summaryrefslogtreecommitdiff
path: root/Basic_Electrical_Engineering/Chapter6.ipynb
blob: fde4f29615356fd035cf3c16936edd2b7ab454e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6: MAGNETIC CIRCUITS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.1,Page number: 167\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the magnetic field strength and total flux passing through a coil.\"\"\"\n",
      "\n",
      "from math import pi\n",
      "\n",
      "#Variable Declaration:\n",
      "N=200                 #Number of turns in the coil \n",
      "l=0.60                #Length(Circumference) of the wooden ring(in metres)\n",
      "A=500e-06             #Cross-sectional area of the ring(in square-metres)\n",
      "I=4                   #Current through the coil(in Amperes)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "H=(N*I)/l\n",
      "rel_per=1\n",
      "per=(4*pi)*(1e-07)\n",
      "B=per*rel_per*H\n",
      "flux=B*A\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The magnetic field strength is %.2f A/m.\" %(H)\n",
      "print \"(b)The flux density is %.2f micro T.\" %(B*1000000)\n",
      "print \"(c)The total flux is %.5f micro Wb.\" %(flux*1000000)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The magnetic field strength is 1333.33 A/m.\n",
        "(b)The flux density is 1675.52 micro T.\n",
        "(c)The total flux is 0.83776 micro Wb.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.2,Page number: 168\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the magnetomotive force(mmf) required to produce flux.\"\"\"\n",
      "\n",
      "from math import pi\n",
      "\n",
      "#Variable Declaration:\n",
      "flux=0.015            #Flux across the air-gap(in Webers)\n",
      "l=2.5e-03             #Length of the air-fap(in metres)\n",
      "A=200e-04             #Effective area of the air-gap(in square-metres)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "B=flux/A\n",
      "abs_per=(4*pi)*(1e-07)\n",
      "H=B/abs_per\n",
      "mmf=H*l\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The magneto motive force(mmf) required is %.2f At.\" %(mmf)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magneto motive force(mmf) required is 1492.08 At.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.3,Page number: 168\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the reluctance of a mild-steel ring.\"\"\"\n",
      "\n",
      "from math import pi\n",
      "\n",
      "#Variable Declaration:\n",
      "N=200                       #Number of turns in the coil\n",
      "abs_per=(4*pi)*(1e-07)      #Absolute permeability of free space   \n",
      "rel_per=380                 #Relative permeability of mild-steel\n",
      "l=400e-03                   #Length(Circumference) of the mild-steel ring(in metres)\n",
      "A=500e-06                   #Cross-sectional area of the mild-steel ring(in square-metres)\n",
      "flux=800e-06                #Flux in the ring(in Webers) \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Rel=l/(abs_per*rel_per*A)\n",
      "mmf=flux*Rel\n",
      "I=mmf/N\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The reluctance of the ring is %6e A/Wb.\" %(Rel)\n",
      "print \"(b)The magnetising current is %.2f A.\" %(I)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The reluctance of the ring is 1.675315e+06 A/Wb.\n",
        "(b)The magnetising current is 6.70 A.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.4,Page number: 171\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the current in the coil to produce a flux density of 0.9 T in the air gap.\"\"\"\n",
      "\n",
      "from math import pi\n",
      "\n",
      "#Variable Declaration:\n",
      "B=0.90                #Flux Density in the air gap(in Tesla)     \n",
      "N=4000                #Number of turns in the core\n",
      "l_core=220e-03        #Length of the core(in metres)\n",
      "A_core=50e-06         #Cross-sectional area of the core(in square-metres)\n",
      "H_core=820            #Magnetic field intensity of the core(in Ampere per metre)  \n",
      "l_gap=1e-03           #Length of the air-gap(in metres)\n",
      "A_gap=50e-06          #Cross-sectional area of the air gap(in square-metres)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "mmf_core=H_core*l_core\n",
      "abs_per=(4*pi*(1e-07))\n",
      "H_gap=B/abs_per\n",
      "mmf_air_gap=H_gap*l_gap\n",
      "Total_mmf=mmf_core+mmf_air_gap\n",
      "I=Total_mmf/N\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The magnetisation current is %.5f A.\" %(I)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnetisation current is 0.22415 A.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.5,Page number: 173"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the magnetising current required to produce a flux across the air gap.\"\"\"\n",
      "\n",
      "from math import pi\n",
      "\n",
      "#Variable Declaration:\n",
      "w=40e-03               #Width of the core(in metres)\n",
      "d=50e-03               #Depth of the core(in metres)\n",
      "lg=2.0e-03             #Length of the air gap(in metres)\n",
      "Ag=2500e-06            #Area of the air gap(in square metres)\n",
      "N=800                  #Number of turns in the coil\n",
      "flux=2.50e-03          #Flux across the air gap(in Webers)\n",
      "lf=1.2                 #Leakage Factor\n",
      "abs_per=(4*pi)*(1e-07) #Absolute permeability of free space(Henry per metre) \n",
      "lc=600e-03             #Length of the core(in metres)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Ac=w*d\n",
      "Bg=flux/Ag\n",
      "Hg=Bg/abs_per\n",
      "mmf_g=Hg*lg\n",
      "eff_Ac=0.92*Ac\n",
      "flux_c=flux*lf\n",
      "Bc=flux_c/eff_Ac\n",
      "Hc=4000.0\n",
      "mmf_c=Hc*lc\n",
      "mmf=mmf_c+mmf_g\n",
      "I=mmf/N\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The magnetising current required to produce a flux of 0.0025 Wb across the air gap is %.2f A.\" %(I)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnetising current required to produce a flux of 0.0025 Wb across the air gap is 4.99 A.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6,Page number: 174"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the current in the coil.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "lA=0.3                #Length of silicon steel material(in metres)\n",
      "lB=0.2                #Length of low-carbon mild steel material(in metres)\n",
      "lC=0.1                #Length of cast iron material(in metres)\n",
      "N=100                 #Number of turns in the exciting coil\n",
      "A=0.001               #Cross-sectional area(in square-metres)\n",
      "flux=600e-06          #Flux in the coil(in Webers)\n",
      "abs_per=(4*pi)*(1e-07)#Absolute permeability of free space(in Henry per metre)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "B=flux/A\n",
      "B_A=B\n",
      "B_C=B\n",
      "B_C=B\n",
      "\"\"\"From magnetisation characteristics of ferromagnetic materials,\"\"\"\n",
      "H_A=20.0\n",
      "H_B=700.0\n",
      "H_C=2500.0\n",
      "\"\"\"According to Kirchoff's magnetomotive force law(KML),the total mmf required, tot_mmf= mmf_A+mmf_B+mmf_C.\"\"\"\n",
      "tot_mmf=(H_A*lA)+(H_B*lB)+(H_C*lC)\n",
      "I=tot_mmf/N\n",
      "rel_A=B/(abs_per*H_A)\n",
      "rel_B=B/(abs_per*H_B)\n",
      "rel_C=B/(abs_per*H_C)\n",
      "R_A=(H_A*lA)/flux\n",
      "R_B=(H_B*lB)/flux\n",
      "R_C=(H_C*lC)/flux\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The mmf for setting up a flux of 600 micro Weber is %.2f At.\" %(tot_mmf)\n",
      "print \"(b)The current in the coil is %.2f A.\" %(I)\n",
      "print \"(c)The relative permeability of:\\n   Material A: %.2f\\n   Material B: %.2f\\n   Material C: %.2f.\\n\" %(rel_A,rel_B,rel_C)\n",
      "print \"   The reluctances are :\\n   R_A=%.2f At/Wb \\n   R_B=%.2f At/Wb \\n   R_C=%.2f At/Wb.\" %(R_A,R_B,R_C)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The mmf for setting up a flux of 600 micro Weber is 396.00 At.\n",
        "(b)The current in the coil is 3.96 A.\n",
        "(c)The relative permeability of:\n",
        "   Material A: 23873.24\n",
        "   Material B: 682.09\n",
        "   Material C: 190.99.\n",
        "\n",
        "   The reluctances are :\n",
        "   R_A=10000.00 At/Wb \n",
        "   R_B=233333.33 At/Wb \n",
        "   R_C=416666.67 At/Wb.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.7,Page number: 175"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the current in the exciting coil.\"\"\"\n",
      "\n",
      "from math import pi\n",
      "\n",
      "#Variable Declaration:\n",
      "N=300                 #Number of the turns in the exciting coil\n",
      "flux=600e-06          #Flux in the air gap(in Webers)\n",
      "lg=1e-03              #Length of the air gap(in metres)\n",
      "lc=40e-02             #Mean length of the core(in metres)\n",
      "A=4e-04               #Cross sectional area of the core(in square metres)\n",
      "abs_per=(4*pi)*1e-07  #Absolute permeability of free space(in Henry per metre)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "B=flux/A\n",
      "Hg=B/abs_per\n",
      "mmf_g=Hg*lg\n",
      "mmf_c=3000*lc\n",
      "mmf=mmf_g+mmf_c\n",
      "I=mmf/N\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The current in the exciting coil to set up a flux of 600 micro Weber in the air gap is %.2f A.\" %(I)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current in the exciting coil to set up a flux of 600 micro Weber in the air gap is 7.98 A.\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.8,Page number: 175 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the current in the exciting coil.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "l1=10e-02             #Length of first side of the magnetic circuit(in metres)\n",
      "l2=18e-02             #Length of second side of the magnetic circuit(in metres)\n",
      "l3=18e-02             #Length of third side of the magnetic circuit(in metres)\n",
      "A1=6.25e-04           #Cross sectional area of l1 path(in square-metre) \n",
      "A2=3.00e-04           #Cross sectional area of l2 path(in square-metre)\n",
      "A3=3.00e-04           #Cross sectional area of l3 path(in square-metre)\n",
      "lg=2e-03              #Length of air gap(in metres)\n",
      "rel_per=800.0         #Relative permeability of core material\n",
      "N=600                 #Number of turns\n",
      "flux=100e-06          #Flux in the air gap(in Webers)\n",
      "abs_per=(4*pi)*1e-07  #Absolute permeability of free space(in Farad per metre)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Bg=flux/A1\n",
      "Hg=Bg/abs_per\n",
      "mmf_g=Hg*lg\n",
      "B1=Bg\n",
      "H1=B1/(rel_per*abs_per)\n",
      "mmf_1=H1*l1\n",
      "flux2=flux/2.0\n",
      "B2=flux2/A2\n",
      "H2=B2/(rel_per*abs_per)\n",
      "mmf_2=H2*l2\n",
      "tot_mmf=mmf_g+mmf_1+mmf_2\n",
      "I=tot_mmf/N\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The current in the 600 turn exciting coil is %.3f A.\" %(I) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current in the 600 turn exciting coil is 0.501 A.\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.9,Page number: 176 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the value of exciting current.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "A_B=0.01              #Area of cross section of limb B(in square metre)\n",
      "A_C=0.02              #Area of cross section of limb C(in square metre)\n",
      "l_B=1e-03             #Length of air gap in limb B(in metres)\n",
      "l_C=2e-03             #Length of air gap in limb C(in metres)\n",
      "flux_B=1.5e-03        #Flux in limb B(in Webers)\n",
      "N=500                 #Number of turns in the coil\n",
      "abs_per=(4*pi)*(1e-07)#Absolute permeability of free space(in Henry per metre) \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "\"\"\"The mmf across parallel paths must be same. \n",
      "   (R_B*flux_B)=(R_C*flux_C);\"\"\"\n",
      "flux_C=flux_B*(l_B/l_C)*(A_C/A_B)\n",
      "flux=flux_B+flux_C\n",
      "R_B=l_B/(abs_per*A_B)\n",
      "R_C=l_C/(abs_per*A_C)\n",
      "R_net=1.0/((1.0/R_B)+(1.0/R_C))\n",
      "I=(flux*R_net)/N\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The flux in limb A is %e Wb.\" %(flux)\n",
      "print \"The current in the exciting coil is %e A.\" %(I) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flux in limb A is 3.000000e-03 Wb.\n",
        "The current in the exciting coil is 2.387324e-01 A.\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.10,Page number: 177 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the ampere turns required to produce a flux.\"\"\"\n",
      "\n",
      "from math import pi\n",
      "\n",
      "#Variable Declaration:\n",
      "abs_per=(4*pi)*(1e-07) #Absolute permeability of free space(in Henry per metre)\n",
      "D=21e-02               #Mean diameter of the ring(in metres)\n",
      "A=10e-04               #Cross sectional area(in square metre)\n",
      "flux=0.8e-03           #Flux to be produced(in Webers)\n",
      "lg=0.4e-03             #Length of the air gap(in metres) \n",
      "rel_i=166.0            #Relative permeability of iron\n",
      "rel_s=800.0            #Relative permeability of steel\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "B=flux/A\n",
      "li=(pi*D)/2.0\n",
      "ls=(pi*D)/2.0\n",
      "mmf_g=(B/abs_per)*lg\n",
      "mmf_i=(B/(abs_per*rel_i))*li\n",
      "mmf_s=(B/(abs_per*rel_s))*ls\n",
      "mmf=mmf_g+mmf_i+mmf_s\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The total ampere turns required is %.2f At.\" %(mmf)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total ampere turns required is 1782.21 At.\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.11,Page number: 177 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the ampere turns of the coil wound on the central limb.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "flux=1e-03            #Flux in the central limb(in Webers)\n",
      "Ac=8e-04              #Area of the central limb(in square metres)\n",
      "As=5e-04              #Area of each side limb(in square metres)\n",
      "l=0.15                #Length of the central limb(in metres)\n",
      "lg=0.001              #Length of the air gap(in metres)\n",
      "abs_per=(4*pi)*1e-07  #Absolute permeability of free space(in Henry per metre)\n",
      "l1=0.34               #Length of the part ABCD(in metres)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "B=flux/Ac\n",
      "\"\"\"Corresponding to this value of B, H is 500 At/m from the table.\"\"\"\n",
      "mmf_DG=500*l\n",
      "Hg=1.25/abs_per\n",
      "mmf_g=Hg*lg\n",
      "B1=(flux/2.0)/As\n",
      "\"\"\"Corresponding to this value of B, H is 200 At/m from the table.\"\"\"\n",
      "mmf_1=200*l1\n",
      "mmf_tot=mmf_DG+mmf_g+mmf_1\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The required ampere turns of the coil wound on the central limb is %.2f At.\" %(mmf_tot)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required ampere turns of the coil wound on the central limb is 1137.72 At.\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}