1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
{
"metadata": {
"name": "",
"signature": "sha256:d04dc734c5bc464767e0da96b38331e03b832b88f0bd8644b242b3682feeb9d9"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2:Current and Voltage Source"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.1 Page no.39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vs=2 #V open circuit voltage\n",
"Rs=1 #ohm . internal impedence\n",
"#Current Source or Norton's Representaion (Parallel Current Source & Resistor\n",
"Is=Vs/Rs #Ampere, short circuit current\n",
"#result\n",
"print \"The Short Circuit Current Value is \",Is,\"A\"\n",
"print \"The Source Impedence Value is \",Rs,\"ohm\"\n",
"print \"The Current Source & Source Impedance are connected in Parallel.\""
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.2 Page no.40"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Is=0.2 #Amperes\n",
"Zs=100 #Ohms\n",
"#Voltage Source or Thevenin's Representaion (Series Voltage Source & Resistor)\n",
"Vs=Is*Zs #Volts\n",
"# Results \n",
"print \"The Open Circuit Voltage is \",Vs,\"V\"\n",
"print \"The Source Impedence Value is \",Zs,\"ohm\"\n",
"print \"The Voltage Source & Source Impedance are connected in Series.\""
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.3 Page no.40"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Is=1.5*10**(-3) #Amperes ,source current\n",
"Zs=2000 #Ohms, resistance connected to the loads\n",
"Z1=10000 #Ohms , load resistance 1\n",
"Z2=40000 #Ohms load resistance 2\n",
"#Calculation for Current Source Representation\n",
"Zl=Z1*Z2/(Z1+Z2)\n",
"I2=Is*Zs/(Zs+Zl)\n",
"I4I=I2*Z1/(Z1+Z2) #Using Current Divider Rule\n",
"\n",
"#Calculation for Current Source Representation\n",
"Vs=Is*Zs #Open Circuit Volatge\n",
"I=Vs/(Zs+Zl)\n",
"I4V=I*Z1/(Z1+Z2) #Using Current Divider Rule\n",
"# Results \n",
"print \"The Load Current using Current Source Representaion is I4I = \",I4I,\"A\"\n",
"print \"The Load Current using Voltage Source Representaion is I4V = \",I4V,\"A\"\n",
"print \"I4I==I4V so\"\n",
"print \" Both Results are same.\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2.4 Page no.45"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"Vs=0.01 #V ,dc voltage\n",
"Rs=1000 # ohm, resistance\n",
"#Output Side resistance\n",
"Ro1=20000 #ohm, 20 kOhms\n",
"Ro2=2000 # Ohms\n",
"\n",
"#Calculation\n",
"i=Vs/Rs #Input Current\n",
"Io=100*i #Output Current\n",
"Il=Io*Ro1/(Ro1+Ro2) #Using Current Divider Rule\n",
"Vo=Il*Ro2 #Output Volatge\n",
"\n",
"# Result\n",
"print \"The Output Voltage Vo = \",round(Vo,3),\"V\""
],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|