1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
{
"metadata": {
"name": "",
"signature": "sha256:9d2dd07c4cd6a48736a25e250c2fa9389b802f12af2edf636c3211f6120daf44"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7: DC Generators"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.1: Page 114:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"# given data:\n",
"p=8; # number of poles\n",
"a1=p; # in lap winding\n",
"a2=2; # in wave winding\n",
"fi=15*10**-3;# in wb\n",
"N=500;# rev/min\n",
"Z=800;# number of conductors on armature\n",
"\n",
"#calculations:\n",
"emf1=(fi*Z*N*p)/(60*a1)# when the armature is lap wound\n",
"emf2=(fi*Z*N*p)/(60*a2)# when the armature is wave wound\n",
"\n",
"#Results\n",
"print \"when the armature is lap wound, emf(V) = \",emf1\n",
"print \"when the armature is wave wound, emf(V) = \",emf2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"when the armature is lap wound, emf(V) = 100.0\n",
"when the armature is wave wound, emf(V) = 400.0\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.2: Page 119:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#given data:\n",
"Vt=200# terminal voltage in volts\n",
"Rsh=100;#shunt fieldresistance in ohm\n",
"Ra=0.1;# armature resistance in ohm\n",
"l=60;# number of lamps\n",
"w=40 # in watt\n",
"N=4; # number of poles\n",
"\n",
"#calculations:\n",
"total_l=l*w# in watt\n",
"Il=total_l/Vt# load current\n",
"Ish=Vt/Rsh# shunt field current\n",
"Ia=Il+Ish;\n",
"I=Ia/N;\n",
"Va=Ia*Ra#armature voltage drop \n",
"Vb=1+1;# brush contact drop for 2 pair of poles\n",
"E=Vt+Va+Vb;\n",
"\n",
"#Results\n",
"print \"(a)armature current,Ia(A) = \",Ia\n",
"print \"(b)current per path in a armature,I(A) =\",I\n",
"print \"(c)emf,E(Volts) = \",E"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)armature current,Ia(A) = 14.0\n",
"(b)current per path in a armature,I(A) = 3.5\n",
"(c)emf,E(Volts) = 203.4\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.3: Page 119:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"# given data:\n",
"W=10 # output of the generator in k-w\n",
"V=250;# voltage in volts\n",
"R=0.07;# in ohm\n",
"Rsh=63.2;# shunt resistance in ohm\n",
"Ra=0.05;# armature resistance in ohm\n",
"Vb=2;# brush contact drop\n",
"\n",
"#calculations:\n",
"Il=(W*1000)/V# load current in A\n",
"Vf=Il*R# voltage drop in feeder\n",
"Vt=V+Vf;\n",
"Ish=Vt/Rsh;\n",
"Ia=Il+Ish;\n",
"Vd=Ia*Ra# voltage drop in the armature\n",
"E=Vt+Vd+Vb;\n",
"#Results\n",
"print \"(a)terminal voltage,Vt(V) = \",Vt \n",
"print \"(b)emf,E(V) = \", E"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)terminal voltage,Vt(V) = 252.8\n",
"(b)emf,E(V) = 257.0\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.4: page 129:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"# given data:\n",
"W=20000# in watt\n",
"V=200;# in volts\n",
"R=0.08;# in ohm\n",
"Rs=0.02;# series field resistance in ohm\n",
"Rsh=42;# shunt ield resistance in ohm\n",
"Ra=0.04;# armature resistance in ohm\n",
"iron_losses=309.5;# iron and friction losses\n",
"\n",
"#calculations:\n",
"I=W/V;# in A\n",
"Vf=I*R;\n",
"Vs=I*Rs;\n",
"V1=Vf+Vs;# voltage drop of feeder and series field\n",
"Vg=V+V1;\n",
"Ish=Vg/Rsh# shunt field current\n",
"Ia=I+Ish;\n",
"Vd=Ia*Ra;\n",
"emf=Vg+Vd;\n",
"Ed=emf*Ia# in watt\n",
"copper_losses=Ed-W;\n",
"mech_in=W+copper_losses+iron_losses;\n",
"Bhp=mech_in/735.5;\n",
"efficiency=(W/mech_in)*100;\n",
"\n",
"#Results\n",
"print \"(a)terminal voltage,Vg(V) = \",Vg\n",
"print \"(b)emf(V) =\",emf\n",
"print \"(c)copper losses(Watt) = \",copper_losses\n",
"print \"(d)bhp metric of the primemover,Bhp = \",Bhp \n",
"print \"(e)efficiency(%) = \",round(efficiency,1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)terminal voltage,Vg(V) = 210.0\n",
"(b)emf(V) = 214.2\n",
"(c)copper losses(Watt) = 2491.0\n",
"(d)bhp metric of the primemover,Bhp = 31.0\n",
"(e)efficiency(%) = 87.7\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.5: page 129:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"import math\n",
"\n",
"# given data:\n",
"n=3 # number of motors\n",
"n1=4 # number of parallel path in winding\n",
"i=30;#current in A\n",
"Bhp=65# in hp\n",
"Rsh=44;# shunt field resistance\n",
"Ra=0.08;# armature resistance in ohm\n",
"V=440;# voltage in V\n",
"Vb=2 # we know , brush contact drops\n",
"\n",
"#calculations:\n",
"I=i*n# current taken by three motors\n",
"Ish=V/Rsh# shunt field current\n",
"Ia=I+Ish;\n",
"I1=Ia/n1# current in each path\n",
"Va=Ia*Ra;# armature drop\n",
"E=V+Va+Vb;\n",
"E_power=E*Ia;\n",
"W=V*I# in watt\n",
"M_power=Bhp*746# assume Bhp=746 W\n",
"Copper_losses=E_power-W;\n",
"S_loses=M_power-E_power;\n",
"eta_e=(W/E_power)*100;\n",
"eta_c=(W/M_power)*100;\n",
"eta_m=(E_power/M_power)*100;\n",
"\n",
"#Results\n",
"print \"(a)total armature current,Ia(A) =\",Ia\n",
"print \"(b)current in each path,I1(A) = \",I1\n",
"print \"(c)emf,E(V) = \",E # answer is wrong in a book \n",
"print \"(d)electrical power developed in watt = \",E_power # answer is wrong in a book \n",
"print \"(e)copper losses (W) = \",Copper_losses\n",
"print \"(f)stray losses(W) = \",S_loses\n",
"print \"(g1)electrical efficiency,eta_e(%) = \",eta_e\n",
"print \"(g2)commercial efficiency,eta_c(%) = \",round(eta_c,2)\n",
"print \"(g3)mechanical efficiency,eta_m(%) = \",round(eta_m,1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)total armature current,Ia(A) = 100.0\n",
"(b)current in each path,I1(A) = 25.0\n",
"(c)emf,E(V) = 450.0\n",
"(d)electrical power developed in watt = 45000.0\n",
"(e)copper losses (W) = 5400.0\n",
"(f)stray losses(W) = 3490.0\n",
"(g1)electrical efficiency,eta_e(%) = 88.0\n",
"(g2)commercial efficiency,eta_c(%) = 81.67\n",
"(g3)mechanical efficiency,eta_m(%) = 92.8\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|