PsiIpj4xDA+Pv4xY45f7U5a1GQFB7reyr4VefS92Y22N7gR5elp8eof4K6wMFJ6\n9MDfzQ1Pna7asibdAgLoVjb7QQgX4jSJAeDdd99lzJgxFBcXExcXx9KlS21+DUOWgcY+sVy4AGXd\nrHv27KFLly7o9eazczMzv5FupFowmkxklpRU6ioJdnfnpsDASufvzslh/qlTlfrQbw0O5v1rt9kD\n9uTl8S+DoVJXiW8VfeIJfn4sbNWqUleMp14PbdsCsPbdtWr3kTc8+vgDfHZnX9asgemTIO9GdZOg\n9s0sf7++13lvIeoTp0oMCQkJ7N69u1avYcg0oGTEcsMNUPY3fL31C7Gxs2r1fq7ApCjkV+gTdwNi\nLXRnpOTns9zCYGaCvz+zbrih0vlbMzMZ98cflQYy+wQHW0wMkZ6eDA0Lu3quuzv+bm6EWShRAnB7\nSAi3h4RY/X1GeHoScZ263H3v6mtxoPm++2DYMHjvPbUe0+DB8PLL5lV5hWhInCox1Fa+MZ/somzS\nTzSuNPA8cqR5DSSjMZ3Ll48QFPQXB0fpONsyMxn6++/kl5biU6Hxvj0khH9bWM+hQ70qbuTpadbY\nN/Xysvj6g8LCuPAX639+Md7exHg7Z9FBT0948kkYN04tzNexIzz6qLoWwkKOE6Je0ymK66wN1el0\nXC/cwxcPM3z1cB7IPEp+Prz+uno8JiaG7du3E1dhgPDChU85f/4TOnT4qq7D1kyxyUSxouCr16OX\nMt82OXkSZsyAb75R/508Wd1hTghXVF3beS2nKolRW2U1klJSrg48nz9/ntzcXG64piskI+Obel8G\nw1Ovx9/NTZJCDcTEwPLlsGkTrF2rFun78kspsSEahnqVGK7doAfUgeeuXbuazSBRFEXWLwirdO4M\nW7aou8fNnAm33AI7d2odlRB1q34lhiwDLYLNVz3v2bOn0sDz5csHcHPzx8en8txzISwZOBD27VNX\nUo8cCSNGwLFjWkclRN2od4khVBeLhweUTXO3NCNJ7hZETbi5wUMPqeW9u3aFnj3h8cfh4kWtIxPC\nvupXYrgyVbW6GkkNYXxB1B1fX5g+HY4cUQv2xcfDrFmQn691ZKJWjEbIzFRnHhw6BLt2wdat8N//\nwo8/ah2dQ9Wr6aqGLAOXlauJ4cyZMxQVFdG8efPyc0pKcsnN3U1wcKI2QYp6IyIC3nlHvWt4/nm1\n+/Lll9X9qGUdnAMYjZCbq37k5V39vKpj1Z1jNKp1+ss+/P2vfp6YqA4wNRD1JjFkFWZhLDVy6liY\n2fjCtQPPWVnbCQzsgZubv0aRivqmVStYswZ+/lndbvStt9QV1AMHqncU4ori4po14FU9p6TEvPG2\n1KCXfR0RUf05Pj7yH3ZFvUkMqVmpxIbEcuxnHX16q8csDTyr3UgyviDsr2dPtcdh7Vp1sVxMjLpJ\nUKdOWkdWQ8XF9r0iLy2tvnEu+7xRo+rP8faWhryO1JvEUDZV9Y8KU1WTk5OZOHFi+TnqNNVNtG+/\nTqMoRX2n08Hw4epGQYsXq5sFDRgAr76qJoo6VVRk3ytyk6n6xrnsIzKy+kZfGnKXUX8SQ5aBmMBY\nvj0JcXFqEkhOTua9994rP6eg4H+YTEX4+bXXMFLREHh4wGOPwQMPqHcNnTvDww+rg9blm6UVFdn3\nilxRrL8ij4qq/hwvL2nIG6h6lRgCSuKIjlZ/n0+dOo2iKERX2BClbJpqdeWShahEUSxfkVfTWAfm\n5vJKXh7/apHLpcW55M7Lxds7Fy9jHjqw/oq8cePqG31pyIWd1J/EkGmgY8nt5QPPycnJlQaeMzO/\nITJyrEYRCocqa8hrevVt6Wudzvor8iZNzI55BQTQNCCAo6f9GT8/gN+OBzDzdS/uu0/acuF86k1i\nSM1KpWVOiypXPJtMhWRl/UCbNis0ilBcl6JAYaF9GvCyY3q9dVfkgYFqjW1rrshr6cYOsOoO2LYN\npk6F+fNh3jzo08cOP0Mh7KReJAZFUUjNSiX9z1huUXcGJTk5mUcffbT8nOzsH/Hza4+HR6hGUdYz\nZQ25Pa/I3dysuyIPCoLo6Oob/evszaC1vn1h925YtUpd95CQoJb7jo/XOjIh6kliuJh/ES93L1KP\nBjLxgasDzxXvGBp8GQxFgYIC+16Ru7tbd0UeHAzNmlXf6DtxQ14X9HoYMwbuuQcWLlTvGu65Ry3W\nZ2HLaSEcxukSQ2lpKd26dSM6Opqvv/7aqudcW1X15MmTeHh40KTJ1b2cMzK+4cYbP6irsO2vrCG3\n1xV5xYa8uivykBB1bmV1jb5sUGAX3t7qwrgJE+C119QS3088AU8/rf64hXA0p0sMb7/9Nm3btiU3\nN9fq5xiyDET7xZJSqE7e+PJL87uFoqJTFBefJSCg8vaedqMoarEce16Re3pad0UeFgbNm1ff6EtD\n7tRCQ9Uxh7//Hf75T/UiZ+ZMNWFUsfupEHXCqX7dTp06xcaNG/nnP//Jm2++afXzDJkG/Etiad1a\nneFRNiOpTEbGN4SE9Eenu04BG6NRLZqVk1PzK/Kyhry6K/KwMGjR4vrnSEPeYMXGwiefqGMQU6fC\nggUwZ466aE5mMAlHcKrE8I9//IO5c+eSk5NT5TkzZ84s/zwxMZHExERSs1PR5ySYzUh68skny8/L\nyNhMWNjd13/zGTPUKopxcZUb64gI9a+1ukZfLuuEHXXvDtu3w4YN6t7T8+eri+W6d9c6MuHskpKS\nSEpKqvHznWbP5/Xr17Np0yYWLVpEUlIS8+fPrzTGUNW+pQNWDiDkj3/QzmsQM2YohIWFcfjwYaKi\nolCUEn76qRHdux/Cy6ux5TfPyYEbboDkZPVKXggnU1ICS5fCiy/CrbeqYxHX7FYrRJVcds/nnTt3\n8tVXXxEbG8uoUaPYtm0bY8datxjNkGUg06CW2zYYDPj5+RF1ZVpHTs6veHvHVJ0UQC1q07+/JAXh\ntNzd1d3jUlLUKa3du8OUKZCRoXVkoj5ymsQwa9Ys0tLSMBgMfPrpp/Tt25cVK6pfjFZqKiUtO43T\nh9TFbTZPUzUa1U7cZ56xx7chRJ3y94cXXlD3kSkoUPeAmDtXXVIihL04TWK4lrX1jM7kniHUJ5Q/\nU7xp1crSwHM1iWH1arWgfoXnCOHsoqLgvfdgxw746Sdo0wY++kgtiCpEbTllYrj11lv56quvrDrX\nkGWgiU8s4eHg52deCsNovER+/lECA3tZfrKiqPUIpk61V+hCOFSbNur+DytWwLvvQrdu8N13Wkcl\nXJ1TJgZbpGalEmhSu5FMJlP5rm0AGRlbCA5ORK+vYkXt1q3q5iF3NOAV0aJe6NNHnW09bRpMngx3\n3gm//651VMJVuXxiMGQacM9TB56PHz9OcHAwERERgBXdSPPmqctLZXK4qAd0OrjvPjh8WN1WtG9f\nmDgRTp/WOjLhalw/MWQZMF6IrTTwrCgmMjO/ITR0oOUn7t+vXlKNHu3AaIWoe15e6taiKSnqEpyO\nHeFf/1JnZQthjXqRGLJSryaGsm6ky5cP4OYWiI9PFZO9581TC9I0sMJtouEIDlYrtu7bB2lpaomN\nRYvUiXhCXI/rJ4ZMA+eOqImh4sDzdbuR0tLU5aR/+5sDIxVCGzExsHw5bNqkDlS3awdffqnOvRDC\nEpdODMWlxZzLO0fmiWY0bWpi7969FQaer5MY3n4bHnqowua7QtR/nTvDli3q7KWZM+GWW2DnTq2j\nEs7IpRNDWnYa4V5NaBXnzvHjKURERBAaGkpJSS65uXsIDr618pOys9XaAk895fiAhXACAweq3UuT\nJsHIkTBiBBw7pnVUzklRFC4XXyazIFPrUBzKpau+GbIMhFB54DkraxuBgTfj5uZX+Unvv69OT42J\ncXC0QjgPNzf1pvm++9Qb6J49YdQodVX1lUl99Y5JMZFVmEV6fjrpBelcyr9U/nl6Qbrl4/np6HV6\nxnQcw+LBi7X+FhzGtRNDpgGvgsqJocpupOJi9a9g/XoHRyqEc/L1henT4eGH4ZVX1DpMU6aoN9S+\nvlpHV7Xi0mKzxtuahj6rMIsArwDCfMII8w0r/zfcN5wwnzASIhMsHvfx8NH623U4104MWQZKLsVy\nY3d4//1khgwZgqIoZGRspkMHC43/p5+qv/mdOjk+WCGcWEQEvPMOPP44PP+8WoPp5ZfV/ajdrrON\nSW0pikJecZ5ZQ27WoFdxvLCksFIDX/ZvpF8kbSPaVjoe6hOKu96lmzyHcemfkiHLQO7Ju2g5qpT9\n+/fTpUsXCgqOoShGfH3bmp9cVv5i7lxtghXCBbRqBWvWwM8/q3Ul33oL3nhDHZeobh1oqamUrMKs\n6zbolo67690J87lyhX5NQ98ypCU3N7250vFAr0Cr66kJ27l2Ysg0cP6PWCCFxo0bExwczKlTKwgN\nvaPyL82336r/Dhjg8DiFcDVduhfx2aZ0Plt/iUmvpROyLJ0h96fjG2a5Hz69IJ3swmwCvQLLG2+z\nht4njJjGMRYTgLe7t9bfrriGSyeG4xkGfIpbcOzYVrPxhcaNJ1Q+ee5c9RJIrjJEA6IoCrnFuTYP\nuBaXFpc33rETwsg5F8abq8K5oXEYwwY0JrF5+0oJIMQ7BDd9HfY7CYdx2cSQb8wnuzCbm6Iblw88\nm0yFZGfvID7+Y/OT9+2DP/6A++/XJlgh7KDUVEpGQYZNA64ZBRl4uXtZ7I8P9w3nxrAbLR739/Sv\ndNedk6NeX/3fg+pg9fTpshSovnLZxJCalUqovjltbtSTnJzMiBEjyMragZ9fRzw8QsxPnjdPLR4j\n5S+EkygwFtg84JpblEuQd1CV/fE3hNxgMQF4uXvZJebAQHXm0iOPqFuMtm6tDlQ/9pj8adU3TrPn\nszUq7lu6IWUD/2/FuzwasIGXXw7k7NmzXLjwEu7uwbRoMePqk06cgC5d4M8/IShIo8hFfaUoCjlF\nOTYPuJaYSipdpVfsj7d0PNg72Km6ag4eVMt8//EHzJqlromQnlrnZOuezy57x2DIMmDKiMWnURox\nMTEEBgbyxx+badNmmfmJb78N48dLUhDVKjGVqF01+RYa9CufX3s8oyADH3cfi90xYT5hlaZNljX0\nfh5+Lj+rpkMHteTYtm3qXlfz56s35336aB2ZqC2nSgxpaWmMHTuWCxcuoNPpmDx5Mk888YTFcw1Z\nBi6fiiUvWh1fKCxMw2g8T0BAl6snZWXBsmVqiW3RoOQb882u0q1p6POK8wjxCamyP75lSEuL8+Y9\n3Rp2P0rfvrB7N6xapa57SEhQq7rGx2sdmagpp0oMHh4evPXWW3Tq1Im8vDy6du1K//79ibfwG3Y8\n3UDOyR6caJxEt27dyMz8hpCQAeh0FW61//MfuPtuaNbMgd+FsCeTYiK7MNuqAdeKDb2iKGarVys2\n5DFBMXRp3KXS8WDvYPQ6ly4fphm9HsaMgXvugYUL1buGe+5Ri/VFRWkdnbCVUyWGqKgooq78Fvn7\n+xMfH8+ZM2csJoaUC6k09o5l3755jB07ioyMtwgLG3L1hKIidSnnxo2OCl9Uw1hqtHnANbMgEz9P\nvyr73dtHVJ42GeYThq+Hr8t31bgib291VviECfDaa2qJ7yeeUDdK9PfXOjphLacdfE5NTeXWW2/l\n0KFD+F/5jao4gOL/agg9dx9l59ZYzp8/w2+/teCmm47g6Xnl8mTZMvXe9ptvNPoO6i9FUcg35ts8\n4Hq5+DKhPqFV9sdbOh7qE4qHm4fW37KoIYMB/vlPSEpS7x4mTAB3p7ocbRjqxeBzXl4eI0aM4O23\n3y5PCmVmzpxJYUkhhT/lo/P4kdjYWEpLf8fbu8XVpFBW/uKttzSI3rVUrDhp7YBren46Op2uygb9\nhpAb6N6ke6XjQd5B0lXTwMTGwiefqGMQU6fCggUwZ47awys3dHUnKSmJpKSkGj/f6e4YjEYjd999\nN4MGDeKpa/ZMKMt6+87uo9/CcdydthC9fgkvvtgMRSnhhhteV0/cuFGdYL1vX4P67bu24qQ1DX1W\nYRb+nv6W++OvqTJZsaH39XDi0pvCKSmKOovp2WehUSN1sVz37lpH1TC49B2DoihMnDiRtm3bVkoK\nFRmyDJAVS1bWrwwY0I2MjOXExc27esK8eS5d/qKqipPlDXoVxwtLCtWuGgsNeiO/RsSHx1c6LhUn\nhaPodOqdwh13qHtlDR0Kt96qjkXcUMXW7EIbTtUi/PTTT3z00Ud07NiRzp07A/D6669zxx3meysY\nMg3kn2lBauo3JCRMIT8/hcDAnuqDe/bA//6nbk3lBEpNpWQWZlbqb0/PT+dSQeVCZNdWnLRUH75l\nSEt6NO1R6bhUnBSuwN1d3T1u1Ch48031rmHcOPjXvyA0VOvoBDhZYrjlllswmUzVnvfHuVR0WTdw\n7NhimjUbQ17ebej1V+aSl5W/8LD/gGVhSWGVDbm1FSfNGnqfcJo3bm6xn74hbg4iGhZ/f3XHuMmT\n4aWX1D0gnn1W3RPCWwquasrpxhiup6yf7C+L7iZt7YOEXJjFp58mEBTUiyZNHoHUVOjaVZ0KERho\n02ufzD7Juj/WlV/FWxpwLSotqrJOTVXHQ3xCpKtGCCv88YdaYuO33+DVV2H0aHV9hKg9W8cYXDIx\nNJ3VjtBts7mp+X+ZMGEDXbrswscnVt2P0NNT3VnEBj+c+IGRn49kUMtBNAtqVuXAa4BngHTVCFHH\nfvhBncFkNKoD1P36aR2R63PpwWdrKIrCxeJUGuXm0r59JO7uwWpSyMyEFSvUyl42WLxnMf/a/i9W\nDl/JgDjZxEcIrfXpA7t2qTvJTZ6sdjG98Qa0b691ZA2Hy92oXbh8AV2pD5nn9xEXl0No6JWB6ffe\ngyFDoGlTq16nxFTCE5ueYP7P89kxfockBSGciE6nVms9fFjdVrRvX5g4EU6f1jqyhsHlEoMhy4A+\npwXnzn1Po0YH1MRQVATvvquuu7dCRkEGgz4eREp6Crse3kXrsNZ1HLUQoia8vNS5JCkpEBEBHTuq\ns5dycrSOrH5zucRwPD2VovOxtGkDRuNvBAffCh99BJ06qXWAq3Hk4hF6fNCDjpEdWT96PcHesgWV\nEM4uOFit2LpvH6SlqZsELVqkjkMI+3O5xLDPYMArvykdOwYTGNgTN523Wgj+mWeqfe7GYxu5ddmt\nPH/L88wfMF9mCwnhYmJiYPly2LQJ1q5Vi/R9+aW6qlrYj8slhkNnDHjlB9CqVaHajbRxozrpuW/f\nKp+jKArzds7j4a8eZu39axnfebwDIxZC2FvnzrBli9qDPHMm3HIL7NypdVT1h8slhj8zDJSmFxMT\nc0xNDHPnXrf8RWFJIQ+te4iPD37Mrod30atZLwdHLISoKwMHqt1LkyapxQ5GjIBjx7SOyvW5XGI4\nW2ig8Ow5YmPd8P09V13Udu+9ls/NPctty2+jwFjAj+N/JCYoxrHBCiHqnJsbPPQQHD2qrm/t2VNd\nPX3xotaRuS6XSwx5+jSa+hcSGTkI3fz56qI2C+Uv9pzZQ48PejCo5SBWj1iNn6efBtEKIRzF1xem\nT4cjR9QOhPh4mDUL8vO1jsz1uFxioCCU9m1OEGrsrO5C/vDDlU5Z/ftq7vj4Dt4a+BYv3PqCrFYW\nogGJiFA3b/z5Z7Wb6cYb1WqupaVaR+Y6XC4xKJktaNt2PyFLflM7FgMCyh8zKSZmbJ/Bc1ufY8uD\nW7in7T0aRiqE0FKrVurq6c8+gw8+UAesN2+WGUzWcLn5mvrscLre1hL3xz+H338vP55XnMfY/47l\nwuUL/DrpVxr5NdIwSiGEs+jZE378UZ3e+uST6pTXuXPVpU/CMte7Y8jwomthBAwbBk2aAJCalUqv\nD3sR4hPCd2O/k6QghDCj08Hw4eq15PDh6mZBY8fCyZNaR+acXC4x+BkVIj/cX17+4ocTP9Dzw55M\n7DyRDwZ/gJe7l8YRCiGclYcHPPaYWmKjeXO1e+m55yArS+vInIvLJYYm3rn4h/SAdu1YvGcx9665\nl+XDlvPkzU/KILMQwiqBgfDKK3DgAKSnqyU2FiyA4mKtI3MOTpUYNm/eTJs2bWjVqhVz5syxeE53\njwxMU6a4ZGXUpKQkrUOoFYlfW64cv7PG3rSpOjD93XfqSur4eFi9uvIAtbPGX1ecJjGUlpby97//\nnc2bN3P48GFWrVrFkSNHKp03wi2LO07P5ljGMZerjOrqv1wSv7ZcOX5nj71DB9iwARYvVvd+uPlm\ndcOgMs4ev705TWL49ddfadmyJS1atMDDw4P777+fdevWVTrvp6gsOkYlsH6UVEYVQthX376wezc8\n8YQ6OD10qLpgrqFxmsRw+vRpmjVrVv51dHQ0py3sytF+8hzmD5iPm97NkeEJIRoIvR7GjFH3oO7d\nW91R7vvvtY7KsZxmz+cvvviCzZs3s3jxYgA++ugjfvnlF959993yc2RwWQghasYl93xu2rQpaWlp\n5V+npaURHR1tdo6T5DAhhKjXnKYrqVu3bhw7dozU1FSKi4tZvXo1Q4YM0TosIYRocJzmjsHd3Z2F\nCxcycOBASktLmThxIvHx8VqHJYQQDY7T3DEADBo0iKNHj/K///2P6dOnmz1mzRoHZ5WWlsZtt91G\nu3btaN++Pe+8847WIdmstLSUzp07M3jwYK1DsVlWVhYjRowgPj6etm3bsmvXLq1Dssnrr79Ou3bt\n6NChA6NHj6aoqEjrkK5rwoQJREZG0qHCHuwZGRn079+f1q1bM2DAALKceKmxpfinTp1KfHw8CQkJ\n/PWvfyU7O1vDCK/PUvxl5s+fj16vJyMj47qv4VSJoSrWrnFwVh4eHrz11lscOnSIXbt2sWjRIpeK\nH+Dtt9+mbdu2LjkB4Mknn+TOO+/kyJEjHDhwwKXuRFNTU1m8eDF79+7l4MGDlJaW8umnn2od1nWN\nHz+ezZs3mx2bPXs2/fv3JyUlhX79+jF79myNoquepfgHDBjAoUOH2L9/P61bt+b111/XKLrqWYof\n1AvULVu20Lx582pfwyUSg7VrHJxVVFQUna6UcvT39yc+Pp4zZ85oHJX1Tp06xcaNG3n44YddbgJA\ndnY2O3bsYMKECYDaZRkUFKRxVNYLDAzEw8OD/Px8SkpKyM/Pp2nTplqHdV29e/cmJCTE7NhXX33F\nuHHjABg3bhxr167VIjSrWIq/f//+6PVqc9mjRw9OnTqlRWhWsRQ/wJQpU3jjjTeseg2XSAzWrnFw\nBampqezbt48ePXpoHYrV/vGPfzB37tzyPwxXYjAYiIiIYPz48XTp0oVJkyaR70JbeoWGhvL0008T\nExNDkyZNCA4O5vbbb9c6LJudP3+eyMhIACIjIzl//rzGEdXckiVLuPPOO7UOwybr1q0jOjqajh07\nWsW/nSgAAAZCSURBVHW+S/ylu2L3hSV5eXmMGDGCt99+G39/f63Dscr69etp1KgRnTt3drm7BYCS\nkhL27t3LY489xt69e/Hz83PqboxrHT9+nAULFpCamsqZM2fIy8vj448/1jqsWtHpdC77N/3aa6/h\n6enJ6NGjtQ7Favn5+cyaNYuXXnqp/Fh1f8sukRisWePg7IxGI/fccw8PPPAAw4YN0zocq+3cuZOv\nvvqK2NhYRo0axbZt2xg7dqzWYVktOjqa6OhounfvDsCIESPYu3evxlFZLzk5mV69ehEWFoa7uzt/\n/etf2blzp9Zh2SwyMpJz584BcPbsWRo1cr09U5YtW8bGjRtdLjEfP36c1NRUEhISiI2N5dSpU3Tt\n2pULFy5U+RyXSAyuvsZBURQmTpxI27Zteeqpp7QOxyazZs0iLS0Ng8HAp59+St++fVmxYoXWYVkt\nKiqKZs2akZKSAsDWrVtp166dxlFZr02bNuzatYuCggIURWHr1q20bdtW67BsNmTIEJYvXw7A8uXL\nXeriCNRZkXPnzmXdunV4e3trHY5NOnTowPnz5zEYDBgMBqKjo9m7d+/1k7PiIjZu3Ki0bt1aiYuL\nU2bNmqV1ODbZsWOHotPplISEBKVTp05Kp06dlE2bNmkdls2SkpKUwYMHax2GzX777TelW7duSseO\nHZXhw4crWVlZWodkkzlz5iht27ZV2rdvr4wdO1YpLi7WOqTruv/++5XGjRsrHh4eSnR0tLJkyRIl\nPT1d6devn9KqVSulf//+SmZmptZhVuna+D/88EOlZcuWSkxMTPnf76OPPqp1mFUqi9/T07P8519R\nbGyskp6eft3XcJpaSUIIIZyDS3QlCSGEcBxJDEIIIcxIYhBCCGFGEoMQQggzkhiEEEKYkcQghBDC\njCQGIWrJHmWwCwsL7RCJEPYhiUE0aIcPH+amm27iwQcf5OLFiwDs27ePdu3asXHjxmqfv379enJz\nc216z2eeeYYZM2aYHTt16hRbt2616XWEqCuSGESD1rZtW+666y769etHREQEoBZ5W7NmTbUVNM+e\nPUtOTg7h4eE2vWdcXBw333wzAEeOHGHWrFm0bNmSw4cPU1BQULNvRAg7ksQgGrzo6GizIo2HDh2y\nqh7R0qVLGT58uM3v9+uvv5aXXd++fTudO3cG4K677mLVqlU2v54Q9iaJQTR40dHR5RuvfPfdd/Tr\n148NGzawdOlSRo0axcmTJwHYtGkTb731FosWLeLcuXNcuHABHx8f4Gp57M8//5zU1NTyTWnWr1/P\n8uXLmTdvXvmufRcuXCA8PJxNmzbx4YcfcurUKc6dO0dcXBwHDx7U4CcghDlJDKLBK7tjKC0t5cKF\nC+Tk5LBixQrGjx/PsmXLiImJ4cSJE8yaNYt//OMfxMfHk5eXZzZgfOHCBRo1akRhYSEtWrQgLi6O\nlJQUPvroI8aNG8edd97J//3f/5GTk1O+u9agQYNo0qQJkyZNIioqClD3jxBCa5IYRINXdsewbt06\nhgwZwrJly3jggQcA8PLyAmDt2rW0atWK9evXo9PpaNmyJUajsfw1evbsydq1axk0aBAA7dq1Y/ny\n5YwZMwaAEydOEBwczO7du7npppsAOHfuXHlCKONKu8uJ+ksSg2jwgoKCyMjIQK/X4+fnR0lJCTEx\nMYC6KdSZM2fw8fFhyJAh3H333fTu3Zvz58/j5uZm9jrnz58nLCyM5ORkbr75ZoqKispf5/PPP+fB\nBx8kOTmZbt26sX379vIksXv37vKE4Irbp4r6R34LhQD+8pe/lG/+9Mgjj7Bx40a+/vprfv/9d5o0\nacLIkSM5cOAAGzZsYPXq1QQHB+Pr62v2Gn369OHzzz8nMzOTpk2bMmnSJL799luWL1/OiBEjaN26\nNXFxcfz444907NiRJk2acPr0aXJzc/H19UVRFAICArT49oUwI/sxCFFD8+bNY+LEieVjBrW1f/9+\n/vjjD0aOHGmX1xOipuSOQYgamjRpEmvWrLHb63333Xfce++9dns9IWpKEoMQNRQUFER8fHz5dNba\nOHToEP369ZMxBuEUpCtJCCGEGbk8EUIIYUYSgxBCCDOSGIQQQpiRxCCEEMKMJAYhhBBmJDEIIYQw\nI4lBCCGEGUkMQgghzPx/TjiQ+AqbBlQAAAAASUVORK5CYII=\n"
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.8 Page No 173"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 5.8\n",
      "#Program to Calculate Dynamic Drain Resistance of JFET\n",
      "\n",
      "#Given Data \n",
      "u=80.0                                      # Amplification Factor\n",
      "gm=200*10**(-6)                   # S, Transconductance\n",
      "\n",
      "#Calculation\n",
      "rd=u/gm                                #Dynamic Drain Resistance\n",
      "# Result\n",
      "print \" The Dynamic Drain Resistance of JFET is rd= \",rd/10**(3),\"kohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The Dynamic Drain Resistance of JFET is rd=  400.0 kohm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}