1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
{
"metadata": {
"name": "",
"signature": "sha256:6b51ae63262d051d8c33b477f21b4f8b38c9632d3bf6e663f7b45ca75bc3f387"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8: DC Motors"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.1: page 137:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#given data :\n",
"s=22;# shaft of the motor in hp\n",
"Tsh=210;# torue in hp\n",
"\n",
"#calculations:\n",
"N=(s*60*746)/(2*math.pi*Tsh);\n",
"\n",
"#Results\n",
"print \"speed,N(rpm) = \",N "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed,N(rpm) = 746.300264578\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.2: Page 143:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#given data :\n",
"N=955;# in r.p.m\n",
"V=230;# voltage in volts\n",
"I=72;# current in A\n",
"s=968;# stray losses\n",
"Rsh=115;# shunt field resistance in ohm\n",
"Ra=0.5# armature resistance in ohm\n",
"\n",
"#calculations:\n",
"W=V*I;\n",
"Ish=V/Rsh# shunt field resistance\n",
"Ia=I-Ish;\n",
"Eb=V-(Ia*Ra)# back emf in volts\n",
"Dpd=Eb*Ia# driving power developed\n",
"Mpo=Dpd-s;\n",
"bhp=Mpo/746;\n",
"c_losses=W-Dpd;\n",
"Ta=(9.55*Eb*Ia)/N;\n",
"Tsh=(bhp*60*746)/(2*math.pi*N);\n",
"Tl=Ta-Tsh;\n",
"eta=(Mpo/W)*100;\n",
"\n",
"#Results\n",
"print \"(a)bhp = \",bhp\n",
"print \"(b)copper losses(W) = \",c_losses\n",
"print \"(c)torque armature,Ta(N-m) = \",Ta\n",
"print \"(d)shaft torque,Tsh(N-m) = \",round(Tsh,2)\n",
"print \"(e)lost torque,Tl(N-m) = \",round(Tl,2)\n",
"print \"(f)commercial efficioency,eta(%) = \",round(eta,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)bhp = 17.0\n",
"(b)copper losses(W) = 2910.0\n",
"(c)torque armature,Ta(N-m) = 136.5\n",
"(d)shaft torque,Tsh(N-m) = 126.81\n",
"(e)lost torque,Tl(N-m) = 9.69\n",
"(f)commercial efficioency,eta(%) = 76.58\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.3: page 144:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#given data:\n",
"V=230# in volts\n",
"I=5 # in amperes\n",
"rpm=914#turns\n",
"ra=0.5#resistance of armature in ihms\n",
"rsh=115#shunt field in ohms\n",
"Il=30# in amperes\n",
"ar=10# in percent\n",
"\n",
"#calculations:\n",
"Ish=V/rsh# in amperes\n",
"anl=I-Ish#armature current in amperes at no load\n",
"al=Il-Ish#armature currentin amperes at load\n",
"Eb1=(V-anl*ra)#back emf at no load\n",
"Eb2=(V-al*ra)#back emf at load\n",
"ph1=100#\n",
"ph2=90#\n",
"Ns=(rpm*Eb2*ph1)/(Eb1*ph2)#speed when loaded in rpm\n",
"\n",
"#Results\n",
"print \"speed when loaded in rpm is \",Ns"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed when loaded in rpm is 960.0\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.4: page 144:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#given data:\n",
"Il=83# WHEN LOADED IN AMPERES\n",
"V=110# in volts\n",
"I=5 # in amperes without load\n",
"ra=0.5#armature resistance in ohms\n",
"rsh=110#shunt field in ohms\n",
"\n",
"#calculations:\n",
"Ish=V/rsh# in ampere\n",
"anl=I-Ish#armature current in amperes at no load\n",
"al=Il-Ish#armature currentin amperes at load\n",
"Eb1=(V-anl*ra)#back emf at no load\n",
"Eb2=(V-al*ra)#back emf at load\n",
"Dp=Eb1*anl#driving power at no load in watt\n",
"Dpl=Eb2*al#driving power at load in watt\n",
"mo=Dpl-Dp#out of motor in watt\n",
"bhp=mo/746#horse power\n",
"mi=V*Il#input power in watt\n",
"n=(mo/mi)*100#efficiency in percentage\n",
"\n",
"#Results\n",
"print \"(a)stray losses in watt is\",Dp\n",
"print \"(b)horse power in ampere is\",round(bhp,1)\n",
"print \"(c)efficiency of motor when it is work on full ,load in percentage is\",round(n,2)\n",
"#answer(c) is wrong in the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)stray losses in watt is 432.0\n",
"(b)horse power in ampere is 7.0\n",
"(c)efficiency of motor when it is work on full ,load in percentage is 57.24\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.5: page 146"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#given data:\n",
"V=230# in volts\n",
"I=60# in amperes\n",
"rpm=955#turns\n",
"ra=0.2#resistance of armature in ihms\n",
"rsh=0.15#shunt field in ohms\n",
"sl=604#stray losses in watts\n",
"\n",
"#calculations:\n",
"Rm=ra+rsh# in ohms\n",
"Eb=(V-I*Rm)# back emf in volts\n",
"Dp=Eb*I#driving power in watts\n",
"mi=V*I#input power in watts\n",
"Cl=mi-Dp# copper losses in watts\n",
"mo=Dp-sl#output of motor\n",
"bhp=mo/746# horse power in bhp\n",
"Ta=(9.55*Eb*I)/rpm#total torque in N-m\n",
"Ts=(bhp*60*746)/(2*math.pi*rpm)#shaft torque in N-m\n",
"Tl=Ta-Ts#lost torque in N-m\n",
"nc=(mo/mi)*100#commercial efficiency in percentge\n",
"\n",
"#Results\n",
"print \"(a)back emf in volts is\",Eb\n",
"print \"(b)copper losses in watts is \",Cl\n",
"print \"(c)horse power is\", bhp\n",
"print \"(d)total torque in N-m is\",Ta\n",
"print \"(e)shaft torque in N-m is\",round(Ts,1)\n",
"print \"(f)lost torque in N-m is\",round(Tl,1)\n",
"print \"(g)commercial efficiency in percentge is\",round(nc,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)back emf in volts is 209.0\n",
"(b)copper losses in watts is 1260.0\n",
"(c)horse power is 16.0\n",
"(d)total torque in N-m is 125.4\n",
"(e)shaft torque in N-m is 119.4\n",
"(f)lost torque in N-m is 6.0\n",
"(g)commercial efficiency in percentge is 86.49\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.6: page 146:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#given data:\n",
"V=220# in volts\n",
"I=60# in amperes\n",
"rpm=728#turns\n",
"Ts=150#shaft torque in N-m\n",
"nc=80#commercial efficiency in percentge\n",
"\n",
"#calculations:\n",
"I=((Ts*2*math.pi*rpm*746)/(60*746*(nc/100)*V))# CURRENT TAKEN IN AMPERES\n",
"\n",
"#Results\n",
"print \"current taken in amperes is\",round(I,1) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"current taken in amperes is 65.0\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 8.7: page 147:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#given data:\n",
"V=220# in volts\n",
"rpm=2100#turns\n",
"ra=0.5#resistance of armature in ihms\n",
"rsh=220#shunt field in ohms\n",
"Il=21# in amperes\n",
"R1=220# in ohms\n",
"ph1=50#\n",
"ph2=100#\n",
"\n",
"#calculations:\n",
"Ish=V/rsh# in amperes\n",
"Ifs=V/(rsh+R1)#shunt field current in second case in ampere\n",
"n2=(rpm*ph2)/ph1#speed in rpm\n",
"\n",
"#Results\n",
"print \"speed in rpm is\",n2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed in rpm is 4200.0\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|