1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
{
"metadata": {
"name": "CH 14"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 :Electronic Instruments"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 14.1 Page no.443"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 14.1\n",
"# Determine the Series Resistance to Convert given \n",
"#d' Arsonval movement into a Voltmeter with the specified Range\n",
"\n",
"#Given Circuit Data\n",
"Rm=100.0 #Ohms, coil resistance\n",
"Is=100*10**(-6 ) #A current sensivity\n",
"Vr=100.0 #V, voltage\n",
"\n",
"#Calculation\n",
"Rtotal=Vr/Is #series resistance\n",
"Rs=Rtotal-Rm #additional series resistance\n",
"#Result\n",
"print \" The Series Resistance to Convert given dArsonval movement into a Voltmeter is, Rs = \",Rs/10**3,\"Kohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Series Resistance to Convert given dArsonval movement into a Voltmeter is, Rs = 999.9 Kohm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 14.2 Page no. 445"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 14.2\n",
"#Determine the Shunt Resistance required. \n",
"\n",
"#Given Circuit Data\n",
"Rm=100.0 #. meter resistance #Ohms\n",
"CS=100*10**(-6) #A. current sensivity\n",
"Imax=10*10**(-3) #A. maximum current\n",
"\n",
"#Calculation\n",
"Ish=Imax-CS\n",
"Rsh=Rm*CS/Ish\n",
"# Result\n",
"print \" The Value of Shunt Resistance is, Rsh = \",round(Rsh,6),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The Value of Shunt Resistance is, Rsh = 1.010101 ohm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 14.3 Page no.446"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 14.3\n",
"# Design the Universal Shunt for making Multi-Range\n",
" #Milliammeter with Range 0-1 mA,0-100 mA,0-500 mA,0-1 A\n",
"\n",
"#Given Circuit Data\n",
"CS=100*10**(-6) #A, current source\n",
"R=100.0 #Ohms, resistance\n",
"Rm=900.0 #Ohms, resistance of a meter\n",
"\n",
"#(a)\n",
"#Calculation\n",
"Imax1=1*10**(-3) #A, maximum current\n",
"Rsh=CS*R/(Imax1-CS) #ohm, shunt path resistance\n",
"Rm1=Rm #ohm, meter branch resistance\n",
"Ish1=Imax1-CS #A shunt path current\n",
"Rsh1=Rm1*CS/Ish1 #ohm shunt path resistance\n",
"\n",
"#(b)\n",
"#Calculation\n",
"Imax2=0.01 #A, maximum current\n",
"Ish2=Imax2-CS #A, shunt path current\n",
"R1=(R*Ish2-Rm*CS)/(Ish2+CS) #ohm, resistance in branch 1\n",
"\n",
"#(c)\n",
"#Calculation\n",
"Imax3=100*10**(-3) #A. maximum current\n",
"Ish3=Imax3-CS #A, shunt path current\n",
"R2=((R-R1)*Ish3-Rm*CS)/(Ish3-CS) #ohm, resistance in branch 2\n",
"\n",
"#(d)\n",
"#Calculation\n",
"Imax4=500*10**(-3) #A , maximum current\n",
"Ish4=Imax4-CS #A, shunt path current\n",
"R3=((R-R1-R2)*Ish4-Rm*CS)/(Ish4-CS) #ohm, resistance in branch 3\n",
"\n",
"#(e)\n",
"#Calculation\n",
"Imax5=1 #A\n",
"Ish5=Imax5-CS #A, shunt path current\n",
"R4=((R-R1-R2-R3)*Ish5-Rm*CS)/(Ish5-CS) #ohm, resistance in branch 4\n",
"R5=R-R1-R2-R3-R4 #ohm, resistance in branch 2\n",
"\n",
"# Result\n",
"print \" Shunt Resistance =\",round(Rsh,6),\"ohm\"\n",
"print \" For Range switch at 1 mA , Rsh1 \",Rsh1,\"ohm\"\n",
"print \" For Range switch at 10 mA , R1 = \",R1,\"ohm\"\n",
"print \" For Range switch at 100 mA, R2 = \",round(R2,0),\"ohm\"\n",
"print \" For Range switch at 500 mA, R3 = \",round(R3,1),\"ohm\"\n",
"print \" For Range switch at 1 A , R4 = \",round(R4,1),\"ohm\"\n",
"print \" R5 = \",round(R5,1),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Shunt Resistance = 11.111111 ohm\n",
" For Range switch at 1 mA , Rsh1 100.0 ohm\n",
" For Range switch at 10 mA , R1 = 90.0 ohm\n",
" For Range switch at 100 mA, R2 = 9.0 ohm\n",
" For Range switch at 500 mA, R3 = 0.7 ohm\n",
" For Range switch at 1 A , R4 = 0.1 ohm\n",
" R5 = 0.1 ohm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 14.4 Page no.469"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 14.4\n",
"#Program to Determine the AC Voltage \n",
"\n",
"#Given Circuit Data\n",
"DS=5 #V/cm, Deflection Sensitivity\n",
"l=10 #cm, Trace Length\n",
"\n",
"#Calculation\n",
"import math\n",
"Vp=DS*l\n",
"Vm=Vp/2\n",
"V=Vm/math.sqrt(2)\n",
"# Result\n",
"print \" The RMS AC Voltage is=\",round(V,3),\"V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The RMS AC Voltage is= 17.678 V\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
"For more information, type 'help(pylab)'.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 14.5 Page no. 471"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Example 14.5\n",
"# Determine the Magnitude and the Frequency of the \n",
"#wave Voltage fed to the Y-input\n",
"import numpy\n",
"#Given Circuit Data\n",
"Am=3.5 #V, Amplitude\n",
"tb=0.1*10**(-3) #seconds\n",
"TP=4 #Time Period\n",
"x=linspace(-10,10,1000)\n",
"plt.grid()\n",
"plot(x,cos(x))\n",
"title('Display of a sine wave voltage on CRO ')\n",
"show()\n",
"#Calculation\n",
"import math\n",
"Vm=2*Am\n",
"V=Vm/math.sqrt(2)\n",
"T=TP*tb\n",
"f=1/T\n",
"\n",
"# Result\n",
"print \"The Magnitude of Wave Voltage, \",round(V,2),\"V\"\n",
"print \" The Frequency of Wave Voltage, f = \",f/10**3,\"KHz\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlcVdUa938HRUQkBBFRGUVlEAREwBxJzcyxW1pqOWSD\nV3vTNHt7K69Wt7ksy8qhNG83LSs1UVOv01GcQAVncCZMUdEUEFSm5/1jdY4cOAfOsPfZ0/p+Pnz0\nwD57P2etfX5r7d9a61k6IiJwOBwORxO4SB0Ah8PhcJwHF30Oh8PREFz0ORwOR0Nw0edwOBwNwUWf\nw+FwNAQXfQ6Hw9EQXPQlYtKkSXjnnXccOoder0dgYKBAEVnPtm3b0KtXL3h6euLw4cOiXCMtLQ0R\nERGinFsthISEYOvWrVKHwVEYXPRFICQkBE2aNMF9992H4OBg9OnTB7/++qvJMfPnz8fMmTMlitAx\n3nvvPUyYMAHFxcWIjY0V5Ro9e/ZETk6OKOdWCzqdDjqdDgDw5ptvYsyYMRJHJAwnT57EP/7xDwQF\nBcHb2xvJyclYunQpANbRcXFxgaenJ3x9fTF06NBa3y0AWLRoERISEuDl5YVOnTrhvffeQ1VVlZM/\niTzhoi8COp0O69atQ1FREVauXImuXbvipZdewowZM6QOzWGICLt370b37t2lDoWjQo4ePYouXbqg\nadOmWL58Oa5cuYLPPvsMK1euNB7Tpk0bFBcX4+LFixg6dCieffZZlJaWGv/++uuv46233sJTTz2F\n3NxcTJ06FUuXLsXYsWOl+EjygziCExISQlu3bjX53bfffksNGjSg06dPExHRuHHjaObMmUREVFJS\nQs888wwFBweTj48P9ezZ0/i+4OBgmjdvHiUmJlLbtm1p/vz5VFZWRkRE27dvp4CAAOOx77//PoWF\nhZGPjw+NHj2adu7cSUREd+/eJR8fHzp69Kjx2CtXrlCTJk3o2rVrZj/DmjVrqF+/fhQdHU3z58+n\nkpISunPnDnl4eJBOpyMPDw9q166d2fdOmTKFAgMDyc/Pj55//nk6dOiQxbJKS0ujAQMGkLe3N7Vp\n04Y++eQTs58tODiY5s+fT127dqXAwECaPXu2sRyIiA4fPkwTJ06kwMBAmj59Ov3xxx9mrzdr1ix6\n8cUXiYiorKyMmjRpQq+88goREZWWlpKbmxvduHGDiIiGDx9O/v7+FBAQQNOmTaOzZ88SEdG+ffvI\n39+fqqqqjOddtWoVderUyfj6999/pyFDhlCHDh3o008/peLiYrPxRERE0Lp164yvy8vLydfXl7Ky\nsoiI6ODBgzRu3DgKDg6mmTNn0sWLF43HGu6zDRs2UKNGjcjV1ZWaNm1KcXFxRES0ZMkSioyMJC8v\nLxo2bBilpqaaXHv9+vWUmJhIHTp0oBUrVpBOpzN+xvLyclqxYgU98MADFBsbS99++y3dvXvX7Gcg\nMn+/EBGdP3+edDodrVy5kiIiIigmJob++9//WjxPv379qH///hb/XvO+qKysJA8PD9qwYYPxeo0a\nNaJffvnF5H3p6emk0+loz549Fs+tFbjoi4A50S8oKKCGDRvSTz/9RERE48ePp3/9619ERPTll1/S\n6NGjqbCwkCoqKmjXrl3G9wUHB1N4eDilpaXRoUOHKD4+nhYsWEBEtb8Av/zyC+Xn51NpaSl9+umn\nJn+bPHkyvfrqq8bXc+fOpaFDh5qNf9u2bRQUFESbN2+mU6dOUd++fWn27NnGv1cXB3P88MMP9Ndf\nf9GNGzfolVdeoe7du1s8tkuXLrR69WqqrKykmzdvUmZmptnPFhISQrGxsZSRkUGnTp2ikJAQ2rJl\nCxERXbt2jby9vem3336jwsJCeu+996hbt24WP1tMTAwREe3evZvCwsIoOTmZiIi2bt1qFEwiou++\n+45u3bpFly5dojFjxtCTTz5p/FtYWBht3rzZ+Hr48OH04YcfEhETwE6dOtHevXvp0qVL9Pjjj9Pr\nr79uNp63337b5Lzr1q2jqKgoImKdgaZNm9I333xDV69epSlTplDv3r1NysRwn7355ps0ZswYk3Ov\nX7+ezp07R2VlZfTjjz+Su7s73bp1i4iIjh49Sr6+vrRu3To6d+4cDR48mFxcXIz1+vnnn1OfPn3o\n2LFjdObMGUpJSaFFixZZLFNL94tB9J944gnKy8ujTZs2kZubG92+fbvWeSorK8nd3Z2+/PJLs9ch\nMr0vSktL6euvv6bGjRtTQUEBEREtW7aMXF1dqaioqNa5W7ZsSe+//77Fc2sFLvoiYE70iYiio6Pp\n448/JiJT0f/iiy+of//+dOLECbPnMhxHRLRw4UIaPHgwEdUWxupUVVVRYGAgHThwgIhY7zQoKMj4\n94SEhFq9IQNTpkyh1157zfh68+bNJr3Y+kS/OkVFReTh4WH8Utakc+fO9Mknnxh71wbMif6cOXOM\nrydOnGhsxBYtWkTPPfec8W8VFRXk5+dHly9frnW90tJSaty4MV2/fp0++OADeu+99yggIIBu3bpF\ns2bNoqlTp5qN8/Tp0+Tt7U2VlZVERDRz5kyaMGGCyWfMy8sjIqLRo0fTsmXLjO/NysoyCnlNzpw5\nQ56enkYRHD16NP373/8mIvb0cP/99xuPLSkpMXk6q36fzZ49m5566imz1zDQo0cP+vXXX4mI6MMP\nPzRpJLZu3WpSr926daPdu3cb/7569WoaOHCg2fPWdb8YRP/gwYPGv4eHhxt75tW5cuUK6XQ6Y8Nv\nju3bt5OLiws1a9aMGjVqRA0aNKC0tDTj3z/88EOTe7U6Q4YMoRdeeMHiubUC9/SdREFBAXJyckxm\n29Dfue6eeeYZpKSkYPDgwYiJicHixYtN3hsXF2f8f3x8PPbu3Wv2GqmpqXj00UfRunVr+Pj4ID8/\nH0eOHAEAJCcnw93dHXq9Hjk5OTh79iyGDh1q9jx79uxBQkKC8XVCQgKOHj2K4uJiqz7r0qVLMWjQ\nILRo0QJBQUG4ffs2jh49avbY77//HocPH0bbtm0xYsSIOmcDVS8Hf39/XLx4EQCwZcsWLFu2DN7e\n3vD29oavry9KSkqQlpZW6xzu7u7o0qULduzYgZ07d6J3797o1q0bdu/ebXxt4JNPPkG/fv3g4+OD\nxMRE3Lx5E3/88QcAYNSoUVi1ahXKysqwatUqJCQkGOt2y5YtmDRpkjGeBx54ALm5ubh69WqteMLC\nwhAZGYnU1FSUlpZi7dq1GD16NABWD507dzYe26RJE7Rv3x579uyxWEbV2bVrF0aNGoXg4GA0a9YM\nGRkZxvshIyMD8fHxxmOrX6ekpAR79+7FoEGDjJ9h/PjxFq9rzf1Sve5atWqFS5cu1TqPr68vGjdu\nXO/na926NW7cuIH8/Hw8/fTTePnll43fpYCAAGRnZ9e6V6uqqpCeni7JbDe5wUXfSaSmpoKITL5c\nBpo0aYLXXnsNZ8+exZIlSzB9+nScOHHC+PesrCzj/zMzM9GtW7da5ygpKcFzzz2HcePGIScnB3/9\n9RfatGlj/DIAwLhx4/DDDz/gv//9L0aMGIFGjRqZjbV79+44cOCA8fWBAwcQExMDT0/Pej/nhQsX\nMH36dLz++uv4448/kJeXB3d3d5M4qtOxY0d8//33yM/PR0xMDJ599tl6r1GTPn36YOzYsbhx44bx\n59atWxg+fLjZ43v37o2tW7ciKysLiYmJ6N27NzZu3IiMjAz06tULAJCeno5PP/0Un332GfLz87F/\n/34A9xrqqKgoBAcHY8OGDVi+fLlRqA3xfPPNNybxlJSUwM/Pz2w8o0aNwo8//og1a9YgKioKbdu2\nBcDq4eDBg8bjSkpKcPr0abP137BhQ5MyJiJMnDgRvXv3RmZmJm7evImkpCTjMUlJSbXuKwMeHh5I\nTk7Gpk2bjPHfvHkTN27cMBu/I/dLdVxcXNCjRw+kpqZadbyPjw+++OILFBQU4IcffgAA3H///dDp\ndNi4caPJsfv370dBQQF69uxpU0xqhIu+SBi+XJmZmfjXv/6Ft956C1OmTEH79u1N/g4A69atw5kz\nZ1BVVQUPDw80atQIjRs3Nh63cuVK7N69G0eOHMGiRYswePDgWtcrLi7GrVu30KpVK1RVVeH999+v\n1Zt66qmnsGrVKixbtqzOmQzDhg3Djz/+iG3btuHMmTP4+OOP8Y9//MOqz11QUAAigr+/P4qLi/H6\n66/j7t27Zo8tLy/HsmXLUFhYCIA1frYKBQA8/vjjWLVqFX777TeUlJSgpKQE69evx61bt8we37t3\nb3z//ffo2LEjXF1dkZKSgm+//RZt27ZF8+bNAQAXL16Eh4cH/Pz8kJ+fj1mzZtU6z+jRozF37lyk\npaVhxIgRxt+PGTMGH330EXbt2oXKykoUFBTUKWQjR47Epk2bsGDBAjz55JPG3z/44IM4fvw4lixZ\ngqtXr2LmzJlITEw0xlidhIQEnDhxwljWZWVlKCgoQMuWLdG4cWN89913SE9PNx4/cOBAbNy4ERs2\nbEBubi6++OILk/ONGTMGs2bNQmZmJqqqqnDx4kX873//Mxu/PfeLpU7AnDlzsHfvXuOTxd27d5Ge\nno4hQ4aYPd7d3R0vv/wyPvjgAwBAaGgopk2bhmnTpuGzzz7D9evXsXjxYowdOxYjR44022BqDik8\nJbUTEhJC7u7u5OnpSYGBgZSSkkIrVqwwOaa6p//ZZ59RSEgINW3alLp162YcqDWc68svv6SkpCQK\nDQ2lr776yjiLYvv27RQYGGg89vPPP6cOHTpQUFAQzZ49mx544AFavHixyXX79u1LoaGhdcZfVVVF\nq1ator59+1LHjh3pyy+/NA4AEpHJgJ85Xn/9dQoKCqIOHTrQggULKDQ01OwYR1lZmXHmjp+fHw0f\nPpwOHz5s9rPVHCepOXCZlZVFU6ZModatW1OrVq3o8ccftzhjpri4mFxdXentt982fl4/Pz+aPHmy\n8ZjKykp6/vnnyd/fn6Kjo+m3336r9bnz8vLIxcXFOMZSvfzWr19PTzzxBHl7e1NYWBi98cYbFsuL\niNWLq6srXblyxeT3+/fvp7Fjx1JQUBC99tpr9Oeff5otk5KSEnriiSeoVatWlJCQQEREy5cvp7i4\nOPL396fJkyfTmDFjTMaH1q5da5y9s2TJEtLpdMaxl7KyMlqxYgUNGjSIvLy8KDIykubNm2c29rru\nl/Pnz5OLi4txLISIKCUlpdZ9WZ2TJ0/SI488QgEBAdSsWTNKTk42zvipeV8QsXEaX19fWrNmjfF3\nCxYsoM6dO5OnpyfFxMTQO++8YzLbSsvoiPgmKnImNDQUixcvRp8+fQQ534QJExAQEIC3335bkPNx\n1MH69evx//7f/7M49sJRDw7ZOxMmTEDLli0RExNj8ZjXXnsNbdu2RUJCAl9hKTFnz55FamoqXnjh\nBalD4ciA1atX4+7du8jMzMQnn3yChx56SOqQOE7AIdF/+umnaw2YVCcjIwNpaWk4cOAAZsyYoYoV\nqUrlX//6F7p37463334bLVu2lDocjgxYtGgR/Pz88OSTT2Lw4MF44403pA6J4wQctndyc3MxZMgQ\ns4+F8+bNQ2VlJV566SUAbHra2bNnHbkch8PhcBxA1Nk7GRkZiIqKMr5u0aIFF30Oh8ORkIZinpzY\nil+T3xmyAtbE0u85HA6HUze2GDai9vSTk5NNFhkVFBQYF56Yw9BIqPWnooLQsyfh5ZcJVVX3fl9e\nThgxgvDUU8JcZ/bs2ZJ/ViX//POfhIEDCXfvmpbnm28SEhMJt29LH6OSf4S4P+fPJ3TsSCgoMP39\nypWENm0IFy9K/zmd9WMroov+ypUrcf36dSxfvhyRkZFiXk72zJkDNGwIfPQRUP3BpmFDYOlSYP9+\n4OefHb9Obm6u4yfRKBs2sJ8ffwQMC5YN5TlrFtC6NfDee9LFpwYcvT9PnQJmzgRWrgR8fU3/9uij\nwNNPA5MnO3QJVeOQvTNq1Cjs2LED165dQ2BgIN566y2Ul5cDACZOnIikpCT06NEDXbp0gY+Pj3Gp\ntBa5dAn48EPg4EHAxUxT26QJsGQJ8MQTwJAhgLu782PUOhUVwEsvAQsWAPfdV/vvOh3w1VdAbCww\ndizQrp3zY+QAM2YAr74KhIeb//vMmayO1q0DzCxe1zyyWZyl0+nselRRCv/8J+DpCXz8cd3HDR8O\nJCUB//f/2n8tvV6PlJQU+0+gURYvBpYtA7ZuNX0Sq1meb78NnD0L/Oc/zo9RDThyf+7aBYwZA2Rn\nA39nKjHLmjXAm28CmZmmdalGbNVOLvpO4MoVICICOH269uNoTY4eBR56CMjNvWcvcMSnogIICwN+\n+gm4//66jy0sZL38ffvYezjOY+hQYNAgYOLEuo8jAhISmPBbSCarGmzVTp5wzQksWAA8/nj9gg8A\nMTFAVBSwYoX919Pr9fa/WaOsXQsEBpoX/Jrl6eXFfOMFC5wTm9qw9/48fRrYu5f19OtDpwNefhn4\n8ku7LqVquOiLTFkZE4cpU6x/z7RpwNy54sXEqc3XX9s2+DdxIht8v31btJA4NZg3D3j+eTb+ZQ3D\nhwOHDrHGgnMPbu+IzKpVwBdfALZ0bqqqgNBQ1vvs1Em00Dh/c+oU0LMnkJcHuLlZ/76BA9nA+7hx\n4sXGYdy9C7RpwyZCBAdb/75XX2XW3Zw54sUmNdzekRnLlgFPPWXbe1xcgCefBP77X3Fi4piybBkw\nerRtgg8AEyYAGp6Q5lR+/x2IjrZN8AHgmWdY/VZWihOXEuGiLyI3bgBbtrDHTFt56ilg+XL7blbu\n6VsPERu8HTXK8jGWynPQIODAATZQz7Eee+7PH36wvfMEAB06sCeEHTtsf69a4aIvIqtWAf36Ac2a\n2f7eqCjA35/frGJz6BBQXg4kJtr+Xnd3Ng/811+Fj4tzj8JC+ztPALPgfvpJ2JiUDBd9EVm92v4b\nFWCrC3/7zfb38Tn61rNiBROFuuZy11WeI0dyQbEVW+/PTZuA7t3t6zwBbObcqlWscedw0ReN0lJg\n505gwAD7zzFsGFtkosLxbdmQmgpYuf2vWfr1A44cAa5dEy4mjimpqY7NtQ8JYT+7dwsVkbLhoi8S\nW7awxSHe3vafo2NHlpfn8GHb3sc9fes4fx64fh3o0qXu4+oqTzc3oG9flq+HYx223J8VFaxsHU2n\nMHgwS8vA4aIvGuvWsRw6jqDT3evtc4Tn99+Bhx82nwvJFrigiMfu3ayXHhDg2HkGDwbWrxckJMXD\n5+mLQFUVu0l37ADat3fsXFu2ALNn80dTMRg4kK2sHTHCsfNcvgxERgJXrwKursLExmHMmMFyVs2e\n7dh5qqpYhtTdu9WXOoPP05cBhw+zG9VRwQeAHj2YZ1xY6Pi5OPcoLWXJux580PFz+fsDbduyFAEc\nYdm4kTXOjuLiws7z+++On0vpcNEXgW3bhBETgGUS7NrVtqmb3NOvnx07gPh462aEWFOeffsC27c7\nHpcWsPb+vHIFuHgR6NxZmOv268frCOCiLwrbtgEPPCDc+fr1AzZvFu58HPbl79tXuPP17cvqnSMc\n27cDvXsDDRoIc74HHmDpULS+Opd7+gJTXs6yaZ47BzRvLsw5MzNZWobsbGHOx2F7FnzyCdCrlzDn\nKykBWrZkvr61CcE4dfPccyz31IsvCnfOyEiWlkGopwc5wD19iTlwgPm7Qgk+AMTFAQUFwJ9/CndO\nLVNYyBrQ5GThzunhwewiPuAuHNu2AX36CHvOPn34ExkXfYHZvl34G9XFBUhJsd6P5J5+3ezaxXr6\n1iZYs7Y8uaBYhzXlmZvLnp6iooS9dp8+3Nfnoi8wYvROADaLh/cihUGvZ42o0PTpw7Za5DiOXs88\neKG3OkxJYY2+llMycNEXkIoKID2d5QkRmh492M1qDTz3Tt3YKvrWlmdSEnD8OOuhcixjTXnu3s3u\neaFp3hwICrJ9lbua4KIvIEeOsHzf9iaGqou4OOCPP1i6Zo793LoFnDjBBFpo3N3ZdpcHDgh/bq2x\nZw/QrZs45+7WjZ1fq3DRFxAxb9SGDdnAozU3K/f0LbN/PxAba9uGKbaUZ/fu2hYUa6ivPG/eBC5c\nYA2oGHDR5wjG3r3mN9YWiu7drbd4OObZt0/cOurWjY+9OMq+fSwJXsOG4pyfiz5HMPbsEVdQrB3M\n5Z6+ZfbtYyucbcGW8rz/ftb4V1XZdg0tUV95ivnEDADt2rEN7S9cEO8acoaLvkDk5wNFRWx7NrHo\n2pVtDF1WJt411AyRfaJvC61bA/fdxzZb59iH2KKv07HzazVXEhd9gdi7l4mJo2l668LTEwgNBY4d\nq/s47umb5/x5lgUzMNC299lantzXr5u6yrOiAsjIELdhBrRt8XDRF4i9e8XtnRhITGSDkRzbEbuX\nb6BrV+32Ih3l2DGWltzHR9zrGGw4LcJFXyDEHsQ1kJjIekJ1wT1989gr+raWZ2Iis+E45qmrPJ3V\nMHfuzBoYLS7S4qIvABUVwKFD9W+7JwRJSbynby9iz9wx0KkTkJMD3Lkj/rXUxoEDrNEUm6ZN2Y5c\nx4+Lfy25wUVfAHJygDZt2ACe2HTqBJw9W/eqT+7p1+buXdazsye7oq3l6e4OhIezxXqc2tRVngcP\nsr2lnUGXLtpcSMdFXwAyM52XqrVRI7ZhelaWc66nFo4dY1P13N2dcz2tCooj3LkDnDzJOjbOQKt1\nxEVfAJzZOwHqH8zlnn5tHGmY7SlPrQqKNVgqzyNH2JTnxo2dE0dCgjbriIu+AGRmOlf0k5LqH8zl\nmJKV5dyNM7jo287Bg84ZFzMQF8fyMN2967xrygEu+g5SWckGcePjnXfN+nr63NOvjSM9fXvKMzoa\nOHOGbcDOMcVSeTr7iblJE2b5HT3qvGvKAS76DnL6NNsmT4zMmpYIDwcuX2aJqTj1U1HBvtixsc67\nppsbG3s5dMh511Q6zhZ9QJtPZFz0HeTgQefvt9mgActAaGl2CPf0TcnJYQt+PD3te7+95alFQbEG\nc+Xp7EFcA1qsIy76DiJF7wRgfqSWN4KwBWfOrqpOfDyfZWUtzh7ENZCQoL2FdFz0HUQqQYmNtWwd\ncE/fFEfryN7yjI3lDbM5zJWnsydDGIiOZk8YWlqZy0XfAaqqnD8rxEBcHPeLrUWqhjk6mllLWhIU\nezl8mN3TzsbDg1l/J086/9pSwUXfAc6eBby92b6bziYmBsjONi8o3NO/R1WV47Or7C1PDw+W0VNL\ngmIN5srzyBHn+/kGtPZExkXfAaTqnQBcUKzlzBnWKIudtdESWhMUe6iqYrOruOg7By76DnD0qHj7\neFqDJYuHe/r3OHTI8YbZkfLUmqBYQ83yzM1lU569vSUJB7Gx2sqTxEXfAeQg+lxQ6kbKHiSgPUGx\nBymtHYBdW0vfIy76DnDkiLSib2kGD/f073H0KBtQdQRHypP39GtTszwPH5ZW9IOC2DqBq1eli8GZ\ncNG3k5IS4NIloH176WIw2DtE0sUgd6R+GgsI0Jag2MORI85dLV0TnU5bvX0u+nZy/DgQEQE0bChd\nDK1asRs2P9/099zTZ9y6xcqmXTvHzuNIeep0vLdfk5rlKbW9A2irjhwW/Z07dyIyMhLt27fHvHnz\nav1dr9fDy8sL8fHxiI+PxzvvvOPoJWWB1NYOcE9Q+Hx988ihYQa0JSi2cuuW9E/MgLbGXhz+Okyd\nOhULFy5EcHAwHnroIYwaNQq+vr4mx/Tu3RupqamOXkpWSG0bGIiOZhuEDBx473fc02ccOyZMHTla\nnrGxwPbtjsehFqqX57FjQGSk9A1zp07AF19IG4OzcKinX1hYCADo1asXgoOD0b9/f6Snp9c6jlRo\nOstJ9LW4z6c1yKWOeE/fMnKwdgD2PTp1CigrkzoS8XFI9Pfv34+IiAjj66ioKOzbt8/kGJ1Ohz17\n9iAuLg7Tp0/H2bNnHbmkLCCSz83asWNt0eeePkOImTuA4+UZFcVScPN0DIzq5Sn1zB0D7u5AcLA2\nFjuK/lDVuXNnXLhwAa6urvjPf/6DqVOnYt26dWaPHT9+PEJCQgAAzZo1Q1xcnPFR0HCjyOH15ctA\nebkeOTlAq1bSxtO5cwqys4Ft2/RwcZFH+cjl9cGDQEyM9PG4uwM+PnosXw6MGyd9PHJ6ffRoCh57\nTB7x+PkBx4+nICZGHvFYeq3X67F06VIAMOqlLejIAe+lsLAQKSkpyPo7f+yLL76IAQMGYNCgQWaP\nJyL4+/sjLy8Pbm5upoHodIqxgf73P+D99+Xj0wYHA9u2AWFhUkciH65eZYO416+zAW+pGTYMGDMG\nGD5c6kjkAxHg68u2LGzZUupogFmzWEz//rfUkdiGrdrpkL3j5eUFgM3gyc3NxebNm5GcnGxyzJUr\nV4wBrV27Fp06daol+EpDLl6xAXMWj9Yx1JEcBB/gdWSOq1dZ/fj5SR0JIyqKNUBqx+Epm3PnzsXE\niRPRr18/TJ48Gb6+vli4cCEWLlwIAPj1118RExODuLg4/Prrr5gzZ47DQUuN1Ev7a2KYwWPA8Cio\nZYRsmIUoz44dtSEo1mAoz+PHmdDyhtm5OOzp9+7dG9nZ2Sa/mzhxovH/L7zwAl544QVHLyMrjhwB\nJk2SOop7dOzILCfOPY4eZRvIy4WOHZklyLnHiRNM9OVChw4s+dvdu2yPY7XCV+TaSFUV2xhDTjdr\nzZ6+YfBHywg1Rx8QpjwjItj+C3wGz73yPHGCNYZywc0NCA1V/wweLvo2cuECSwFr7ybbYhAZyaYE\nVlRIHYk8qKpij+lCTNcUisaN2f4Hp09LHYl8MNg7ckILNhwXfRvJyWG9NjnRpAnLw2NYAqF1T//P\nPwEvL/YjBEKVp1Y84/owlKfc7B1AG3XERd9GTp4EwsOljqI2NS0eLZOTI886iopSv6BYy9WrQGUl\n4O8vdSSmcNHn1EKOPX3A9GbVuqd/8qSwdSRUeWpBUKwhJSXF2MuXy8wdA1qoIy76NiLnnr7ab1Zr\nkWsdaUFQrEWO1g7Asn3m5bE9ENQKF30bkXNP32DvaN3TF7qOhCrP8HDg3DltJPWqC71ej+PH5TVz\nx0CjRmydqe4mAAAgAElEQVQGz6lTUkciHlz0baC4GLhxg83CkBsGQeFTAuXb02/cmKXMULOgWItc\ne/qA+p/IuOjbwMmTbAGHiwxLrXFjtjXf2bPa9vRv3WL5doKChDunkOWpdkGxBoOnL8eePqD+OpKh\nfMkXufYgDUREMGtDy5w6xXxZOTbMgPoFxRquXWOrXlu1kjoS86i9jmT61ZAncvXzDURGAtnZ2vb0\nxagjIcszMpI3zMuW6WU5c8eA2hOvcdG3Ad7Tlz+8juRPbq58rR0AaNeOzeBR6/gYF30bkHtP3yAo\nWvb0xViYJWR5hoezVAyVlYKdUnFUVKTIdhAXYDl4DONjaoSLvpVUVgJnzrCBXLliEH2F7EUjCkIv\nzBIaDw+WP/6PP6SORDrkPHPHgJqfyLjoW0leHtC8OdC0qdSRWMbHh83iWblSL3UoklBVxXrRQjfM\nQo+RqFlQrOHwYb2sG2ZA3XXERd9K5N6DNBARwRooLSLHDKjmULOg1EdxMfuR41qX6qi5jrjoW4lc\nk3jVJCICcHNLkToMSRBrEFfoMRI1C0p9nDoFRESkyHZKrQE115HMi14+KKWnr+UpgXIfaDegZkGp\nD7nPrjKg5vExLvpWoqSe/t69eqnDkASxBIV7+sJx8iTQuLFe6jDqpXlzwNUVuHJF6kiEh4u+lSil\npx8Rod2ZIUppmP392YrU69eljsT55OQImyJDTNTaOHPRt4KiIvbTpo3UkdRPUBBQWpqC4mKpI3E+\nYjXMQnv6Oh2LU+17sZrj5EngkUdSpA7DKrjoaxg5J1qriYsLi1VrglJcDPz1l/xnhRhQq6DUhVhT\nasVCrXWkABmTHqXYBgZ8fPTIzpY6Cudy6pR4DbMYuYzUKih1Ydi7ODNTL3UoVqHWOuKibwVK8fMN\nBAWp82atC6XMCjGgVkGpC15H8oCLvhUoraf/8MMpqrxZ60LM6Zpi5DJSq6DUhUH0lZIbKiSEzd4p\nLZU6EmHhom8FSpn/bSAiApqzd5TWiwwLYyun796VOhLnobQ6atCAZdxU205nXPTrobKSZdtr317q\nSKwnP1+vua0TxWyYxfD0GzViWyeqNZOjOQyir6T9HtT4RMZFvx5yc1lWRA8PqSOxHjc3Nr30/Hmp\nI3EOSpsVYkCNglIXSuvpA+qsIy769aDEGzUlJUVTFk9eHsswKlYGVLE8aDUKiiVKS4GrV5lPrhRP\nH1BnHXHRrwel+fkGtLT4R2mzqwyoUVAscfo00LYt88mVRHi4+uqIi349KLGnr9frVXmzWkLs2VVi\nedBaEv3qDbOSPP3wcDaQW1UldSTCwUW/HnhPX/4ovaevxkyONVHatGcDnp7MOlTTHhVc9OtBiT39\nlJQUTfX0xa4jsTxob2+201l+viinlxXV60hJnj7A4lZTB4qLfh3cvAmUlCgj0VpN/PzYdNNr16SO\nRHyU+jQGqE9QLKHEzpMBtT01c9GvA0OiNZ1O6khsQ6/XayaTY3Exa5wDAsS7hpgetBbqiIj54gbR\nV5KnD6hvMJeLfh0ouQcJqO9mNcfJk2zhnBIyoJpDC3WUn89sLG9vqSOxD7U9jSn0q+IclPpIavBM\ntdCLdMYgrpgetNoExRw1v0dK8/TV9j3iol8HvKcvf5Q6K8SA2gTFHErtPBkIDGR7NahlYyIu+nWg\n1KmABs9UK71IsetITA86NBS4dAm4fVu0S0hOTdFXmqfv4sIsRLUkXuOib4GKCuUlWqtJu3Zsv9yy\nMqkjEQ+l9/QbNmTCf+aM1JGIh9J7+oC6OlBc9C2Qmwu0agW4u0sdie0YPFM3Nzar5dw5aeMRi6oq\nJpZiJ1oT24NWu8WjdE8fUFcdcdG3gNJ7kAbUdLPWJC8PaN5cvERrzkLNYy937wIXL7K8O0pGTXXE\nRd8CSvXzAVPPVE03a02cNdAutget5ob5zBmWWdPV9d7vlObpA9ze0QS8py9/1OAVA+oSlJqo5XsU\nHs4yhaoh8RoXfQsouadf3TNVe0/fGYIitgdtqCM1Jl4z1zAr0dP39ASaNQMuXJA6Esfhom8BNfVQ\n1CwoSm2Yq+Pjw1asXr4sdSTCo5anMUA9T2Rc9M3w11/AnTts9o4Sqe6Z+vkxwVdj4jVnNczO8KDV\n+kRmTvSV6OkDXPSN7Ny5E5GRkWjfvj3mzZtn9pjXXnsNbdu2RUJCAnIUcGcbblSlJVozh06nnpu1\nOkVFQGGhuInWnIka64hIXT19tWx647DoT506FQsXLsSWLVvw1Vdf4VqNLmVGRgbS0tJw4MABzJgx\nAzNmzHD0kqKjdNugpmeqxsFcQwZUZyRac4YHrcY6KihgnQ5fX9PfK9HTB9TTMDv0lSksLAQA9OrV\nC8HBwejfvz/S09NNjklPT8fw4cPh4+ODUaNGIVsBu3Wrxc83oEbrQOkNc03UWkdqeWIGuOgDAPbv\n34+Iat+8qKgo7Nu3z+SYjIwMREVFGV+3aNECZ8+edeSyoqN0QanpmaqxF+lM28BZnr5W6kipnn5Q\nEHD9OnDrltSROEZDsS9ARKAaU0d0Fpr+8ePHIyQkBADQrFkzxMXFGR8FDTeKM17n5ABFRXro9c65\nntivw8OBzEz1fB4ASEvTo2dPAJBHPI6+zsvT488/gTt3UtC4sfTxCPF6yxYgNlY+8Qjxul27FJw6\nxfRBqnj0ej2WLl0KAEa9tAUd1VRkGygsLERKSgqysrIAAC+++CIGDBiAQYMGGY+ZN28eKioqMG3a\nNABAWFiY2Z6+Tqer1ThIQXk5m5N78yabRqcG7t4FvLzY4GejRlJHIwydOgH/+Q8QHy91JMIRGQn8\n/DMQEyN1JMIwdCgwfjzw6KNSRyIcI0awzzNqlNSR3MNW7XTI3vHy8gLAZvDk5uZi8+bNSE5ONjkm\nOTkZK1euxPXr17F8+XJERkY6cknROX8eaN1aPYIPsMRrgYEsa6gaqKxkqyPFTrTmbNRmw6lp5o4B\nNdhwDs99mDt3LiZOnIh+/fph8uTJ8PX1xcKFC7Fw4UIAQFJSEnr06IEuXbpgzpw5+Pjjjx0OWkyU\nvnEKYN4zVcPNaiAvD2jRAvDwcM71zJWnGKipjsrLWVrvdu1q/81Z5SkGapi26bCn37t371ozciZO\nnGjy+oMPPsAHH3zg6KWcghp7J4C6epFqm11lIDwc2LZN6iiE4exZtobCzU3qSIQlPByYM0fqKByD\nr8itgRp6+obBn+qoaUqgs2dXmStPMVBTw1xX58lZ5SkG4eFsBy0lJ17jol8D3tOXP2ru6Z88qY48\nSWr9Ht13H5sUcfGi1JHYDxf9Gqihp2/J01dL4jVn9/Sd5UH7+LDZVWpIvFaX6CvZ0weU/9TMRb8a\n166xAaiWLaWORHhatFBP4jW19iIB9TyRqbmOlD7gzkW/GoYepNKXjZvzTHU6dcw8KCpiP23aOO+a\nzvSglS4oBtTq6QPKryMu+tVQc+8EUP7NCjg30ZoUKN06AFhq8rt3AX9/qSMRB6V3nlT61bEPNfj5\ngGXPVA3WgRSDuM70oNVQR/UlWlODp6/kOuKiXw0t9PSV3EMBlJ8Mrz7UUkdq/h4FB7O00SUlUkdi\nH1z0q6GWnr4lz1TpPRRAmp6+Mz3o0FDg0iW2c5tSqU/0le7pN2jAVhqfPi11JPbBRf9v6lo2rhbC\nwlgKg7IyqSOxH7X39F1dmfCfOSN1JPaj9p4+oOwnMi76f6OmZeOWPFOlJ16rrGRi2L69c6/rbA9a\nyYIC1C/6Svf0AWU/NXPR/xu19yANKHnmwR9/ODfRmlQoeTC3shI4d875DbOz4aKvAtS0tL8uz1TJ\nN6tUDbOzPWgl11FuLuDnBzRpYvkYpXv6gLI7T1z0/0ZLPX2lCoqaGua6ULK9owU/H7iXeE2JaU24\n6P+NmgSlLs9U6YIiRcMshaev1MRr1oi+Gjx9Ly+gaVNlJl7jog/25VLLdM36ULKgqKlhrovmzVni\ntStXpI7EdrTS0weU+9TMRR8sCRkRGyRUA3V5pobPWFDgnFiERCuePqDcJzJrRF8Nnj6g3Drioo/6\nl42rCZ1OmQOFhYVAcbFzE61JiVJ7kVrq6SvxewRw0QfAWmuZ79duE/V5pkqceWCwdqRomKXwoJUo\nKEVFrHEOCKj7ODV4+oAy6wjgog8AyM7Whp9vQIk3q9oa5vpQYsN86hSbn6/WDKg1UWIdAVz0Aahv\nELc+z1SJ1oGUdSSVp6/WOlKLpx8SAly9CpSWSh2JbXDRh/Z6kUocgNLa01hoKJsOqKTEa1ry8wGW\neK1tW+UlXtO86N++zb5coaFSRyIc9XmmYWHAhQtsowulIGXDLIUHrcTEa9aKvlo8fUCZFo/mRf/0\nadZau7pKHYnzaNQICApSTuK18nK2vF/NGVDNoTSLR2s9fUB5dQRw0VeltWONZ6qkm/XsWZYdVKoM\nqFJ50Eqy4aqqWAeqQ4f6j1WLpw8o63tkQPOirzWv2ICSHkvVNtBuLUoacL9wAfD2Bjw9pY7EuXDR\nVyBqFBRrPFMl3azZ2dI+jUnlQSupjmyxdtTk6SsxrQkXfRXaO9agJEFRY8NsDQZ7RwmCokU/H2BP\nN02asC0ulYKmRb+qii0oUdvNao1narB3lCAoUou+VB60khKv2VJHavL0AWV1oACNi35enjZ9SADw\n9WUpDeSeeE1LGVDNoRRBOXECiIqSOgppUNL4GKBx0VermFjjmep0yrhZ8/OBxo0BHx/pYpDSg1ZC\nHQG2jbuoydMHlNMwG9C06Es9QCg1SrhZ1dowW4sS6uivv1gqAq1kQK2JEuqoOpoWfbUKirWeqRJ6\nkXKoIyk9aCUISnY2s3aszYDKPX1p4aKvQtG3FiXcrFqdXWVACQ3ziRParqPQUGZD3r4tdSTWoWnR\nV6u9Y61nqgTRl8PiOSk9aEPiNTnnSTL09K1FbZ5+w4bKSrymWdG/fp1lMGzVSupIpEMJide0/jTm\n6spS+Mo58ZrWe/qAMjpQBjQr+ob9VtW4RaK1nqncE68VF7NBwqAgaeOQ2oOWu8Vj63RNqctTDORe\nR9XRrOir1dqxFTnfrKdOsQReWtmJyRJy7kUWFwPXrgHBwVJHIi1yrqOaaPbrpGbbwBbPVM43a3a2\nPFZLS+1ByznxmmHv4gYNrH+P1OUpBnL+HtVEs6LPfUiGnHv6x48DHTtKHYX0yDnFsq2DuGpFSYnX\nNCv6x48D0dFSRyEOtnimcu6hyEX0pfag5Swo9nSepC5PMfDxYSvH8/OljqR+NCn6xcVsQ2M1bZFo\nL3IWFDU3zLbQvDmbxSPHxGu8p3+PyEjWCModTYq+oXdiiw+pJGzxTH192UDp1avixWMPJSWs1xQW\nJnUk8vCg5fpEZk9PXw7lKQbR0ayjInc0KfrHjsnDNpADOp08BSU7m83cUWvDbCtRUfITlDt3gD//\n1N7exZbo2JFpi9zRpOjLxSsWC1s904gIJrJy4tgx+Vg7cvCgY2LkJyinTjGL1NXVtvfJoTzFgPf0\nZQz3ik2JjpafoKi9YbYVOdYR9/NNMfT05Tg+Vh1Nir7a7R1bPVM5Coqc6kgOHnR0NHD0qLwExd5p\nz3IoTzFo3hxo2pSlNpEzdot+cXExhg0bhqCgIDzyyCO4deuW2eNCQkLQqVMnxMfHIykpye5AheLG\nDaCoSPql/XIiJkZ+gsJ7+qa0aMHSZshpL9ajR9m9w7mHHDtQNbFb9OfPn4+goCCcPn0aAQEBWLBg\ngdnjdDod9Ho9srKykJGRYXegQnH8OHskVfPSfls9U39/9u/ly8LHYg9FRSwhnlym1MrFg5abr2+v\n6MulPMVA1aKfkZGBZ555Bm5ubpgwYQLS09MtHksy6kJyP782Op28BOX4cWYbqLlhtgeDxSMHSkpY\nyuf27aWORF6oWvT379+PiL+T10RERFjsxet0OvTp0wePPPIIUlNT7b2cYMjJKxYLezxTg8UjB+Rm\n7cjFg5aToJw4wab6Nmxo+3vlUp5iIKc6skSdVfbggw/ispln/nfffdfq3vvu3bvRqlUrZGdnY8iQ\nIUhKSoK/wU+owfjx4xESEgIAaNasGeLi4oyPgoYbxdHXx4+nYMgQ4c6nlteurnps3gxMny59PMeO\nAe7ueuj18ikfObwuLweOHZNHPL/8okeLFgAgj3jk8rpLlxTk5ADbtunh4iLO9fR6PZYuXQoARr20\nCbKTRx99lDIzM4mI6MCBA/TYY4/V+55p06bRokWLzP7NgVBsws+P6M8/nXIpRbFnD1FCgtRRMPr1\nI1q/Xuoo5EdREVGTJkQVFVJHQjR1KtFHH0kdhTwJDSU6edJ517NVO+22d5KTk7FkyRLcvn0bS5Ys\nQdeuXWsdU1paiuLiYgBAQUEBNm3ahAEDBth7SYcpKADKyoDWrSULQbZER7N515WVUkeiDQvOHjw9\nAT8/4Nw5qSPhM3fqQu4Wj92iP2nSJOTl5SE8PBwXL17EP//5TwDApUuXMGjQIADA5cuX0bNnT8TF\nxWHkyJF4+eWXERgYKEzkdmDwitW4W1Z1DI+CtiAXQbl+Hbh1S15Tau0pT7GQi6A4IvpyKk8xkEsd\nWcKOYRiGp6cn1qxZU+v3rVu3xvr16wEAbdu2xaFDh+yPTmCOHAE6dZI6CvlimB0i5YyMI0eA2Fj1\nN8z2Yhhw/8c/pIvhyhWgooI/MVsiOhowI42yQVOT4g4dAuLipI5CfAyDP7Yih2mbhw4x0ZcT9pan\nGMihF2no5dvbMMupPMVATlNrzaE50ZeboMgJOUzb1ErDbC9yEn2OeSIigNxc4PZtqSMxj2ZEv7yc\nbTmnhZvVXs9UDqJ/+LD8GmY5edDh4cD589IKiqOiL6fyFINGjVg9Sf1dsoRmRD8nBwgOBpo0kToS\n+RIeDvzxh3SCUlbG8vrzFdOWcXNj9SRlb5/39OsnLo49tcoRzYi+lqwdez1TV1dpBSU7m+XbkVvD\nLDcPOj4eyMqS5toVFWw1riOiL7fyFAMu+jKAe8XW0bmzdIKipYbZEaQU/ZwcICCATfHlWEbKOqoP\nzYj+4cPaEX1HPNPOnYHMTOFisQW5Nsxy86Dj46Wro6wsdn1HkFt5ikFsLLPB5LDYsSaaEH0i+QqK\n3JBS9LXUMDtCbCyz4CoqnH/tzEx2j3DqxssLaNkSOH1a6khqownRv3iRbbBtIc+b6nDEM+3Uia1c\nLi8XLh5rMDTMcrR35OZB33cfWxglxWb2QvT05VaeYiFXX18Tos97+dbTtClLgeDsjdL//JNNddNK\nw+woUnjGVVXCiL5WkKuvrwnR15pt4KhnKoXFI9dePiBPD1oKQTl/ntkWvr6OnUeO5SkGvKcvIVlZ\n8hUUOSKF6Gdm8h6kLUgh+ryXbxuGOpLRxoEANCL6+/cDiYlSR+E8HPVMpRAUOdeRHD3o+HjWi3Sm\noAg1iCvH8hSD1q1Z/eTnSx2JKaoX/StX2Ebb7dpJHYlyMAhKVZVzrkckb9GXIy1bAo0bsxXUzoL3\n9G1Dp2ON5MGDUkdiiupFf/9+oEsXbaXqddQz9fYGWrRw3nSzCxfYvxJutVAncvWgnWnDETHxEqKn\nL9fyFIOkJMDC9uGSoQnRT0qSOgrl4cweiqGXr6WGWQicKSjnz7M0HQEBzrmeWuCiLwFatA2E8Ey7\ndGFl5wzk3jDL1YNOTgb27XPOtdLT2fWEQK7lKQYG0XeWVWoNqhZ97hXbT9euzhMUXkf2kZTEnsac\nsdRfSNHXEi1bsmmuZ85IHck9VC36ubnskbRNG6kjcS5CeKaJiWzrwrt3HY+nLqqqmHDJWfTl6kF7\ne7N7+/hx8a8lpOjLtTzFQm4Wj6pFn/cg7cfDA+jQQfypm6dOMfFydMGPVklOZoIsJmVlrAPQpYu4\n11ErXPSdiNy9YrEQyjN1hsWjhIZZzh60M3z9w4eBsDCWokMI5FyeYuCMhtkWVC36+/ZpU/SFwhmi\nv3cvuw7HPpwhKNzPd4zOnVmaZbGtUmtRrejfucOsCS0KilCeqTNEf9cuoEcPca/hKHL2oDt1YmNX\nRUXiXUNo0ZdzeYqBhwfQvr188vCoVvQPHmS70vMdfuynfXsmJmItI795k83/5qs87cfVlSX2EnN6\nLe/pO06PHqyDIwdUK/pK6EGKhVCeqYuLuL39vXuZn+/qKs75hULuHnT37uIJSn4+cO0aEBUl3Dnl\nXp5i0LMnkJYmdRQMLvqcOunWTTxB2b2b15EQ9O4N7NghzrnT0lgdNWggzvm1Qs+e7Hskh0VaqhT9\nqiomKN27Sx2JNAjpmaakAGJZsLt2KaOO5O5Bd+/O7J2yMuHPvWMH0KuXsOeUe3mKQZs2bJGWszcn\nMocqRT87G/DxAVq1kjoS5ZOYyLblu3lT2POWlQEHDgD33y/sebWIlxdbUyGGr79zJ3uS4DiOXCwe\nVYr+jh3atg2E9Ezd3JivL/TNmpEBhIez/V7ljhI8aDEsnmvXWOpmoQfalVCeYsBFX0S2bAH69ZM6\nCvXwwAPCWzy8joRFDNHftYuN6TRsKOx5tUqvXqyOpN5JS3WiX1kJbN+ubUER2jMVw9dXkugrwYPu\n2ZPNhiovF+6cer3wfj47r174kyqAdu3YgHhOjrRxqE70DxxgOb/9/aWORD0kJrIcOTduCHO+oiK2\ntF/LFpzQ+Pgwu2zPHuHOuWkT8NBDwp1P6+h0rDw3bZI2DtWJvpJ6kGIhtGfaqBHr8W3eLMz5du5k\ni33c3YU5n9goxYMeMADYuFGYc+XmAtevi7NwTinlKQb9+wP/+58w56qqAsaOtf19qhT9Bx+UOgr1\nMXAg8Pvvwpxr82beMIvBgAHAhg3CnMvQy3dRnUJIS9++bKzkzh3Hz5WZaV/2TlVVaXExs3fE8CGV\nhBie6cCBTFCEWFyyaZOyRF8pHnRyMpCXB1y65Pi5Nm5kjYgYKKU8xcDbG4iOFmbB4/r1wODBtr9P\nVqLvaNKoTZvYbAOhUsBy7hEaCjRv7vi+uSdPssZZiA22OaY0bMgaU0c947IyNhmif39h4uKY0r+/\nMDbcunXAoEG2v09Wou/ozbpmDTBsmDCxKBmxPNNBg1jvwhFSU4GhQ5VlGyjJg374YcdtuF27WLK9\nFi2EiakmSipPMRg2jGmVI1M3L19mWzDaMxlCVl+9tWvtf295OROkoUOFi4djyqBBjtURwBtmsRk8\nmA0Ulpbaf45ffwUee0y4mDimxMUBFRUsx769rFvHxi7tSVYoK9H//Xf784ekpbHdfQIChI1JiYjl\nmfbsCVy8aP8mz1evAseOscVeSkJJHnSLFmyKrb0DupWVwKpVwPDhwsZVHSWVpxjodMCjj7JytpcV\nK4DHH7fvvbIS/YgI+y2eH38ERowQNh6OKQ0aMDFYscK+969YwZ7E3NyEjYtjyogRwC+/2PfeXbtY\nzqp27YSNiWPKo48CK1fa994rV1iepYED7Xu/jkjqRcEMnU6Hr78m7NgB/PSTbe+9cwdo3Zpt3sx7\n+uKyaxcwaZJ9j6ZJScA77/ABQrEpKGCe/J9/2j6pYdIkIDAQeP11cWLjMKqqgLZtgdWrbV8L8fXX\nLIvwsmXstU6ngy0yLque/ogR7LG0uNi2961dy2aDcMEXn27d2CyrrCzb3nfyJHDhAtCnjzhxce7R\nogWbtvzzz7a9r7SUPY2NGSNOXJx7uLgA48YB331n+3u//x4YNcqBa9v/VuHx9WWiYGjBrGXpUvtW\npqkVMT1TFxfg2WeBBQtse9933wGjRyszeZcSPejnngO++ca29/zyC0t1HRgoTkwGlFieYjB+PLOl\nbdkwPSuLrcN4+GH7rysr0QeAF18E5s2zfjrTyZNsQRb3853Hs8+yXmRhoXXHl5YCixcDkyeLGxfn\nHg8/zJ6sjhyx/j3ffMMaC45zCA0FYmNtG3+ZPx94/nnHdjKTladPRCACOnUCPvvMulWbkyaxx9m3\n3xY/Rs49nniC9Qpfeqn+YxcsYItRfvtN/Lg493j3XdYp+v77+o/dtw8YORI4fVr+exariY0bgVde\nYY2zTlf3sdevswH2EydMN4iy1dOXnegDwJIlwA8/AFu31l0Qly+zDZtPnOBZNZ1NVhabt3/6NODh\nYfm48nKgY0dg0SKWopnjPAoL2TTmffvqn40zbBgbYH/hBefExmEQsYHcd9+tf3XtG2+wQfpFi0x/\nr+iBXANjx7L54PVldXzzTeDpp7ng18QZnml8PFsN+OWXdR/37bdAcLCyt9xTqgft5QX8n/8DvPVW\n3celpbHkXRMmOCcupZanGOh0TMxnzmRrJCyRn8+emIWYVWW36P/yyy/o2LEjGjRogMzMTIvH7dy5\nE5GRkWjfvj3mzZtn1bkbNgQ++oj5+5ZWFmZksOlOb7xhT/Tq5tChQ065zr//DXzyCdtSzxyXLzPB\n+eij+h9d5YyzylMMpk9nm6Fs327+72VlwJQprI6clepayeUpBsOHs21D58+3fMy0acDEiUBIiOPX\ns1v0Y2JisHr1avSqJ6Xl1KlTsXDhQmzZsgVfffUVrl27ZtX5hw0DEhKAqVNrD+r+9Rfw1FPAV1+x\nzSM4ptwUehdzC4SHAzNmsCl+NVPFlpezKWnPPSdOTnZn4qzyFIP77mPzusePZ41wTV59lc3WGTnS\neTEpuTzFQKdjvfi33gLMtYeLFzM7deZMYa5nt+hHRESgQ4cOdR5T+Pf0jl69eiE4OBj9+/dHenq6\n1ddYsIBldZw69d60posXWZ7voUPFXSrOsY4ZM5i99thjbKAJAG7dujc9c9YsaePjAEOGMOumf3/g\n3Dn2u4oK4LXX2EDi0qXKfhJTA5GRrHEeOJCNwQCss/vdd8zSWbMGaNJEmGuJOmt6//79iIiIML6O\niorCvn37MMjKfKD33cd8/WefZQNS7duzlnD6dOFaPTWSm5vrtGs1aMAG3V99FejQgSWTOnKECc33\n36tjJogzy1MsZs1iudwTEtg0wfPn2fdp507nPy2roTzFYMQIlqLkkUfYdM6iItYY6/UsRY1gUB30\n6811SWwAAAPYSURBVNePoqOja/2kpqYaj0lJSaGDBw+aff/mzZtp5MiRxtfz58+nmTNnmj0WAP/h\nP/yH//AfO35soc6e/mYHN0VNTEzEK6+8Ynx9/PhxDLCwHY9MZo5yOByOqhFkyqYlwfby8gLAZvDk\n5uZi8+bNSE5OFuKSHA6Hw7EDu0V/9erVCAwMNHr0D/+dDOLSpUsmnv3cuXMxceJE9OvXD5MnT4av\nr6/jUXM4HA7HPmwygwTm559/pqioKHJxcak1LvD5559Tu3btKDIyktLS0iSKULnMnj2b2rRpQ3Fx\ncRQXF0cbNmyQOiTFsWPHDoqIiKB27drRF198IXU4iic4OJhiYmIoLi6OEhMTpQ5HcTz99NPk5+dH\n0dHRxt8VFRXR0KFDKTAwkIYNG0bFxcX1nkfSFbmW5vpfvXoVX3/9NbZu3Yr58+djypQpEkWoXHQ6\nHaZPn46srCxkZWVZHEvhWMbeNSYc8+h0Ouj1emRlZSEjI0PqcBTH008/jY01dlSfP38+goKCcPr0\naQQEBGCBFelvJRV9S3P909PTMWDAAAQFBaF3794gIhTbmmSfwwfHHcDRNSYc8/B70n569uwJb29v\nk99lZGTgmWeegZubGyZMmGDVPSrL3DsZGRmIjIw0vg4PD+c9AzuYN28eunbtig8//JA3mjZiaY0J\nx350Oh369OmDRx55BKmpqVKHowqq36cRERFW6aToW1o8+OCDuGxm/fd7772HIUOGmH2Pud6Aji8Z\nrIWlsn333XcxadIkzJo1C0VFRXjllVewcOFCzJgxQ4IoORzG7t270apVK2RnZ2PIkCFISkqCP8+W\n6BD2PDmJLvr2zPVPTk7Gli1bjK9zcnKQmJgoZFiqwJqy9fLywgsvvIDJkydz0bcBW9aYcKyj1d9J\n4CMjIzF06FCsXbsWz/FdWxwiMTER2dnZiI+PR3Z2tlU6KRt7p3qLlZSUhE2bNiEvLw96vR4uLi7w\n9PSUMDrlkZ+fDwCoqKjA8uXLMXDgQIkjUhZ8jYmwlJaWGi3GgoICbNq0iTeiApCcnIwlS5bg9u3b\nWLJkCbp27Vr/m8SZXGQdq1atooCAAGrcuDG1bNmSBgwYYPzb3LlzKSwsjCIjI2nnzp0SRqlMxowZ\nQzExMZSQkEDTpk2j69evSx2S4tDr9RQREUFhYWH0+eefSx2Oojl37hzFxsZSbGws9enThxYvXix1\nSIpj5MiR1KpVK2rUqBEFBATQkiVL7JqyKZudszgcDocjPrKxdzgcDocjPlz0ORwOR0Nw0edwOBwN\nwUWfw+FwNAQXfQ6Hw9EQXPQ5HA5HQ/x/swF7YoxaJw4AAAAASUVORK5CYII=\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Magnitude of Wave Voltage, 4.95 V\n",
" The Frequency of Wave Voltage, f = 2.5 KHz\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|