summaryrefslogtreecommitdiff
path: root/Basic_Electrical_Engineering_with_Numerical_Problems/Chapter_07.ipynb
blob: 0640e27e79e852659ecce62082ce93d9bbf08b33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
{
 "metadata": {
  "name": "",
  "signature": "sha256:9d2dd07c4cd6a48736a25e250c2fa9389b802f12af2edf636c3211f6120daf44"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 7: DC Generators"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.1: Page 114:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#  given  data:\n",
      "p=8;  #  number  of  poles\n",
      "a1=p;  #  in  lap  winding\n",
      "a2=2;  #  in  wave  winding\n",
      "fi=15*10**-3;#  in  wb\n",
      "N=500;#  rev/min\n",
      "Z=800;#  number  of  conductors  on  armature\n",
      "\n",
      "#calculations:\n",
      "emf1=(fi*Z*N*p)/(60*a1)#  when  the  armature  is  lap  wound\n",
      "emf2=(fi*Z*N*p)/(60*a2)#  when  the  armature  is  wave  wound\n",
      "\n",
      "#Results\n",
      "print \"when  the  armature  is  lap  wound, emf(V)  =  \",emf1\n",
      "print \"when  the  armature  is  wave wound, emf(V)  =  \",emf2"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "when  the  armature  is  lap  wound, emf(V)  =   100.0\n",
        "when  the  armature  is  wave wound, emf(V)  =   400.0\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.2: Page 119:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given  data:\n",
      "Vt=200#  terminal  voltage  in  volts\n",
      "Rsh=100;#shunt  fieldresistance    in  ohm\n",
      "Ra=0.1;#  armature  resistance  in  ohm\n",
      "l=60;#  number  of  lamps\n",
      "w=40  #  in  watt\n",
      "N=4;  #  number  of  poles\n",
      "\n",
      "#calculations:\n",
      "total_l=l*w#  in  watt\n",
      "Il=total_l/Vt#  load  current\n",
      "Ish=Vt/Rsh#  shunt  field  current\n",
      "Ia=Il+Ish;\n",
      "I=Ia/N;\n",
      "Va=Ia*Ra#armature  voltage  drop  \n",
      "Vb=1+1;#  brush  contact  drop  for  2  pair  of  poles\n",
      "E=Vt+Va+Vb;\n",
      "\n",
      "#Results\n",
      "print  \"(a)armature  current,Ia(A)  =  \",Ia\n",
      "print  \"(b)current  per  path  in  a  armature,I(A)  =\",I\n",
      "print  \"(c)emf,E(Volts)  =  \",E"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)armature  current,Ia(A)  =   14.0\n",
        "(b)current  per  path  in  a  armature,I(A)  = 3.5\n",
        "(c)emf,E(Volts)  =   203.4\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.3: Page 119:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#  given  data:\n",
      "W=10  #  output  of  the  generator  in  k-w\n",
      "V=250;#  voltage  in  volts\n",
      "R=0.07;#  in  ohm\n",
      "Rsh=63.2;#  shunt  resistance  in  ohm\n",
      "Ra=0.05;#  armature  resistance  in  ohm\n",
      "Vb=2;#  brush  contact  drop\n",
      "\n",
      "#calculations:\n",
      "Il=(W*1000)/V#  load  current  in  A\n",
      "Vf=Il*R#  voltage  drop  in  feeder\n",
      "Vt=V+Vf;\n",
      "Ish=Vt/Rsh;\n",
      "Ia=Il+Ish;\n",
      "Vd=Ia*Ra#  voltage  drop  in  the  armature\n",
      "E=Vt+Vd+Vb;\n",
      "#Results\n",
      "print  \"(a)terminal  voltage,Vt(V)  = \",Vt \n",
      "print  \"(b)emf,E(V)  = \", E"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)terminal  voltage,Vt(V)  =  252.8\n",
        "(b)emf,E(V)  =  257.0\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.4: page 129:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "# given  data:\n",
      "W=20000#  in  watt\n",
      "V=200;#  in  volts\n",
      "R=0.08;#  in  ohm\n",
      "Rs=0.02;#  series  field  resistance  in  ohm\n",
      "Rsh=42;#  shunt  ield  resistance  in  ohm\n",
      "Ra=0.04;#    armature  resistance  in  ohm\n",
      "iron_losses=309.5;#  iron  and  friction  losses\n",
      "\n",
      "#calculations:\n",
      "I=W/V;#  in  A\n",
      "Vf=I*R;\n",
      "Vs=I*Rs;\n",
      "V1=Vf+Vs;#  voltage  drop  of  feeder  and  series  field\n",
      "Vg=V+V1;\n",
      "Ish=Vg/Rsh#  shunt  field  current\n",
      "Ia=I+Ish;\n",
      "Vd=Ia*Ra;\n",
      "emf=Vg+Vd;\n",
      "Ed=emf*Ia#  in  watt\n",
      "copper_losses=Ed-W;\n",
      "mech_in=W+copper_losses+iron_losses;\n",
      "Bhp=mech_in/735.5;\n",
      "efficiency=(W/mech_in)*100;\n",
      "\n",
      "#Results\n",
      "print  \"(a)terminal  voltage,Vg(V)  = \",Vg\n",
      "print  \"(b)emf(V)  =\",emf\n",
      "print  \"(c)copper  losses(Watt)  =  \",copper_losses\n",
      "print  \"(d)bhp  metric  of  the  primemover,Bhp  =  \",Bhp \n",
      "print  \"(e)efficiency(%)  =  \",round(efficiency,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)terminal  voltage,Vg(V)  =  210.0\n",
        "(b)emf(V)  = 214.2\n",
        "(c)copper  losses(Watt)  =   2491.0\n",
        "(d)bhp  metric  of  the  primemover,Bhp  =   31.0\n",
        "(e)efficiency(%)  =   87.7\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 7.5: page 129:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#  given  data:\n",
      "n=3    #  number  of  motors\n",
      "n1=4  #  number  of  parallel  path  in  winding\n",
      "i=30;#current  in  A\n",
      "Bhp=65#  in  hp\n",
      "Rsh=44;#  shunt  field  resistance\n",
      "Ra=0.08;#  armature  resistance  in  ohm\n",
      "V=440;#  voltage  in  V\n",
      "Vb=2  #  we  know  ,  brush  contact  drops\n",
      "\n",
      "#calculations:\n",
      "I=i*n#  current  taken  by  three  motors\n",
      "Ish=V/Rsh#  shunt  field  current\n",
      "Ia=I+Ish;\n",
      "I1=Ia/n1#  current  in  each  path\n",
      "Va=Ia*Ra;#  armature  drop\n",
      "E=V+Va+Vb;\n",
      "E_power=E*Ia;\n",
      "W=V*I#  in  watt\n",
      "M_power=Bhp*746#  assume  Bhp=746  W\n",
      "Copper_losses=E_power-W;\n",
      "S_loses=M_power-E_power;\n",
      "eta_e=(W/E_power)*100;\n",
      "eta_c=(W/M_power)*100;\n",
      "eta_m=(E_power/M_power)*100;\n",
      "\n",
      "#Results\n",
      "print  \"(a)total  armature  current,Ia(A)  =\",Ia\n",
      "print  \"(b)current  in  each  path,I1(A)  = \",I1\n",
      "print  \"(c)emf,E(V)  =  \",E  #  answer  is  wrong  in  a  book \n",
      "print  \"(d)electrical  power  developed  in  watt  =  \",E_power  #  answer  is  wrong  in  a  book \n",
      "print  \"(e)copper  losses  (W)  =  \",Copper_losses\n",
      "print  \"(f)stray  losses(W)  =  \",S_loses\n",
      "print  \"(g1)electrical  efficiency,eta_e(%)  =  \",eta_e\n",
      "print  \"(g2)commercial  efficiency,eta_c(%)  =  \",round(eta_c,2)\n",
      "print  \"(g3)mechanical  efficiency,eta_m(%)  =  \",round(eta_m,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)total  armature  current,Ia(A)  = 100.0\n",
        "(b)current  in  each  path,I1(A)  =  25.0\n",
        "(c)emf,E(V)  =   450.0\n",
        "(d)electrical  power  developed  in  watt  =   45000.0\n",
        "(e)copper  losses  (W)  =   5400.0\n",
        "(f)stray  losses(W)  =   3490.0\n",
        "(g1)electrical  efficiency,eta_e(%)  =   88.0\n",
        "(g2)commercial  efficiency,eta_c(%)  =   81.67\n",
        "(g3)mechanical  efficiency,eta_m(%)  =   92.8\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}