1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
{
"metadata": {
"name": "",
"signature": "sha256:ae9612ced78590c195456849014e70cbd1cdee113840d747c19ee249579f79a3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4:Semiconductor Diode"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.1 Page No.85"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vrms=220 #Volts, power supply\n",
"n2=1 #Assumption\n",
"n1=12*n2 #Turns Ratio\n",
"\n",
"#Calculation\n",
"import math\n",
"Vp=math.sqrt(2)*Vrms #Maximum(Peak) Primary Voltage\n",
"Vm=n2*Vp/n1 #Maximum Secondary Voltage\n",
"Vdc=Vm/math.pi #DC load Voltage \n",
"# Results \n",
"print \"The DC load Voltage is = \",round(Vdc,2),\"V\"\n",
"print \"The Peak Inverse Voltage(PIV) is = \",round(Vm,1),\"V\""
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.2 Page No.90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vrms=220 #Volts, power supply rms voltage\n",
"n2=1 #Assumption\n",
"n1=12*n2 #Turns Ratio\n",
"\n",
"#Calculation\n",
"import math\n",
"Vp=math.sqrt(2)*Vrms #Maximum(Peak Primary Voltage\n",
"Vm=n2*Vp/n1 #Maximum Secondary Voltage\n",
"Vdc=2*Vm/math.pi #DC load Voltage \n",
"\n",
"# Results \n",
"print \"The DC load Voltage is = \",round(Vdc,1),\"V\"\n",
"print \"The Peak Inverse Voltage(PIV of Bridge Rectifier is = \",round(Vm,1),\"V\"\n",
"print \"The Peak Inverse Voltage(PIV of Centre-tap Rectifier is = \",round(2*Vm,1),\"v\""
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.3 Page No.95"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"Rl=1000.0 #Ohms, load resistance\n",
"rd=10.0 #Ohms forward base dynamic resistance\n",
"Vm=220.0 #Volts(Peak Value of Voltage)\n",
"#Calculation\n",
"Im=Vm/(rd+Rl) #Peak Value of Current\n",
"\n",
"# Result\n",
"print \"The Peak Value of Current is = \",round(Im*1000,1),\"mA\"\n",
"\n",
"#(b) dc or av value of current\n",
"\n",
"Idc=2*Im/math.pi #DC Value of Current\n",
"# Results \n",
"print \"The DC or Average Value of Current is \",round(Idc*1000,2),\"mA\"\n",
"\n",
"#(c)\n",
"Irms=Im/math.sqrt(2) #RMS Value of Current\n",
"# Results \n",
"print \"The RMS Value of Current is = \",round(Irms*1000,1),\"mA\"\n",
"\n",
"#(d)\n",
"r=math.sqrt((Irms/Idc)**2-1) #Ripple Factor\n",
"# Results i\n",
"print \" The Ripple Factor r = \",round(r,3)\n",
"\n",
"#(e)\n",
"Pdc=Idc**2*Rl\n",
"Pac=Irms**2*(rd+Rl)\n",
"n=Pdc/Pac #Rectification Efficiency\n",
"# Results\n",
"print \"The Rectification EFficiency n(eeta) = percent.\",round(n*100,2)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.4 Page No.103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vz=9.1 #Volts\n",
"P=0.364 #Watts\n",
"#Calculation\n",
"Iz=P/Vz\n",
"#Result\n",
"print \" The Maximum permissible Current is \",Iz*1000,\"mA\""
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4.5 Page No.105"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Ci=18*10**(-12) #i.e. 18 pF, capacitance of diode\n",
"Vi=4 #volt, initial voltage\n",
"Vf=8 #v, final voltage\n",
"\n",
"#Calculation\n",
"import math\n",
"Vf=8 \n",
"K=Ci*math.sqrt(Vi)\n",
"Cf=K/math.sqrt(Vf)\n",
"#Result\n",
"print \" The Final Value of Capacitance is C = \",round(Cf/10**(-12),3),\"pF\""
],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|