summaryrefslogtreecommitdiff
path: root/Basic_Electrical_Engineering_with_Numerical_Problems/Chapter_08.ipynb
blob: 009e151eede61890e40debf63aa829829e2a311e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
{
 "metadata": {
  "name": "",
  "signature": "sha256:6b51ae63262d051d8c33b477f21b4f8b38c9632d3bf6e663f7b45ca75bc3f387"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8: DC Motors"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.1: page 137:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given  data  :\n",
      "s=22;#  shaft  of  the  motor  in  hp\n",
      "Tsh=210;#  torue  in  hp\n",
      "\n",
      "#calculations:\n",
      "N=(s*60*746)/(2*math.pi*Tsh);\n",
      "\n",
      "#Results\n",
      "print  \"speed,N(rpm)  =  \",N "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "speed,N(rpm)  =   746.300264578\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.2: Page 143:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given  data  :\n",
      "N=955;#  in  r.p.m\n",
      "V=230;#  voltage  in  volts\n",
      "I=72;#  current  in  A\n",
      "s=968;#  stray  losses\n",
      "Rsh=115;#  shunt  field  resistance  in  ohm\n",
      "Ra=0.5#  armature  resistance  in  ohm\n",
      "\n",
      "#calculations:\n",
      "W=V*I;\n",
      "Ish=V/Rsh#  shunt  field  resistance\n",
      "Ia=I-Ish;\n",
      "Eb=V-(Ia*Ra)#  back  emf  in  volts\n",
      "Dpd=Eb*Ia#  driving  power  developed\n",
      "Mpo=Dpd-s;\n",
      "bhp=Mpo/746;\n",
      "c_losses=W-Dpd;\n",
      "Ta=(9.55*Eb*Ia)/N;\n",
      "Tsh=(bhp*60*746)/(2*math.pi*N);\n",
      "Tl=Ta-Tsh;\n",
      "eta=(Mpo/W)*100;\n",
      "\n",
      "#Results\n",
      "print  \"(a)bhp  =  \",bhp\n",
      "print  \"(b)copper  losses(W)  =  \",c_losses\n",
      "print  \"(c)torque  armature,Ta(N-m)  =  \",Ta\n",
      "print  \"(d)shaft  torque,Tsh(N-m)  =  \",round(Tsh,2)\n",
      "print  \"(e)lost  torque,Tl(N-m)  =  \",round(Tl,2)\n",
      "print  \"(f)commercial  efficioency,eta(%)  =  \",round(eta,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)bhp  =   17.0\n",
        "(b)copper  losses(W)  =   2910.0\n",
        "(c)torque  armature,Ta(N-m)  =   136.5\n",
        "(d)shaft  torque,Tsh(N-m)  =   126.81\n",
        "(e)lost  torque,Tl(N-m)  =   9.69\n",
        "(f)commercial  efficioency,eta(%)  =   76.58\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.3: page 144:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "V=230#  in  volts\n",
      "I=5  #  in  amperes\n",
      "rpm=914#turns\n",
      "ra=0.5#resistance  of  armature  in  ihms\n",
      "rsh=115#shunt  field  in  ohms\n",
      "Il=30#  in  amperes\n",
      "ar=10#  in  percent\n",
      "\n",
      "#calculations:\n",
      "Ish=V/rsh#  in  amperes\n",
      "anl=I-Ish#armature  current  in  amperes  at  no  load\n",
      "al=Il-Ish#armature  currentin  amperes  at  load\n",
      "Eb1=(V-anl*ra)#back  emf  at  no  load\n",
      "Eb2=(V-al*ra)#back  emf  at  load\n",
      "ph1=100#\n",
      "ph2=90#\n",
      "Ns=(rpm*Eb2*ph1)/(Eb1*ph2)#speed  when  loaded  in  rpm\n",
      "\n",
      "#Results\n",
      "print  \"speed  when  loaded  in  rpm is \",Ns"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "speed  when  loaded  in  rpm is  960.0\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.4: page 144:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "Il=83#  WHEN  LOADED  IN  AMPERES\n",
      "V=110#  in  volts\n",
      "I=5    #  in  amperes  without  load\n",
      "ra=0.5#armature  resistance  in  ohms\n",
      "rsh=110#shunt  field  in  ohms\n",
      "\n",
      "#calculations:\n",
      "Ish=V/rsh#  in  ampere\n",
      "anl=I-Ish#armature  current  in  amperes  at  no  load\n",
      "al=Il-Ish#armature  currentin  amperes  at  load\n",
      "Eb1=(V-anl*ra)#back  emf  at  no  load\n",
      "Eb2=(V-al*ra)#back  emf  at  load\n",
      "Dp=Eb1*anl#driving  power  at  no  load  in  watt\n",
      "Dpl=Eb2*al#driving  power  at  load  in  watt\n",
      "mo=Dpl-Dp#out  of  motor  in  watt\n",
      "bhp=mo/746#horse  power\n",
      "mi=V*Il#input  power  in  watt\n",
      "n=(mo/mi)*100#efficiency  in  percentage\n",
      "\n",
      "#Results\n",
      "print  \"(a)stray  losses  in  watt is\",Dp\n",
      "print  \"(b)horse  power  in  ampere  is\",round(bhp,1)\n",
      "print  \"(c)efficiency  of  motor  when  it  is  work  on  full  ,load  in  percentage  is\",round(n,2)\n",
      "#answer(c)  is  wrong  in  the  textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)stray  losses  in  watt is 432.0\n",
        "(b)horse  power  in  ampere  is 7.0\n",
        "(c)efficiency  of  motor  when  it  is  work  on  full  ,load  in  percentage  is 57.24\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.5: page 146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "V=230#  in  volts\n",
      "I=60#  in  amperes\n",
      "rpm=955#turns\n",
      "ra=0.2#resistance  of  armature  in  ihms\n",
      "rsh=0.15#shunt  field  in  ohms\n",
      "sl=604#stray  losses  in  watts\n",
      "\n",
      "#calculations:\n",
      "Rm=ra+rsh#  in  ohms\n",
      "Eb=(V-I*Rm)#  back  emf  in  volts\n",
      "Dp=Eb*I#driving  power  in  watts\n",
      "mi=V*I#input  power  in  watts\n",
      "Cl=mi-Dp#  copper  losses  in  watts\n",
      "mo=Dp-sl#output  of  motor\n",
      "bhp=mo/746#  horse  power  in  bhp\n",
      "Ta=(9.55*Eb*I)/rpm#total  torque  in  N-m\n",
      "Ts=(bhp*60*746)/(2*math.pi*rpm)#shaft  torque  in  N-m\n",
      "Tl=Ta-Ts#lost  torque  in  N-m\n",
      "nc=(mo/mi)*100#commercial  efficiency  in  percentge\n",
      "\n",
      "#Results\n",
      "print  \"(a)back  emf  in  volts is\",Eb\n",
      "print  \"(b)copper  losses  in  watts is \",Cl\n",
      "print  \"(c)horse  power    is\", bhp\n",
      "print  \"(d)total  torque  in  N-m is\",Ta\n",
      "print  \"(e)shaft  torque  in  N-m is\",round(Ts,1)\n",
      "print  \"(f)lost  torque  in  N-m is\",round(Tl,1)\n",
      "print  \"(g)commercial  efficiency  in  percentge is\",round(nc,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)back  emf  in  volts is 209.0\n",
        "(b)copper  losses  in  watts is  1260.0\n",
        "(c)horse  power    is 16.0\n",
        "(d)total  torque  in  N-m is 125.4\n",
        "(e)shaft  torque  in  N-m is 119.4\n",
        "(f)lost  torque  in  N-m is 6.0\n",
        "(g)commercial  efficiency  in  percentge is 86.49\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.6: page 146:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "V=220#  in  volts\n",
      "I=60#  in  amperes\n",
      "rpm=728#turns\n",
      "Ts=150#shaft  torque  in  N-m\n",
      "nc=80#commercial  efficiency  in  percentge\n",
      "\n",
      "#calculations:\n",
      "I=((Ts*2*math.pi*rpm*746)/(60*746*(nc/100)*V))#  CURRENT  TAKEN  IN  AMPERES\n",
      "\n",
      "#Results\n",
      "print  \"current  taken  in  amperes  is\",round(I,1) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "current  taken  in  amperes  is 65.0\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 8.7: page 147:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "V=220#  in  volts\n",
      "rpm=2100#turns\n",
      "ra=0.5#resistance  of  armature  in  ihms\n",
      "rsh=220#shunt  field  in  ohms\n",
      "Il=21#  in  amperes\n",
      "R1=220#  in  ohms\n",
      "ph1=50#\n",
      "ph2=100#\n",
      "\n",
      "#calculations:\n",
      "Ish=V/rsh#  in  amperes\n",
      "Ifs=V/(rsh+R1)#shunt  field  current  in  second  case  in  ampere\n",
      "n2=(rpm*ph2)/ph1#speed  in  rpm\n",
      "\n",
      "#Results\n",
      "print  \"speed  in  rpm  is\",n2"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "speed  in  rpm  is 4200.0\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}