summaryrefslogtreecommitdiff
path: root/Basic_Electrical_Engineering_with_Numerical_Problems/Chapter_12.ipynb
blob: de6e0e01c53df0ba382987e716ce11e1a2b8183f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "metadata": {
  "name": "",
  "signature": "sha256:a058a43eb8f17e03501b9b96349ed2d08d5db7b72234021ac10c6272f4188cf4"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 12: Polyphase System"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.1: page 248:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "L=30  #load  in  kW\n",
      "pf=0.8#power  factor\n",
      "Vl=250#line  voltage  in  volts\n",
      "\n",
      "#calculations:\n",
      "I=((L*10**3)/(Vl*pf*math.sqrt(3)))#line  current  in  ampers\n",
      "Ip1=I  #  in  star  connection\n",
      "Ip2=I/(math.sqrt(3))#phase  current\n",
      "Il=math.sqrt(3)*Ip2#line  current  in  amperes\n",
      "\n",
      "#Results\n",
      "print  \"(a)line  current  (star  connection)  in  amperes  is\",round(I,2)\n",
      "print  \"phase  current  (start  connection)  in  amperes  is\",round(Ip1,2)\n",
      "print  \"(b)phase  current  in  ampere  is\",round(Ip2,2)\n",
      "print  \"line  current  (delta  connection  )  in  amperes  is\",round(Il,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)line  current  (star  connection)  in  amperes  is 86.6\n",
        "phase  current  (start  connection)  in  amperes  is 86.6\n",
        "(b)phase  current  in  ampere  is 50.0\n",
        "line  current  (delta  connection  )  in  amperes  is 86.6\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.2: page 248:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "R=11.88#coil  resistance  in  ohms\n",
      "L=0.07#inductance  in  henry\n",
      "f=50  #  in  hertz\n",
      "pf=0.48#power  factor\n",
      "Vl=433#line  voltage  in  volts\n",
      "\n",
      "#calculations:\n",
      "Vp1=  Vl/(math.sqrt(3))#phase  voltage\n",
      "Xl1=(2*math.pi*f*L)#in  ohms\n",
      "Zb1=math.sqrt(R**2+Xl1**2)#  in  ohms\n",
      "Ie1=Vp1/Zb1#current  in  each  winding  in  amperes\n",
      "Il1=Ie1#line  current  in  amperes\n",
      "W1=math.sqrt(3)*Vl*Il1*pf#power  in  watts\n",
      "\n",
      "Vp2=  Vl#phase  voltage\n",
      "Xl2=(2*math.pi*f*L)#in  ohms\n",
      "Zb2=math.sqrt(R**2+Xl2**2)#  in  ohms\n",
      "Ie2=Vp2/Zb2#current  in  each  winding  in  amperes\n",
      "Il2=math.sqrt(3)*Ie2#line  current  in  amperes\n",
      "W2=math.sqrt(3)*Vl*Il2*pf#power  in  watts\n",
      "\n",
      "#Results\n",
      "print  \"(a)line  current  in  ampere  is\",round(Il1)\n",
      "print  \"power  taken  in  connection  in  kW is\",round(W1*10**-3,1)\n",
      "print  \"(b)line  current  in  ampere  is\",round(Il2)\n",
      "print  \"power  taken  in  connection  in  kW is\",round(W2*10**-3,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)line  current  in  ampere  is 10.0\n",
        "power  taken  in  connection  in  kW is 3.6\n",
        "(b)line  current  in  ampere  is 30.0\n",
        "power  taken  in  connection  in  kW is 10.8\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.3: page 250:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "\n",
      "#given data:\n",
      "Vl=1100#line  voltage  in  volts\n",
      "n=99  #motor  efficiency  in  percentage\n",
      "pf=  0.8#power  factor\n",
      "\n",
      "#calculations:\n",
      "Mo=n*735.5#output  of  the  motor\n",
      "Mi=(Mo*100)/75#  INPUT  OF  THE  MOTOR  IN  WATTS\n",
      "Il=(Mi)/(math.sqrt(3)*Vl*pf)#line  current  in  amperes\n",
      "Ip=Il/(math.sqrt(3))#phase  current  in  amperes\n",
      "Ipm=Il#phase  curent  of  the  motor\n",
      "Ac1=Ip*pf#active  component  of  phase  current  in  the  motor\n",
      "Rc1=Ip*(math.sqrt(1-pf**2))#reactive  component  of  phase  current  of  motor\n",
      "Ac2=Ipm*pf#active  component  of  phase  current  in  the  generator\n",
      "Rc2=Ipm*(math.sqrt(1-pf**2))#reactive  component  of  phase  current  of  generator\n",
      "#Results\n",
      "print  \"(a)phase  current  of  motor  in  amperes  is\",round(Ip,2)\n",
      "print  \"active  component  of  phase  current  in  the  motor  in  amperes\",round(Ac1,2)\n",
      "print  \"reactive  component  of  phase  current  in  the  motor  in  amperes\",round(Rc1,2)\n",
      "print  \"(b)phase  current  of  generator  in  amperes  is\",round(Ipm,2)\n",
      "print  \"active  component  of  phase  current  in  the  generator  in  amperes\",round(Ac2,3)\n",
      "print  \"reactive  component  of  phase  current  in  the  generator  in  amperes\",round(Rc2,3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)phase  current  of  motor  in  amperes  is 36.77\n",
        "active  component  of  phase  current  in  the  motor  in  amperes 29.42\n",
        "reactive  component  of  phase  current  in  the  motor  in  amperes 22.06\n",
        "(b)phase  current  of  generator  in  amperes  is 63.7\n",
        "active  component  of  phase  current  in  the  generator  in  amperes 50.957\n",
        "reactive  component  of  phase  current  in  the  generator  in  amperes 38.218\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.4: Page 253:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "ni=74.6#efficiency\n",
      "Mo=40#HP  OF  MOTOR\n",
      "tw=40#total  in  kW\n",
      "pf=0.8#power  factor\n",
      "\n",
      "#calculations:\n",
      "mo=Mo*ni#output  of  motor  in  watts\n",
      "mi=(mo*100)/(ni*1000)#input  of  motor  in  kW\n",
      "theta=math.acos(pf)#in  degree\n",
      "v=math.tan(theta)#\n",
      "dw=(v*tw)/(3**0.5)#\n",
      "w1=(tw+dw)/2#FIRST  READING  IN  kW\n",
      "w2=tw-w1#second  reading  in  kW\n",
      "\n",
      "#Results\n",
      "print  \"first  reading  in  kW is\",round(w1,2)\n",
      "print  \"second  reading  in  kW is\",round(w2,2) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "first  reading  in  kW is 28.66\n",
        "second  reading  in  kW is 11.34\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 12.5: page 253:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "w1=4.5#first  reading  in  kW\n",
      "w2=3  #second  reading  in  kW  ,  this  value  is  given  wrong  in  question\n",
      "\n",
      "#calculations:\n",
      "tw1=w1+w2#in  kW\n",
      "dw1=w1-w2#in  kW\n",
      "pfa1=math.atan(math.sqrt(3)*(dw1/tw1));\n",
      "pf1=math.cos(pfa1)#//power  factor  when  both  the  eadings  are  positive\n",
      "\n",
      "tw2=w1-w2#in  kW\n",
      "dw2=w1+w2#in  kW\n",
      "pfa2=math.atan(math.sqrt(3)*(dw2/tw2));\n",
      "pf2=math.cos(pfa2)#//power  factor  when  second  reading  is  obtained  by  reversing  the  connection\n",
      "#Results\n",
      "print  \"(a)power  factor  when  both  the  readings  are  positive\", round(pf1,3)\n",
      "print  \"(b)power  factor  when  second  reading  is  obtained  by  reversing  the  connections  \",round(pf2,3) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)power  factor  when  both  the  readings  are  positive 0.945\n",
        "(b)power  factor  when  second  reading  is  obtained  by  reversing  the  connections   0.115\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}