summaryrefslogtreecommitdiff
path: root/Basic_Electrical_Engineering_with_Numerical_Problems/Chapter_05.ipynb
blob: 9b5947aafe50b6b4393624bb3452fa68053e178f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
{
 "metadata": {
  "name": "",
  "signature": "sha256:179d1aa791f84982595aec77701ac00e5f4718cb4b0fb539bad5702fddb2a8a1"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5:Chemical and Heating Effects of Electric Current"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.1: Page 74:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given  data  :\n",
      "t=200;#  time  in  sec\n",
      "M=111.83;#  silver  in  mg\n",
      "I=0.5;#  current  in  A\n",
      "\n",
      "#calculations:\n",
      "Z=(M/(I*t*1000))*1000#  electro-chemical-equivalent\n",
      "\n",
      "#Results\n",
      "print  \"E.C.E,Z(mg/C)  =  \",Z"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "E.C.E,Z(mg/C)  =   1.1183\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.2: page 74:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given  data  :\n",
      "Z=0.329*10**-3#  IN  g/C\n",
      "I=1    #  in  amperes\n",
      "t=90*60#  in  seconds\n",
      "\n",
      "#calculation:\n",
      "M=Z*I*t#  in  grams  \n",
      "A=200#area  in  centimete  square\n",
      "S=8.9#density  in  g/cc\n",
      "T=(M)/(2*A*S)#thickness  in  cm\n",
      "\n",
      "#Results\n",
      "print  \"thickness  of  copper  in  cm  is\", round(T,6)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "thickness  of  copper  in  cm  is 0.000499\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.3: Page 76:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "w=15  #  in  kg\n",
      "t1=15#  in  degree  celsius\n",
      "t2=100#in  degree  celsius\n",
      "t=25  #  time  in  minutes\n",
      "I=10  #  in  ampere\n",
      "n=85  #efficiency  of  conversion  in  percentage\n",
      "\n",
      "#calculations:\n",
      "ho=w*(t2-t1)#output  heat  required  in  kcal\n",
      "R=((ho*4187*100)/(I**2*t*60*n))#  resistance  in  ohms\n",
      "\n",
      "#Results\n",
      "print  \"resistance  in  ohms\",R"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "resistance  in  ohms 41.87\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5.4: page 76:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#given data:\n",
      "w=20  #  in  kg\n",
      "t1=10#  in  degree  celsius\n",
      "t2=90#in  degree  celsius\n",
      "t=2*3600+19*60+34#  time  in  seconds\n",
      "I=4    #  in  ampere\n",
      "n=80  #efficiency  of  conversion  in  percentage\n",
      "\n",
      "#calculations:\n",
      "ho=w*(t2-t1)#output  heat  required  in  kcal\n",
      "V=((ho*4187*100)/(I*t*n))#  POTENTIAL  DROP  IN  VOLTS\n",
      "\n",
      "#Results\n",
      "print  \"potential  drop  across  heater  element  in  volts  is\", V"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "potential  drop  across  heater  element  in  volts  is 250.0\n"
       ]
      }
     ],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}